显示面板的制作方法

文档序号:12716178阅读:310来源:国知局
显示面板的制作方法与工艺

本发明关于一种显示面板,特别关于一种具有较高可靠度的显示面板。



背景技术:

随着科技的进步,平面显示装置已经广泛地被运用在各种领域,因具有体型轻薄、低功率消耗及无辐射等优越特性,已经渐渐地取代传统阴极射线管显示装置,而应用至许多种类的电子产品中,例如移动电话、便携式多媒体装置、笔记本电脑、液晶电视及液晶屏幕等等。

以液晶显示装置为例,已知一种液晶显示装置包含一薄膜晶体管基板、一彩色滤光基板及一液晶层,薄膜晶体管基板及彩色滤光基板相对而设,而液晶层则夹置于两基板之间,藉此形成多个像素。当扫描线将扫描信号输入对应像素的薄膜晶体管的栅极时,可通过控制薄膜晶体管而将数据线的数据电压经由薄膜晶体管而输入像素电极,藉此可控制液晶的转向而显示图像。

在平面显示面板的产品中,尤其是中小型尺寸的显示面板(例如手机、平板电脑)常会遇到严苛的使用环境,因此,抗腐蚀是一个必须非常重视的问题。然而,目前中小型尺寸显示面板的产品通常在非显示区(即周边区),例如周边区的走线处或端子部(或称接合垫,bonding pad)处因保护不佳,使得水气或离子容易进入而导致其导电层产生腐蚀,使得显示面板的可靠度降低。

因此,如何提供一种显示面板,可具有较高的抗腐蚀能力,进而提高其可靠度,已成为重要课题之一。



技术实现要素:

有鉴于上述课题,本发明的目的为提供一种可具有较高抗腐蚀能力,进而提高可靠度的显示面板。

为达上述目的,依据本发明的一种显示面板,包括一第一基板、一第二基板、一 显示介质层、一第一导电层、一介电层、一第一保护层以及一钝化层。第一基板具有一显示区与位于显示区外围的一周边区。显示介质层设置于第一基板与第二基板之间。第一导电层设置于第一基板的周边区。介电层设置于第一基板与第一导电层之间。第一保护层覆盖第一导电层。钝化层设置于第一保护层上。

在一实施例中,第一保护层的厚度介于300埃至1000埃之间。

在一实施例中,第一保护层的材料为铟锡氧化物、铟锌氧化物、铝锌氧化物、镓锌氧化物、铟锌锡氧化物或锌氧化物。

在一实施例中,第一导电层具有一表面及至少一侧边,第一保护层覆盖表面及侧边。

在一实施例中,显示面板更包括一第二保护层,其设置于钝化层上,且第一保护层介于第一导电层与第二保护层之间。

在一实施例中,第二保护层的厚度介于300埃至1000埃之间。

在一实施例中,第二保护层的材料为铟锡氧化物、铟锌氧化物、铝锌氧化物、镓锌氧化物、铟锌锡氧化物或锌氧化物。

在一实施例中,钝化层具有一第一连接孔,第二保护层更设置于第一连接孔,并与第一保护层直接接触。

在一实施例中,显示面板更包括一第二导电层,其设置于第一基板与介电层之间。

在一实施例中,介电层具有至少一第二连接孔,第一导电层与第一保护层设置于第二连接孔,且第一导电层与第二导电层直接接触。

在一实施例中,显示面板更包括一第三导电层,其设置于第一基板的显示区,第三导电层具有一表面及与表面连接的二相对侧边,第一保护层更覆盖表面及该些侧边。

在一实施例中,显示面板更包括一电子元件,其设置于第一基板的周边区。

在一实施例中,显示面板更包括一次像素,其配置于第一基板的显示区,次像素具有一像素电极与一共同电极,第一保护层与像素电极或共同电极的材料相同,并通过同一工艺形成。

在一实施例中,显示面板更包括一次像素,其配置于第一基板的显示区,次像素具有一像素电极与一共同电极,第二保护层与像素电极或共同电极的材料相同,并通过同一工艺形成。

在一实施例中,显示面板更包括一次像素,其配置于第一基板的显示区,次像素具有一第一电极、一第二电极及一绝缘层,第二电极设置于钝化层上,绝缘层覆盖第二电极,且第一电极设置于绝缘层上。

