提供具有和化学蚀刻有关的高硬度和低惯性的镜子的系统和方法与流程

文档序号:11996322阅读:198来源:国知局
提供具有和化学蚀刻有关的高硬度和低惯性的镜子的系统和方法与流程
提供具有和化学蚀刻有关的高硬度和低惯性的镜子的系统和方法优先权本申请要求于2011年7月29日提交的、序列号为61/513,274的美国临时专利申请的优先权,其全文以引用的方式合并于此。

背景技术:
本发明总地涉及制造在受限旋转电机系统中的光学元件,特别地涉及制造具有高硬度和低惯性的这种元件。扫描镜系统通常包括安装在基底上、或者作为基底的一部分而形成的镜面,其中基底耦合至电机系统的轴。这种电机连续运行(例如,与多边形镜一起使用),或者这种电机可以是受限旋转电机从而提供在受限角度范围内的移动。由于这些镜子要在受限角度范围内进行前、后加速,因此这些应用要求镜子应尽可能的硬且具有最小的惯性。在典型的受限旋转扫描系统(也称为检流计系统)中,镜子被安装至受限旋转电机的输出轴,且受限旋转电机由控制环控制,该控制环设法使电机的转子且由此使镜子以任意高的保真度遵循一位置和速度命令波形。然而,该系统遵循该命令的保真度受到一定限制。例如,系统中镜子的加速受到电机线圈中电流上升速率的限制。位置精确度受到反馈方法的信噪比的限制。系统的带宽(其在可能的最短时间内以期望的高速从位置A移动至位置B、且随后精确地定位在位置B上的能力)主要受到移动部件中的振动的限制。系统的带宽额定地是该移动结构中的第一扭转共振的1/2。因此,通常使移动部件在允许的系统惯性的限制内尽可能地硬。由于达到特定加速度所要求的电机扭矩与惯性直接成正比,且与电流(如上所述其上升速率受限)成正比,因此,通常当针对特定惯性而优化系统参数时,某元件(典型地为镜子)即使由非常高硬度-惯性材料制成,其硬度也不满足实现系统带宽的目的。这种情况下,需在镜子上增加额外的材料以增大其硬度,但其代价就是有了额外的惯性,从而需要更大的、更贵的电机以及能够驱动该额外的惯性的控制环。因此,需要一种受限旋转电机系统,其能提供改进的带宽而无需大型、昂贵的电机和附属的控制系统。

技术实现要素:
根据一个实施例,本发明提供了一种制造用在受限旋转电机系统中的镜子的方法。所述方法包括下述步骤:提供包括至少一个壁部分的镜子结构;以及将至少一个壁部分暴露在液体蚀刻剂中从而对镜子结构进行化学铣削。根据另一实施例,本发明提供了一种用在受限旋转电机系统中的镜子,所述镜子包括与镜子的前部相对的背面结构。所述背面结构包括至少一个具有锥形形状的壁部分,该锥形形状随着壁延伸远离镜子的前部而逐渐尖细。根据又一实施例,本发明提供了一种用在受限旋转电机系统中的镜子,所述镜子包括与镜子的前部相对的背面结构,所述背面结构包括向镜子提供硬度的特征,这些特征具有在远离镜子前部的方向上逐渐减小的厚度。附图的简要说明参考下述说明书附图,能够进一步地理解下述说明。图1示出根据本发明待加工的受限旋转电机的一部分的图示性放大图。图2示出根据本发明的一个实施例加工后的受限旋转电机的一部分的图示性放大图。图3示出根据本发明的一个实施例待加工的镜子基底的图示性前视图。图4示出沿图3中的4-4线截取的图3所示的镜子基底的图示性顶视图。图5示出沿图3中的5-5线截取的图3所示的镜子基底的图示性侧截面视图。图6示出图3中示出的镜子基底的图示性后视图。图7示出图6中示出的镜子基底的背面的一部分的图示性放大图。图8A-8C示出根据本发明的一个实施例正被加工的镜子基底的一部分的图示性放大图。图9示出根据本发明的一个实施例加工后的镜子基底的图示性后视图。图10示出图9中示出的镜子基底的背面的一部分的图示性放大图。图11示出沿图9中的11-11线截取的图9所示的镜子基底的图示性侧视图。图12示出图9的镜子基底的图示性等距视图。图13示出使用包括本发明的镜子基底的光学元件的受限旋转电机系统的图示性视图。附图仅以示意的目的示出。具体实施方式已知的是,使用某些高硬度且低惯性的材料来制造在使用中移动的移动(或动态)镜子,诸如在受限旋转电机系统中的镜子。期望的是,这种镜子(理想地)具有无穷大的硬度和零惯性,例如铍,其因为具有高硬度和低质量而提供了极好的选择。还已知有,这种镜子结构可被机械加工为进一步减少镜子的质量,特别在镜子的背面上、和离镜子旋转轴最远的边缘附近。