基于直接光学反馈的二维快速控制反射镜及激光扫描器的制作方法

文档序号:12905897阅读:242来源:国知局
基于直接光学反馈的二维快速控制反射镜及激光扫描器的制作方法与工艺

本实用新型涉及光通信技术领域,尤其涉及二维快速控制反射镜及激光扫描器。



背景技术:

激光扫描器在近代尖端工业生产和科学研究中有着广泛的应用。其中激光扫描器包括反射镜控制部件,其为一种可精确控制激光束指向的器件,可以补偿激光的抖动误差,保证激光束能够实时对准,常用于高精度工业加工系统、高能激光系统、激光通信系统和成像系统等。

现有技术中,如压电激光扫描器是采用压电陶瓷作为驱动源、柔性铰链作为传动机构的一种新型激光扫描器,具有结构小巧、驱动速度快、扫描精度高、容易集成和可实现单镜面二维扫描等优点,近年来得到了学术界和工业界的广泛重视。

其中,现有技术中提出过一种基于PSD反馈的二维快速控制反射镜及其控制系统,提出了采用PSD(Position Sensitive Detector,位置敏感探测器)作为反馈核心的思想。其利用两个带压电陶瓷的柔性铰链-位移放大支撑结构和一个不带压电陶瓷的固定支撑结构共同构成支架的三个支点支撑反射镜,通过给两个压电陶瓷施加一定的驱动电压,使压电陶瓷伸缩方向位移发生变化,从而可以使反射镜在二维方向上发生偏转。反射镜发生偏转时,入射到PSD上的激光束也会发生偏转,通过测量PSD光斑的偏移量并经过一定的几何计算,可以计算出反射镜的偏转角度用以作为反馈信号,提升控制精度。然而,该技术方案存在以下问题:

1. 稳定性差,轴间干扰严重。当两个压电陶瓷驱动时,它们有向下的位移而固定支撑结构没有,这会使得支架的三个支撑点无法保持在一个高度上从而导致反射镜始终处于倾斜状态无法保持水平。这种非对称的支撑结构,稳定性差,轴间干扰严重,这种结构上本身带来的误差无法通过控制算法改善,使得反射镜控制部件的偏转角度精度受限。

2.反射点容易偏移。这种射镜控制部件的光学反馈方式在反射镜的一侧,随着反射镜的反射角度不同,反射镜背面的反射点并不是保持不变,可能会在纵向方向(平行于压电驱动结构的位移方向)产生偏移,这会导致反馈光路的几何模型发生偏差,从而导致反馈精度变差,这种原理上的硬伤同样无法单纯的由控制算法解决,进而影响二维快速控制反射镜的控制精度。



技术实现要素:

为了解决上述技术问题,本实用新型的目的是提供一种可有效提高反射镜支撑结构的稳定性、减少支撑结构轴间干扰的二维快速控制反射镜及激光扫描器。

本实用新型所采用的技术方案是:

提供一种基于直接光学反馈的二维快速控制反射镜,包括平行光束发射器、半反半透镜、反射镜、位置敏感探测器、闭环控制电路和用于支撑反射镜的三个压电驱动结构,所述三个压电驱动结构对反射镜的支撑点呈正三角形排列;所述反射镜包括用于反射平行光束发射器所发出光束的反射点,反射点位于所述正三角形的中心,所述平行光束发射器发出的光束由半反半透镜反射至反射镜背面的反射点上,所述光束经反射镜反射后再入射到半反半透镜上,所述入射到半反半透镜上的部分光束透过半反半透镜而直接投射到位置敏感探测器上;所述位置敏感探测器的输出端与闭环控制电路的输入端连接。

优选地,所述压电驱动结构包括二维柔性铰链、压电陶瓷和椭圆形位移放大部件,所述二维柔性铰链和椭圆形位移放大部件一体相连,所述压电陶瓷嵌入在椭圆形位移放大部件中,所述二维柔性铰链为反射镜提供支撑点。

优选地,还包括上底座和与之连接的下底座,所述平行光束发射器、半反半透镜和位置敏感探测器均设置在下底座上,所述压电驱动结构设置在上底座的底部,所述上底座对应于反射点的位置设置有光通路结构,供平行光束发射器发出的光束通过。

优选地,所述光通路结构为设置在上底座中心位置的通孔或透光板。

优选地,所述上底座和下底座均为薄壁桶状结构。

优选地,所述反射镜呈圆形,其半径与所述上底座的顶部开口的半径基本一致。

优选地,所述反射镜位于上底座顶部开口的上方。

优选地,所述平行光束发射器为激光发射器。

本实用新型进一步还提供一种基于直接光学反馈的二维控制激光扫描器,其包括上述的二维快速控制反射镜。

本实用新型的有益效果是:

