激光线照射的制作方法

文档序号:17123103发布日期:2019-03-16 00:01阅读:503来源:国知局
激光线照射的制作方法

本公开总体上涉及激光系统,特别是涉及用于光学地提供线形照射的激光系统。此外,本公开总体上涉及线光学系统内的光束变换和光束均化。



背景技术:

在特定的应用中,使用激光系统,其在相应的聚焦区中提供非常均匀的线形强度分布。这种聚焦区在此也称为激光线(形)焦点或简称激光线。使用这种激光线焦点的示例性应用包括激光加工,例如沉积在玻璃衬底上用于例如tft显示器的二氧化硅层的再结晶、基于激光的例如太阳能电池的配料以及用于例如微电子器件生产的激光剥离工艺。例如,在wo2015/036427a1中公开了一种应用激光线焦点来改性金属纳米颗粒的示例性方法。

相应的激光系统旨在提供在光束轮廓的两个正交方向上(即与光束传播方向正交)的光束直径的大到非常大的纵横比的强度分布,同时确保在较小光束直径的方向上有大的聚焦深度。

ep1896893b1公开了一种用于基于例如nd-yag激光源的光的变换产生线形强度分布的示例性光学配置。此外,ep0731932b1公开了一种用于二极管激光器棒的光束成形或二极管激光器条堆叠的光的光束重新堆叠的示例性光学配置,使得其提供在整个输出光束上具有相等光束质量因子的输出光束。在wo2012/166758a1中公开了一种用于提供泵浦激光束的类似光源组合。



技术实现要素:

本公开至少部分地涉及改进或克服现有系统的一个或两个以上方面。特别地,本发明的一个目的是提供一种光学系统,用于提供具有大的纵横比和沿较小的光束尺度的方向具有大的聚焦深度的线形强度分布的激光束。此外,一个目的是沿着较大光束尺度的方向、即沿着由线形强度分布形成的“线”实现强度分布的大均匀性。在一些方面,本发明的另一目的是提供一种激光系统,其使得能够通过排列具有线形强度分布的两个或三个以上激光线来改变线的长度,并且特别地提供具有可调整的线长度的激光线。

这些方面中的一些或全部由独立权利要求的主题来解决。在从属权利要求中给出了本发明的另外的实施例。

在第一方面,公开了一种光束变换单元,其用于将输入激光束变换成具有降低的空间和/或时间相干性的例如可以在激光系统中用于物体的线照射的变换的光束。光束变换单元包括由透明的一体式板形光学元件制成的变换光学器件,所述光学元件提供相对于彼此基本上平行地延伸的正面和背面。正面包括用于接收输入激光束的输入表面区域,所述输入表面区域与前反射表面区域相邻地以沿变换前方向的条形的方式延伸,背面包括用于出射输出激光束的输出表面区域,所述输出表面区域在与后反射表面区域相邻地以沿变形方向的条形的方式延伸,变换方向不同于变换前方向。此外,光束变换单元构造成使得前反射表面区域和后反射表面区域通过变换光学器件中的反射引导输入激光束的多个输入光束段在通过输入表面区域进入变换光学器件之后通过输出表面区域出射,其中,相邻的输入光束段被重新排列成输出光束段,所述输出光束段经历的反射次数不同,从而向光束变换光学器件内的输出光束段提供不同的光路长度。

在另一个方面,公开了一种激光系统,其用于提供具有降低的空间和/或时间相干性的可以例如用于利用沿第一方向延伸的激光线对物体进行线照射的变换的光束。激光系统包括:激光源,其用于提供激光束作为沿着传播方向传播的输入激光束;以及光束变换单元,其包括由透明的一体式板形光学元件制成的变换光学器件,所述变换光学器件提供相对于彼此间隔一距离地基本上平行地延伸的正面和背面。正面包括用于接收输入激光束的输入(第一)表面区域,背面包括用于出射输出激光束的输出(第二)表面区域,其中,变换单元相对于传播方向定向成使得输入激光束相对于正面的法向量成一倾斜角落在输入表面区域上。倾斜角选择成使得输入激光束通过输入表面区域进入变换光学器件,并且在变换光学器件内由正面的前反射表面区域和背面的后反射表面区域处的反射引导以通过输出表面区域出射。此外,相邻的输入光束段被重新排列成输出光束段,所述输出光束段经历的反射次数不相同,从而向输出光束段提供不同的光路长度。