这种机械加工被设计为进一步减少镜子的质量而不显著地降低镜子的硬度。考虑这一点,期望的是对镜子的机械加工使得壁尽可能的薄、但仍保持提供硬度(例如,在蜂窝图案中)。由于用于镜子结构的材料具有非常低的比惯性(gm-cm2/单位面积),因此难以将诸如铍的这种低惯性材料机械加工为极其薄的厚度而不使其破裂。铍加工起来非常昂贵,且产生有害粉尘。对特定材料而言加工工具一般是专用的,要求不同的速度、供给、滑润剂、冷却剂、工具形状和材料以及涂层。因此,期望的是,加快铍镜子的制造速度,且同时克服已知加工工艺的各种限制。图1示出铍镜子基底10,包括壁部分12和底板14,它们在材料移除之后仍在。如现有技术已知的,表示实体模型的计算机文件可被直接转换为加工工具上的加工指令,加工工具在平面上铣削该部件、钻出纵向孔并且在仍然是当母体铍块的表面的一部分的同时执行诸如钻孔和轻敲孔等二次操作。通过将基底10从母体铍块中移除可对其进行进一步的处理,在母铍块上通过线EDM(放电加工)或电化学锯割的锯割工艺将其铣削。一般根据期望的容差来抛光分离的基底。传统地,可就这样进行使用,或是通过电镀、真空涂层、或两者一起使用。本发明旨在用于生成基底自身的工艺过程。对机械加工领域的技术人员而言已知的是,在母体块的一个面上制造单个基底、或是在母体块的一个或多个面上制造多个基底、亦或是由单个近网状模块制造单个基底都产生相同的结果,因而这些变型例都不背离本发明的精神和范围。基底精确的尺寸和形状、以及镜子背面上的硬化结构的精确配置都是并不背离本发明精神和范围的变型例。加工铍的一个难题在于,由于加工的压力及其产生的热,铍的表面会破裂。小心地使用非常锋利的工具、冷却液体和在铣削中低于10,000RPM的锭子转速,这些裂纹被限制在表面顶部约10微米。即使如此,在加工之后、使用之前必须将裂纹移除,否则特别是在加速中如果部件承受压力的时候,它们的长度和深度将会继续延伸,直至到达部件的内部产生破裂。不幸的是,当铍的截面厚度被严重降至(必须如此以产生镜子基底需要的低惯性)某些减少的厚度时,在加工过程中截面会弯曲。这种弯曲会导致更深的裂纹。结果,在镜子基底的构造比例的结构中,最小的截面厚度实际为约0.5mm,如图1中的d1所示。从而,该截面厚度本质上提供了可实现的惯性下限。通过将加工后清洁的部件浸没在蚀刻溶液中可移除在诸如铣削的加工中产生的表面裂纹,该溶液例如为1份60%浓度的氢氟酸(HF)和9份69%浓度的硝酸(HNO3)或其他合适的蚀刻剂。对于暴露至蚀刻剂的每单位表面,在20C+/-5C的温度下,材料的移除速率约为18毫米/分钟。虽然与锭子转速为10000RPM时传统铣削齿加载5毫米相比、看起来这个速度较慢,但铣削只是在部件的某些地方上单线接触,而蚀刻却是在部件的整个暴露表面上同时发生,因此快很多。通常,由于移除的材料和浸没时间之间存在线性关系,且搅动槽组分与温度保持不变,因而借由部件浸没在槽里的时间足以控制期望的金属移除深度。然而,随着背面结构上的任意封闭区域的深-宽比增大,常规搅动的有效性降低,蚀刻剂的表面张力趋于将耗尽的化学剂保持在待薄化的壁上。为了更彻底地恢复蚀刻剂的局部效率,需要周期性地沿着壁上下移动蚀刻剂的局部表面,从而随时间的过去蚀刻剂表面的整体位置类似于抖动时部件从试剂槽的缓慢抽出。换句话说,部件的匀速由出与其上微小的上-下运动的叠加能够洗去粘附至壁的任何耗尽的化学剂。根据本发明的一个实施例,铍镜子结构(例如如图1所示)可在蚀刻剂槽中保持一段延长的时期,例如5-6分钟,例如最后一分钟(lastminute)期间基底缓慢地从蚀刻剂槽中移出,如下文所详细描述的。如此处理之后,铍结构的截面可被蚀刻至小许多的尺寸,如图2中的20所示。22示出蚀刻的壁,24示出蚀刻的底板。例如,底板截面的厚度可从d2(例如约0.5mm)减小到d4(例如约0.4mm)。进一步地,壁截面成为锥形,具有为三角形的横截面形状。例如,壁截面的厚度可从d1(例如也约0.5mm)减小到变化的厚度,例如从约为0.25mm的最厚部(d3)至可能为零的顶部。这能够进一步地减少肋条的质量,从而减少了部件的惯性,特别地由于从镜子的旋转轴上进一步地移除了更多的质量。通过控制基底从流体槽中移出的速率以及控制基底在流体槽内的搅动,可控制锥形形状,下文将更详细地描述。