在一实施例中,次像素更具有一薄膜晶体管,钝化层覆盖薄膜晶体管,薄膜晶体管具有一通道层,通道层的材料包含氧化物半导体。

在一实施例中,薄膜晶体管更具有一栅极、一源极及一漏极,栅极与通道层相对设置,源极与漏极分别与通道层接触。

在一实施例中,次像素更具有一刻蚀终止层,源极与漏极的一端分别自刻蚀终止层的一开口与通道层接触。

在一实施例中,钝化层与绝缘层形成一通孔,第一电极更设置于通孔,并与漏极直接接触。

承上所述,因本发明的显示面板中,第一导电层设置于第一基板的周边区,介电层设置于第一基板与第一导电层之间,而第一保护层覆盖第一导电层,且钝化层设置于第一保护层上。因此,本发明通过将第一保护层覆盖在设置于周边区的第一导电层上,可避免后续工艺(例如刻蚀工艺)对第一导电层造成损伤;另外,通过第一保护层的保护,亦可使第一导电层免于水气或离子进入而造成腐蚀;此外,若第一导电层因故断线时,也可通过第一保护层来传递电信号,降低显示面板失效的风险。

在一实施例中,更通过第一保护层与第二保护层的保护,可避免水气或离子进入周边区的元件/转层区的转层连接处而造成第一导电层的腐蚀。在另一实施例中,通过于周边区的端子部的第一导电层的上表面及其侧边覆盖第一保护层,可避免因钝化层的覆盖不佳而使水气或离子进入,造成第一导电层的腐蚀;另外,亦通过第一保护层与第二保护层的保护,更可避免端子部因水气或离子入侵而造成第一导电层或第二导电层的腐蚀。在又一实施例中,通过于第三导电层(数据线)的上表面及两侧边覆盖第一保护层,可保护显示区的第三导电层,避免后续工艺(例如刻蚀工艺)造成损伤;另外,通过第一保护层亦也可保护第三导电层免于水气或离子进入而造成腐蚀;此外,若第三导电层因故断线时,也可通过第一保护层来传递电信号,降低显示面板失效的风险。因此,本发明的显示面板可具有较高抗腐蚀能力,进而提高其可靠度。

附图说明

图1A为本发明较佳实施例的一种显示面板的示意图。

图1B为图1A的显示面板的俯视示意图。

图1C为显示面板的显示区的一次像素的剖视示意图。

图2为图1B的显示面板的局部放大示意图。

图3A为图2的走线区的一实施例的剖视示意图。

图3B为图2的元件/转层区的一实施例的剖视示意图。

图3C为图2的端子区的一实施例的俯视示意图。

图3D为图3C显示的端子部中,沿直线R-R’的剖视示意图。

图3E为图2的显示区的一实施例的剖视示意图。

图4为本发明较佳实施例的一种显示装置的示意图。

具体实施方式

以下将参照相关图式,说明依本发明较佳实施例的显示面板,其中相同的元件将以相同的参照符号加以说明。

请参照图1A、图1B及图1C所示,其中,图1A为本发明较佳实施例的一种显示面板1的示意图,图1B为图1A的显示面板1的俯视示意图,而图1C为显示面板1的显示区AA的一次像素P的剖视示意图。

显示面板1可为液晶显示面板或为有机发光二极管显示面板。本实施例是以液晶显示面板为例,并可为边缘电场切换(Fringe Field Switching,FFS)型液晶显示面板,或者水平切换型(In Plane Switching,IPS)或者扭转向列型(Twisted Nematic,TN)液晶显示面板,或者垂直配向型(Vertical Alignment,VA)型液晶显示面板。本实施例是以边缘电场切换(FFS)型液晶显示面板为例。

显示面板1包括一第一基板11、一第二基板12及一显示介质层13。

第一基板11具有一显示区AA(active area)及位于显示区AA外围的一周边区PA(peripheral area)。其中,显示区AA即为光线可穿过第一基板11的区域(用以显示图像的区域),而周边区PA则为部署周边驱动(开关)元件、走线(trace)及连接端子的区域。其中,驱动(开关)元件例如为栅极驱动电路(Gate on Pane,GOP)或其他元件。本实施例的周边区PA是以环设于显示区AA的外围为例。