本实用新型二维快速控制反射镜及激光扫描器,通过三个压电驱动结构支撑反射镜,其支撑点呈正三角排布,克服了现有技术中反射镜非对称支撑结构存在的稳定性差、轴间干扰严重的问题,使得反射镜支撑结构稳定,从而提高了二维快速控制反射镜的控制精度。同时,反射点位于所述正三角形的中心,通过控制三个压电驱动结构的纵向形变,可以保证反射点在反射镜上的位置及反射点的几何位置(空间位置)在反射镜的偏转过程中保持不变,从而保证了反馈到位置敏感探测器的光路的几何模型的稳定性,进而有效保障了二维快速控制反射镜的控制精度及扫描激光指向控制精度。

附图说明

下面结合附图对本实用新型的具体实施方式作进一步说明:

图1是本实用新型基于直接光学反馈的二维快速控制反射镜的外部结构示意图;

图2是本实用新型基于直接光学反馈的二维快速控制反射镜的内部结构窥视图;

图3是本实用新型基于直接光学反馈的二维快速控制反射镜的内部部分结构爆炸图;

图4是本实用新型基于直接光学反馈的二维快速控制反射镜的反馈光路结构图;

图5是本实用新型基于直接光学反馈的二维快速控制反射镜的反馈光路示意图;

图6是本实用新型基于直接光学反馈的二维快速控制反射镜的压电驱动结构示意图;

图7是本实用新型基于直接光学反馈的二维快速控制反射镜的电路结构示意图;

图8是基于直接光学反馈的二维控制激光扫描器的光路示意图。

具体实施方式

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

图1至图3分别为本实施例的基于直接光学反馈的二维快速控制反射镜的外部结构示意图、内部结构窥视图和内部部分结构爆炸图。图4、图5分别示出了本实用新型基于直接光学反馈的二维快速控制反射镜的反馈光路结构图和反馈光路示意图。

参照图1至图4所示,本实用新型基于直接光学反馈的二维快速控制反射镜,包括平行光束发射器5、半反半透镜8、反射镜1、位置敏感探测器7、闭环控制电路和用于支撑反射镜的三个压电驱动结构4,所述三个压电驱动结构4对反射镜1的支撑点呈正三角形排列;所述反射镜包括用于反射平行光束发射器5所发出光束的反射点,反射点位于所述正三角形的中心,参照图5所示,所述平行光束发射器5发出的光束由半反半透镜8反射至反射镜1背面的反射点上,所述光束经反射镜1反射后再入射到半反半透镜8上,所述入射到半反半透镜8上的部分光束透过半反半透镜8而直接投射到位置敏感探测器7上;所述闭环控制电路采集位置敏感探测器7接收到光束的位置信号并根据该位置信号计算得到反射镜1的二维角度实际偏转量,根据二维角度实际偏转量和二维角度理想偏转量的偏差值输出控制信号,分别控制三个压电驱动结构4的纵向形变(所述纵向指反射镜1处于水平状态时的法向),使反射镜在二维方向上偏转到二维角度理想偏转量,进而控制反射镜1的偏转角度。

通过三个压电驱动结构4支撑反射镜1,其支撑点呈正三角排布,克服了现有技术中反射镜非对称支撑结构存在的稳定性差、轴间干扰严重的问题,使得反射镜支1撑结构稳定,从而提高了二维快速控制反射镜的控制精度。同时,反射点位于所述正三角形的中心,通过控制三个压电驱动结构4的纵向形变,可以保证反射点在反射镜1上的位置及反射点的几何位置(空间位置)在反射镜1的偏转过程中保持不变,从而保证了反馈到位置敏感探测器7的光路的几何模型的稳定性,进而有效保障了二维快速控制反射镜的控制精度。

具体地,所述闭环控制电路还用于通过控制三个压电驱动结构4的形变来使反射点位置在纵向方向上的位移为零,以使得反射点在反射镜1偏转过程中几何位置(空间位置)保持不变,从而保证了以下将提及的反馈光路的几何模型的稳定性,进而有效保障了二维快速控制反射镜的控制精度。