测试由这种工艺形成的镜子,发现在比惯性方面是特别地低。在该工艺的进一步显影期间,发现通过简单地控制浸没时间,能够可靠地将顶部的肋条缩小为线,而不降低其高度(硬度)。肋条横截面的三角形形状是由闭合单元里的蚀刻剂局部耗尽造成的。尽管从基底的反射面上移除材料降低了其惯性,但也会降低其硬度;然而,需要一个最小的硬度来支持抛光反射表面期间产生的压力。为满足要求,反射面应平坦至所使用的波长的1/4波长或更佳,因而所要求的最小截面厚度(硬度的一阶导数,因此,惯性,所有其它项保持恒定)随着所要使用的波长而变化。一般地,有必要将镜子基底加工为截面厚度与所要使用的波长成反比(较短波长的1/4越小,允许偏离平坦面的绝对值越小,因而需要更硬的基底)。图3-7示出铍镜子结构30,具有提供高反射面的前面32和背面34。离镜子旋转轴(AR)最远的两侧如35所示那样减小,且空腔33包含例如公开号为2010/0271679的美国专利申请所披露的镜子阻尼材料,其全文以引用的方式合并于此。如图6和7中的36所示,背面34被加工为从区域36上移除蜂窝图案的铍材料,剩下六面且彼此相邻形成的壁部分38,以减小重量(鉴于移除了材料)且为镜子提供支撑。如图8A-8C所示,如上所述将基底40浸没在蚀刻溶液42中进行处理。在高反射镜面上提供保护膜44以防止蚀刻高反射镜面。通过控制基底40与蚀刻溶液42分离的速率,可控制壁46的形状,以允许壁46在最远离高反射镜面的部分最薄。因此,壁的锥形可以为线性或非线性。壁46和底板48仍限定一般的六边形形状,但特别是在最远端为最薄。参考图9-12,在液体蚀刻剂中经过下述化学处理,镜子结构50的壁部分58和底板59被蚀刻为具有如图2所示的锥形形状。特别地,壁部分具有随着壁远离镜子的高反射镜面延伸而逐渐尖细的形状。再次地,由于掩模,镜子50的前侧52保持不被蚀刻。如图9和10所示,由于蚀刻,六边形壁具有减小的厚度,但同时仍为镜子提供结构支撑。如图11和12中的57所示,在远离镜子旋转轴(AR)的侧边附近,六边形壁的高度更低。由于蚀刻工艺快速且无需照看,因而相较于加工离散的单个截面厚度,本发明非常地经济,即使日后发现了能够允许直接加工比现有的更薄的部件的方法,本发明的方法仍提供了一种更加经济地制造极薄且极低惯性镜子的途径。因此在实践中,铣削单个厚基底或在多个单元上加工,且使用蚀刻处理单个单元以使得最终尺寸满足特定波长或使用的波长间隔的要求。根据本发明的多个实施例,通过蚀刻将铍镜子加强肋和/或面的截面减少至期望的厚度,和/或通过遮挡暴露的镜面以有效地深化肋条而不导致反射面破裂。根据进一步的实施例,可控制机械搅动的速率以控制蚀刻剂的局部消耗,从而使得三角形截面在开口端更薄。根据进一步的实施例,可在蚀刻以前遮挡镜子基底选择的区域,以防止蚀刻这些区域,在进一步的实施例中,蚀刻基底可被加工为均匀的超过规定尺寸的截面厚度至可变的最终期望的截面厚度。进一步地如图13所示,在受限旋转电机系统60中,光学元件62(例如,镜子50)通过镜子安装结构66(例如,通过夹具、螺纹安装结构和/或锥形安装结构,例如专利号为7,212,325的美国专利,其全文以引用的方式合并于此)耦合至受限旋转电机64,以绕电机旋转轴AR旋转。系统60还包括耦合至反馈控制系统70的位置传感器68,反馈控制系统70响应于来自输入节点74的输入命令信号和来自位置传感器68的反馈信号76向电机64提供命令信号72,以控制电机轴的速度和/或位置,从而控制光学元件62。反馈控制系统根据位置和速度命令波形、以任意高的保真度引起电机的转动,从而使得镜子转动。然而,系统遵循输入命令信号的保真度受到一定限制。例如,系统中镜子的加速受到电机线圈中电流上升速率的限制,且位置精确度受到反馈系统信噪比的限制。系统在最短的时间内、以期望的高速将镜子从位置A移动至位置B且精确地定位在位置B上的能力(系统的带宽)主要受到移动部件中的振动的限制。提供根据本发明的镜子基底,有利地允许了镜子硬度极高且惯性低。本领域技术人员可以理解,在不背离被发明精神和范围的情况下,可对上述披露的实施例进行各种修改或变型。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1