第一基板11与第二基板12相对而设,而显示介质层13则夹设于第一基板11与第二基板12之间,并由一封阻层(图未显示)圈围以避免溢漏,同时可隔绝外界水气或异物污染,封阻层的材质可以是框胶(sealant)、玻璃胶(frit)或其他有机或无机高分子材料。第一基板11及第二基板12为透光材质所制成,并例如为一玻璃基板、一石英基板或一塑胶基板,并不限定。本实施例的第一基板11可为一薄膜晶体管基板,而第二基板12可为一彩色滤光基板。另外,本实施例的显示介质层13为一液晶层,并具有多个液晶分子(图未显示),使得显示面板1为液晶显示面板。在另一实施例中,若显示面板1为有机发光二极管显示面板时,则显示介质层13可为一有机发光二极管层。在一实施例中,若有机发光二极管层发出白光时,则第二基板12可为一彩色滤光基板;在另一实施例中,若有机发光二极管层发出例如红、绿、蓝色光时,则第二基板12可为一保护基板(Cover plate),以保护有机发光二极管层不受外界水气或异物的污染。

显示面板1更包括多个次像素P,该些次像素P位于显示区AA内,并配置于第一基板11与第二基板12之间。如图1C所示,图1C是绘示显示面板1的显示区AA内的一个次像素P的剖视图。其中,次像素P具有一薄膜晶体管T、一绝缘层191、一钝化层16、一第一电极17、一第二电极18及一绝缘层192。

薄膜晶体管T设置于第一基板11上,并位于第一基板11与钝化层16之间。于此,钝化层16覆盖于薄膜晶体管T之上。薄膜晶体管T包含一栅极G、一介电层GI、一通道层A、一源极S及一漏极D。栅极G设置于第一基板11上,且栅极G的材料可为金属(例如为铝、铜、银、钼或钛)或其合金所构成的单层或多层结构。部分用以传输驱动信号的导线,可以使用与栅极G同层且同一工艺的结构,彼此电性相连,例如扫描线(图未显示)。介电层GI设置并覆盖于栅极G上。于此,介电层GI为栅极介电层,并为一绝缘层,并可为有机材料例如为有机硅氧化合物,或无机材料例如为氮化硅、氧化硅、氮氧化硅、碳化硅、氧化铝、氧化铪或上述材料的多层结构。其中,介电层GI需完整覆盖栅极G,并可选择部分或全部覆盖第一基板11。

通道层A相对栅极G位置设置于介电层GI上。在实施上,通道层A例如可包含一金属氧化物半导体、非晶硅(amorphous silicon,a-Si)或低温多晶硅(low temperature poly silicon,LTPS)。其中,前述的金属氧化物半导体包括氧化物,且氧化物包括铟、镓、锌及锡其中之一,例如为氧化铟镓锌(Indium Gallium Zinc Oxide, IGZO)。

源极S与漏极D分别设置于通道层A上,并且位于通道层A相对应的两侧边,且源极S和漏极D的一端分别与通道层A接触。于薄膜晶体管T的通道层A未导通时,源极S和漏极D电性分离。部分用以传输驱动信号的导线,可以使用与源极S与漏极D同层且同一工艺的结构,例如数据线(图未显示)。源极S与漏极D的材料可为金属(例如铝、铜、银、钼或钛)或其合金所构成的单层或多层结构。

值得一提的是,本实施例的薄膜晶体管T的源极S与漏极D是直接设置于通道层A上,但在不同的实施例中,源极S与漏极D亦可设置于一刻蚀终止(etch stop)层(图未显示)上,且源极S与漏极D的一端可分别自刻蚀终止层的一开口与通道层A接触,本发明并不限制。刻蚀终止层亦可为一绝缘层。此外,本实施例的薄膜晶体管T为底栅极式(bottom gate)背通道刻蚀(back channel etch,BCE)型结构,栅极G位于通道层A之下且间隔一介电层GI,而通道层A两侧覆盖连接的源极S与漏极D。于其他实施例中,薄膜晶体管T的结构亦可为顶栅极式(top gate)或共平面式(coplanar),本发明并不限制。