参考图1和图2,本实施例的基于直接光学反馈的二维快速控制反射镜还包括上底座2和与之连接的下底座3,所述平行光束发射器5、半反半透镜8和位置敏感探测器7均设置在下底座3上,所述压电驱动结构4设置在上底座2的底部,所述反射镜1位于上底座2顶部开口的上方,所述上底座2对应于反射点的位置设置有光通路结构,用于供平行光束发射器5发出的光束通过。通过上下两层的排列方式,可以拉大半反半透镜8与反射镜1之间的光程,在位置敏感探测器7同等分辨率条件下可以进一步增强反馈分辨精度,提升二维快速控制反射镜的控制精度。

所述上底座2更优选的均为薄壁桶状结构,所述光通路结构为设置在上底座2中心位置的通孔(图中未标示),通孔的半径为整个上底座2圆周半径的三分之一,用作反射镜1向半反半透镜8反射的光束通过的通路。下底座3优选也为薄壁桶装形结构,底部封闭,没有开孔,半径与上底座2相同。下底座3上端与上底座2下端紧密结合在一起。其中,所述光通路结构也可以为设置在上底座2中心位置的透光板或其它透光结构。

所述反射镜1优选呈圆形,其半径与所述上底座2的顶部开口的半径基本一致,从而反射镜1刚好将上底座2的顶部封闭。

图4和图5示出了本实施例的基于直接光学反馈的二维快速控制反射镜的反馈光路结构图和示意图。结合图3,平行光束发射器5通过发射器支架6固定在下底座底部,半反半透镜8通过半反半透镜支架9固定在下底座3的底部,位置敏感探测器7也固定在下底座3的内部底端,位于半反半透镜8下侧,半反半透镜8与反射镜1呈45°关系放置,平行光束发射器5优选为激光发射器,更优选为He-Ne激光发射器,激光发射为632.8nm,功率为5mW。参照图4所示,平行光束发射器5、半反半透镜8、位置敏感探测器7和反射镜1构成反馈光路。

具体地,如图5所示,平行光束发射器5发出的光束方向与反射镜1背面平行,入射到半反半透镜8中心后,反射到反射镜1背面的反射点上。反射镜1将光束再次反射后再入射到半反半透镜8上,一部分光束会直接投射向下,再入射到位置敏感探测器7上。当反射镜1不发生偏转时,其反射的光束会入射到半反半透镜8和位置敏感探测器7的中心位置。当反射镜1发生偏转时,其反射的光束会入射到位置敏感探测器7的不同位置。位置敏感探测器7可以探测反射光束的质心位置,并输出其坐标到闭环控制电路。所述闭环控制电路采集位置敏感探测器7接收到光束的位置信号,并通过简单的几何关系计算,可求出反射镜1的二维角度实际偏转量,根据二维角度实际偏转量和二维角度理想偏转量的偏差值输出控制信号,分别控制三个压电驱动结构4的纵向形变,使反射镜在二维方向上偏转到二维角度理想偏转量,进而控制反射镜的偏转角度。

参照图6所示的压电驱动结构示意图,压电驱动结构4由二维柔性铰链4a、压电陶瓷4b、椭圆形位移放大部件4c所组成。二维柔性铰链4a和椭圆形位移放大部件4c两者是一体相连的,压电陶瓷4b嵌入在椭圆形位移放大部件4c中,二维柔性铰链4a为反射镜1提供支撑点。当给压电陶瓷4b输入驱动电压时,压电陶瓷4b会产生轴向的伸缩位移,然后对椭圆形位移放大部件4c的长轴两端产生作用力。椭圆形位移放大部件4c是采用弹性很好的弹簧钢制作得到的,因此其会产生形变,纵向上也会产生伸缩位移,而且是压电陶瓷4b横向伸缩位移的约2~5倍。柔性铰链4a很容易在纵向压力下产生形变,其作为椭圆形位移放大部件4c和反射镜1的连接端,通过形变来使反射镜1进行偏转,不会产生摩擦故无需润滑,比传统的轴承结构性能更好。