绝缘层191设置于第一基板11面对第二基板12的一侧。于此,绝缘层191设置于源极S及漏极D上,并覆盖源极S及覆盖部分漏极D。其中,绝缘层191位于漏极D上有一通孔。绝缘层191的材料可包含氧化硅(SiOx)或氮化硅(SiNx),并不限定。

钝化层16设置于第一基板11面对第二基板12的一侧,并覆盖于绝缘层191及薄膜晶体管T上。钝化层16亦为一绝缘层,并可为有机材料或无机材料,无机材料例如为氮化硅、氧化硅、氮氧化硅、碳化硅、氧化铝、氧化铪或上述材料的多层结构,而有机材料例如但不限于为全氟烷基乙烯基醚共聚物(Polyfluoroalkoxy,PFA)、聚甲基丙烯酸甲酯(Polymethylmethacrylate)或硅氧烷共聚物(Siloxane)。于其他实施例中,亦可省略钝化层16,直接将后续的元件或薄膜层(例如第二电极18等)覆盖于绝缘层191及薄膜晶体管T之上。

第二电极18设置于钝化层16上,而绝缘层192覆盖第二电极18,且第一电极17设置于绝缘层192上,第一电极17与第二电极18通过绝缘层192而电性隔绝。本实施例的绝缘层191、钝化层16与绝缘层192于漏极D上共同形成一通孔O1,且第一电极17更设置于通孔O1内而通过通孔O1与漏极D直接接触而电连接。第一 电极17与第二电极18的材料例如可为铟锡氧化物(indium-tin oxide,ITO)、铟锌氧化物(indium-zinc oxide,IZO)、铝锌氧化物(aluminum-zinc oxide,AZO)、镉锡氧化物(CTO)、氧化锡(SnO2)、镓锌氧化物(GZO)、铟锌锡氧化物(IZTO)或锌氧化物(zinc oxide,ZnO)等透明导电材料,并不限定。

在本实施例中,第一电极17为次像素P的像素电极,并具有多个电极部171,而第二电极18为共同电极,使得显示面板1为一上像素电极(top pixel)的态样。不过,在不同的实施例中,第一电极17也可为次像素P的共同电极,且第二电极18可为像素电极,使得显示面板为一上共同电极(top common)的态样,并不限制。此外,在本实施例中,一共同电极线C设置于第一基板11上,且第二电极(共同电极)18通过介电层GI、绝缘层191与钝化层16所共同形成的另一通孔O2而与共同电极线C直接接触而电连接。

因此,当显示面板1的多个次像素P对应的多个扫描线依序接收一扫描信号时可分别使各扫描线对应的该些次像素P的薄膜晶体管T导通,并将对应每一行次像素的一数据信号通过该等数据线传送至对应的该等次像素P的第一电极17(像素电极),使第一电极17与第二电极18(共同电极)之间形成一电场而控制液晶层13的液晶分子转动,进而使显示面板1可显示图像画面。

另外,请参照图2所示,其为图1B的显示面板1的局部放大示意图。图2是周边区PA由邻近显示区AA至远离显示区AA的放大示意图。于此,周边区PA一般可区分包含一元件/转层区X、一走线区Y及一端子区Z。顾名思义,元件/转层区X即为设置驱动元件或抗静电元件或进行转层连接的区域,走线区Y则为导线设置或通过的区域(走线区Y亦可具有转层结构),而端子区Z即为与外部电路(例如IC)连接的端子部的设置区域,藉此,外部电信号可通过端子区Z、走线区Y及或元件/转层区X传送至显示区AA。走线区Y及元件/转层区X介于显示区AA及端子区Z之间。于本实施例中,走线区Y介于元件/转层区X及端子区Z之间,于其他实施例中,元件/转层区X可介于走线区Y及端子区Z之间。

请分别参照图3A至图3E所示,其中图3A为图2的走线区Y的一实施例的剖视示意图,图3B为图2的元件/转层区X的一实施例的剖视示意图,图3C为图2的端子区Z的一实施例的俯视示意图,图3D为图3C显示的端子部B中,沿直线R-R’的剖视示意图,而图3E为图2的显示区AA的一实施例的剖视示意图。于此,图3A 至图3E只显示该区域中设置于第一基板11上的部分元件。