图7是本实施例的基于直接光学反馈的二维快速控制反射镜的电路结构示意图,其包括嵌入式闭环控制电路(闭环控制电路)、功率放大电路和PSD(位置敏感探测器)信号处理电路,其反馈控制示意图。其包括嵌入式闭环控制电路(闭环控制电路)、功率放大电路和PSD(位置敏感探测器)信号处理电路,其反馈控制示意图。嵌入式闭环控制电路可以利用DSP、单片机或者FPGA等平台实现。所述嵌入式闭环控制电路包括闭环控制器和必要的AD、DA模块,并可以进行闭环控制算法软件设计。平行光束发射器5(本实施例采用氦氖激光发射器)发出的光束经半反半透镜8反射后会因为反射镜1的二维偏转而产生相应的偏转,其再次经过半反半透镜8后透射的光束照射在位置敏感探测器7上的位置会发生相应的变化。位置敏感探测器7根据光束照射位置产生的电流信号经过对应电路滤波及相应处理后,被嵌入式闭环控制电路的DA模块采集,经过计算可以得到实时的二维快速控制反射镜的二维角度实际偏转量y(t)。二维角度理想偏转量r(t)与二维角度实际偏转量y(t)的偏差值(在外界干扰d(t)的存在下)经过模数AD转化,通过嵌入式闭环控制电路内部固化的闭环控制器计算后得到实时控制信号u(t),然后进行数模DA转化,再经过功率放大电路进行功率放大,最后得到三个压电驱动结构4的驱动电压来驱动二维快速控制反射镜并使其达到二维角度理想偏转量r(t)。

综合上述方案,本实施例的实现原理为:参照图5至图7所示,反射镜1下面有三个在一个圆周上均匀、对称分布的支撑点,其支撑点呈正三角排布,反射镜1包括用于反射平行光束发射器所发出光束的反射点,反射点位于所述正三角形的中心,三个支撑点均为带压电陶瓷的压电驱动结构4。压电驱动结构4在上电后,压电陶瓷4b产生轴向的伸缩位移,然后装载压电陶瓷4b的椭圆形位移放大部件4c因此会受到压电陶瓷的横向作用力而产生纵向的伸缩位移,两者之间是线性关系。本实用新型将反射镜1两轴(X轴、Y轴)的偏转转移至三个压电驱动结构4上,反射镜1会因为椭圆形位移放大部件4c支撑点产生的纵向位移而发生偏转,利用三个支撑点A、B、C的纵向位移控制反射镜围绕着X和Y轴产生二维偏转。与此同时,平行光束发射器5的光束经半反半透镜8反射后的光束会因为反射镜1的二维偏转而产生相应的偏转,过半反半透镜8后的透射光束照射在位置敏感探测器7上的位置会发生相应的变化。位置敏感探测器7将感应到的位置信号转换为电流信号经过对应电路滤波及相应处理后,被闭环控制电路(可用FPGA实现)采集,经过计算可以得到实时的二维快速控制反射镜的角度偏转量。闭环控制电路的滑模控制器对角度偏转目标值和实际值的偏差进行处理,最后得到实时的控制输出电压来形成反馈回路,消除反射镜的二维角度理想偏转量与二维角度实际偏转量的偏差,最终实现反射镜偏转角度的精确控制。

本实施例中由平行光束发射器所发射出的光束可以为激光,也可以是其它平行光束,例如可见光等。本实施例中优选采用激光,因为其指向性和穿透能力更好,而且精度高。

本实施例采用的是三点支撑的驱动方式,那么反射镜产生二维偏转时必须将两轴的偏转转移至三个压电驱动结构上,利用三个支撑点形成二维偏转。

此外,本实用新型还提供一种基于直接光学反馈的二维控制激光扫描器,包含了上述基于直接光学反馈的二维反射镜。

参照图8所示基于直接光学反馈的二维控制激光扫描器的光路示意图,包括上述二维快速控制反射镜中组成反馈光路的平行光束发射器5、半反半透镜8、位置敏感探测器7和反射镜1,还包括设置于反射镜1正面上方的扫描激光发射器10,所述扫描激光发射器10用于发射扫描激光,扫描激光发射器10发射的扫描激光在反射镜1的正面反射,经反射镜1反射后的扫描激光射向待测目标。而通过调节反射镜1的偏转角度,即可相应调节在反射镜1正面反射后扫描激光的指向角度。

本实用新型二维控制激光扫描器应用了上述基于直接光学反馈的二维快速控制反射镜,不仅有效保障了反射镜的控制精度,提高稳定性,而且解决了轴间干扰严重的问题,进而能提高激光扫描器的扫描激光指向控制精度。

而对于二维激光扫描器的其它部件,由于其结构为本领域技术人员所熟知的,而本实用新型二维控制激光扫描器的主要特点在于使用了基于直接光学反馈的二维快速控制反射镜,因此对于除二维快速控制反射镜的其它部件(例如固定扫描激光发射器10的固定部件,接收被待测目标所反射激光的接收器等),在此不再赘述。

以上是对本实用新型的较佳实施进行了具体说明,但本实用新型创造并不限于所述实施例,熟悉本领域的技术人员在不违背本实用新型精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1