如图3A所示,显示面板1于周边区PA的走线区Y上可包括第一基板11、一第一导电层141、介电层GI、一第一保护层151及钝化层16。其中,介电层GI与钝化层16是由显示区AA延伸至周边区PA。

第一导电层141设置于第一基板11的周边区PA。于此,第一导电层141即为走线,并通过介电层GI而设置于第一基板11上(介电层GI位于第一导电层141与第一基板11之间)。第一保护层151覆盖于第一导电层141上,且钝化层16设置于第一保护层151上,钝化层16上亦可设置绝缘层192(图未显示)。其中,介电层GI与钝化层16的材料已于上述中说明,不再赘述。于其他实施例中,第一保护层151可仅部分覆盖第一导电层141,而上述的绝缘层191可设置于第一保护层151未覆盖该第一导电层141的区域,且绝缘层191介于第一导电层141与钝化层16之间。

第一导电层141的材料可为金属(例如铝、铜、银、钼或钛)或其合金所构成的单层或多层结构。本实施例的第一导电层141可以使用上述设置于显示区AA的次像素P的薄膜晶体管T的源极S或漏极D同层且同一工艺的结构。第一保护层151的材料可为透明导电氧化物(Transparent Conductive Oxide,TCO),例如可为铟锡氧化物(ITO)、铟锌氧化物(IZO)、铝锌氧化物(AZO)、镉锡氧化物(CTO)、氧化锡(SnO2)、镓锌氧化物(GZO)、铟锌锡氧化物(IZTO)或锌氧化物(ZnO)等透明导电材料,并不限定。不过,由于铟锌氧化物(IZO)为非结晶态(amorphous-type),且镀膜时的杂质(particle)较少,因此第一保护层151的较佳材料为IZO。另外,第一保护层151可以利用上述形成次像素P的像素电极或共同电极的同一种材料、光掩膜与黄光工艺来制作,因此,形成第一保护层151的工艺中不需增加光掩膜的成本。在一实施例中,第一保护层151可利用次像素P的共同电极(第二电极18)的同一种材料、光掩膜与黄光工艺来制作,且其厚度可介于300埃至1000埃之间。

承上,本实施例通过于周边区PA的走线区Y的第一导电层141(走线)上覆盖一层第一保护层151来保护第一导电层141,避免后续工艺(例如刻蚀工艺)造成第一导电层141的损伤;另外,通过第一保护层151也可保护第一导电层141免于水气或离子进入而造成腐蚀;此外,若第一导电层141因故断线时,由于第一保护层151可导电,故可通过第一保护层151来传递电信号,降低显示面板1失效(fail)的风 险。

另外,如图3B所示,于此,是绘示元件/转层区X的转层连接处的一实施态样。

与图3A的实施例相同,本实施例的元件/转层区X除了包括依序设置于第一基板11的介电层GI、第一导电层141、第一保护层151与钝化层16外,更包括一第二保护层152,第二保护层152设置并覆盖于钝化层16上,使得第一保护层151介于第一导电层141与第二保护层152之间,而钝化层16上亦可设置上述的绝缘层192(图未显示)。其中,钝化层16具有一第一连接孔H1,且第二保护层152更设置于第一连接孔H1内,并与第一保护层151直接接触而电连接。于此,第二保护层152可与第一保护层151的材料相同,并可利用显示区AA内形成次像素P的像素电极或共同电极的同一种材料、光掩膜与黄光工艺来制作,因此,形成第二保护层152时亦不需增加光掩膜的成本。在一实施例中,可利用次像素P的像素电极(第一电极17)的同一种材料、光掩膜与黄光工艺来制作,且第二保护层152的厚度可介于300埃至1000埃之间。本实施例是通过第一连接孔H1进行转层连接。于其他实施例中,第一保护层151可大于第一连接孔H1底部的宽度而仅部分覆盖第一导电层141,而上述的绝缘层191可设置于第一保护层151未覆盖该第一导电层141的区域,且绝缘层191介于第一导电层141与钝化层16之间。

另外,在另一实施例中,一电子元件(图未显示)可设置于第一基板11的周边区PA的元件/转层区X内。于此,电子元件可设置于第一基板11与钝化层16之间。其中,电子元件可为一驱动元件,并可电连接显示区A的薄膜晶体管T,以驱动显示面板1。电子元件例如可为薄膜晶体管,其结构与上述的薄膜晶体管T相同,不再多作说明。不过,在其他的实施态样中,电子元件也可以其他类型的元件,例如二极管(diode)或电容。

承上,本实施例是通过于周边区PA的元件/转层区X的第一导电层141上覆盖一层第一保护层151来保护元件/转层区X的第一导电层141,避免后续的工艺造成第一导电层141的损伤;另外,通过第一保护层151与第二保护层152的双重保护,亦可避免水气或离子进入元件/转层区X而造成第一导电层141的腐蚀。

另外,如图3C及图3D所示,与图3B的实施例相同,本实施例的周边区PA的端子区Z的端子部B中,除了包括依序设置于第一基板11之上的介电层GI、第一导电层141、第一保护层151、钝化层16及第二保护层152之外,更包括一第二导电层 142。其中,第二导电层142设置于第一基板11上,且介电层GI设置于第二导电层142与第一导电层141之间。第二导电层142的材料可为金属(例如铝、铜、银、钼或钛)或其合金所构成的单层或多层结构。本实施例的第二导电层142可以使用上述设置于显示区AA的次像素P的薄膜晶体管T的栅极G同层且同一工艺的结构。另外,本实施例的钝化层16同样具有第一连接孔H1,且第二保护层152更设置于第一连接孔H1内,并与第一保护层151直接接触而电连接。另外,本实施例的介电层GI具有至少一第二连接孔H2(于此是以两个第二连接孔H2为例),第一导电层141与第一保护层151依序设置于第二连接孔H2内,且钝化层16亦填入第二连接孔H2内而覆盖第一保护层151,使得第一导电层141与第二导电层142直接接触而电连接(转层连接)。此外,第一导电层141更具有至少一侧边S1,而且第一保护层151更覆盖第一保护层151的上表面及侧边S1。本实施例的第一导电层141可以使用上述设置于显示区AA的次像素P的薄膜晶体管T的源极S或漏极D同层且同一工艺的结构。第一保护层151的材料可为透明导电氧化物(TCO),例如可为铟锡氧化物(ITO)、铟锌氧化物(IZO)、铝锌氧化物(AZO)、镉锡氧化物(CTO)、氧化锡(SnO2)、镓锌氧化物(GZO)、铟锌锡氧化物(IZTO)或锌氧化物(ZnO)等透明导电材料,并不限定。不过,由于铟锌氧化物(IZO)为非结晶态,且镀膜时的杂质较少,因此第一保护层151的较佳材料为IZO。另外,第一保护层151可以利用上述形成次像素P的像素电极或共同电极的同一种材料、光掩膜与黄光工艺来制作,因此,形成第一保护层151的工艺中不需增加光掩膜的成本。在一实施例中,第一保护层151可利用次像素P的共同电极(第二电极18)的同一种材料、光掩膜与黄光工艺来制作,且其厚度可介于300埃至1000埃之间。第二保护层152可与第一保护层151的材料相同,并可利用显示区AA内形成次像素P的像素电极或共同电极的同一种材料、光掩膜与黄光工艺来制作,因此,形成第二保护层152时亦不需增加光掩膜的成本,且其厚度可介于300埃至1000埃之间。在一实施例中,可利用次像素P的像素电极(第一电极17)的同一种材料、光掩膜与黄光工艺来制作。此外,于其他实施例中,第一保护层151可大于第一连接孔H1底部的宽度而仅部分覆盖第一导电层141,而绝缘层191可设置于第一保护层151未覆盖该第一导电层141的区域,且绝缘层191介于第一导电层141与钝化层16之间。

因此,本实施例是通过第一连接孔H1与两个第二连接孔H2进行转层连接,并 通过端子部B与外部的电路(例如集成电路)电连接。于此,可通过例如导电膏与驱动IC电连接,使驱动IC可通过端子部B经转层后将电信号传送至显示区AA。

承上,本实施例是通过于周边区PA的第一导电层141的上表面及其侧边S1覆盖一层第一保护层151来保护端子部B的第一导电层141,避免钝化层16因覆盖不佳,造成水气或离子进入而使第一导电层141产生腐蚀现象;另外,第一保护层151亦可保护第一导电层141,避免后续工艺造成第一导电层141的损伤;此外,通过第一保护层151与第二保护层152的保护,更可避免端子部B因水气或离子入侵而造成第一导电层141或第二导电层142的腐蚀。

另外,如图3E所示,本实施例在显示区AA内,显示面板1包括由下而上依序设置于第一基板11的介电层GI、一第三导电层143、第一保护层151与钝化层16,钝化层16上亦可设置上述的绝缘层192(图未显示)。于此,第三导电层143的材料可为金属(例如铝、铜、银、钼或钛)或其合金所构成的单层或多层结构。第三导电层143可以使用次像素P的薄膜晶体管T的源极S或漏极D同层且同一工艺的结构。本实施例的第三导电层143例如但不限于为次像素P的数据线,并具有一表面S2(上表面)及与表面S2连接的两个相对侧边S3、S4,而且第一保护层151覆盖于第三导电层143的表面S2及该些侧边S3、S4上,以通过第一保护层151保护第三导电层143(数据线)。于其他实施例中,第一保护层151可仅部分覆盖第一导电层141,而绝缘层191可设置于第一保护层151未覆盖该第一导电层141的区域,且绝缘层191介于第一导电层141与钝化层16之间。

承上,本实施例是通过于显示区AA的第三导电层143(数据线)的上表面S2及两侧边S3、S4覆盖一层第一保护层151,来保护第三导电层143(数据线),避免后续工艺(例如刻蚀工艺)造成第三导电层143的损伤;另外,通过第一保护层151也可保护第三导电层143免于水气或离子进入而造成腐蚀;此外,若第三导电层143因故断线时,也可通过第一保护层151来传递电信号,降低显示面板1失效的风险。

另外,请参照图4所示,其为本发明较佳实施例的一种显示装置2的示意图。

显示装置2包括一显示面板3以及一背光模组4(Backlight Module),显示面板3与背光模组4相对设置。其中,显示装置2为一液晶显示装置,且显示面板3可为上述的显示面板1或其变化态样,具体技术内容可参照上述,不再多作说明。当背光模组4发出的光线L穿过显示面板3时,可通过显示面板3的各次像素显示色彩而形 成图像。

综上所述,因本发明的显示面板中,第一导电层设置于第一基板的周边区,介电层设置于第一基板与第一导电层之间,而第一保护层覆盖第一导电层,且钝化层设置于第一保护层上。因此,本发明通过将第一保护层覆盖在设置于周边区的第一导电层上,可避免后续工艺(例如刻蚀工艺)对第一导电层造成损伤;另外,通过第一保护层的保护,亦可使第一导电层免于水气或离子进入而造成腐蚀;此外,若第一导电层因故断线时,也可通过第一保护层来传递电信号,降低显示面板失效的风险。

在一实施例中,更通过第一保护层与第二保护层的保护,可避免水气或离子进入周边区的元件/转层区的转层连接处而造成第一导电层的腐蚀。在另一实施例中,通过于周边区的端子部的第一导电层的上表面及其侧边覆盖第一保护层,可避免因钝化层的覆盖不佳而使水气或离子进入,造成第一导电层的腐蚀;另外,亦通过第一保护层与第二保护层的保护,更可避免端子部因水气或离子入侵而造成第一导电层或第二导电层的腐蚀。在又一实施例中,通过于第三导电层(数据线)的上表面及两侧边覆盖第一保护层,可保护显示区的第三导电层,避免后续工艺(例如刻蚀工艺)造成损伤;另外,通过第一保护层亦也可保护第三导电层免于水气或离子进入而造成腐蚀;此外,若第三导电层因故断线时,也可通过第一保护层来传递电信号,降低显示面板失效的风险。因此,本发明的显示面板可具有较高抗腐蚀能力,进而提高其可靠度。

以上所述仅为举例性,而非为限制性者。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包含于权利要求中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1