在另一个方面,公开了一种均化和聚焦单元,其用于使条形的激光束均化,以形成沿第一方向延伸的例如在激光系统的布置结构中用于物体的线照射的激光线。均化和聚焦单元包括聚焦单元,所述聚焦单元包括在第二方向上起作用的短轴线聚焦元件,从而将激光线的工作平面在激光束的传播方向上的位置限定在所述短轴线聚焦元件的焦平面处。均化和聚焦单元还包括均化单元,所述均化单元构造成能够在均化单元的焦平面处使沿第一方向布置的条形的激光束的一部分沿着条形的激光束重叠。此外,工作平面在传播方向上的位置选择成与均化单元的焦平面的位置不同,使得激光线的强度分布包括具有由每一侧处的斜坡限界的平台的礼帽形状。特别地,平台可以在强度分布的半峰全宽的最多95%上延伸。

在另一个方面,公开了一种激光系统,其用于在工作平面中提供激光线以用于物体的线照射,所述激光线在第一方向上延伸明显的长度并在第二方向上延伸较小的尺度。激光系统包括:激光源,其用于提供激光束作为沿着传播方向传播的延长的输入激光束的基础;以及均化和聚焦单元,其用于使条形的激光束均化以形成激光线。均化和聚焦单元包括聚焦单元,所述聚焦单元包括在第二方向上起作用的短轴线聚焦元件,从而将激光线的工作平面在激光束的传播方向上的位置限定在所述短轴线聚焦元件的焦平面处,均化和聚焦单元还包括均化单元,所述均化单元构造成能够在均化单元的焦平面处使沿第一方向布置的条形的激光束的一部分沿着条形的激光束重叠,其中,工作平面在传播方向上的位置被选择为与均化单元的焦平面的位置不同,使得激光线的强度分布包括具有由每一侧处的斜坡限界的平台的礼帽形状。特别地,平台可以在强度分布的半峰全宽的最多95%上延伸。

在另一个方面,用于利用拼接的激光线的组合来激光加工物体的组合激光系统包括多个基本上相同的如本文所述的激光系统,其中,相邻的激光系统在第一方向上移位至少对应于斜坡的宽度的距离,从而允许在相应的过渡区中覆盖相邻的斜坡,并且形成在第一方向上具有平坦的总强度的延伸的激光线。

在另一个方面,一种用于拼接激光线以形成沿第一方向延伸的拼接激光线的方法包括以下步骤:对于至少两个条形的激光束利用长轴线聚焦元件在焦平面上使沿第一方向布置的相应的条形的激光束的一部分重叠;以及利用短轴线聚焦元件使每个条形的激光束在第二方向上聚焦,从而在传播方向上将共同工作平面限定在第二方向上的相应的聚焦区内,其中,工作平面在传播方向上的位置被选择为与焦平面的位置不同;以及将所述至少两个条形的激光束在第一方向上并排对准,从而在共同工作平面中形成具有总强度的拼接激光线。

在另一个方面,公开了一种均化和聚焦单元,其用于调整由条形的激光束形成的激光线的长度,所述激光线沿第一方向延伸。均化和聚焦单元包括均化单元,所述均化单元构造成能够在均化单元的焦平面处使沿第一方向布置的条形的激光束的一部分沿着条形的激光束重叠,均化和聚焦单元还包括聚焦单元,所述聚焦单元包括在第二方向上起作用的短轴线聚焦元件,从而限定激光线的工作平面在激光束的传播方向上的位置在短轴线聚焦元件的焦平面处。此外,激光束在均化单元与聚焦单元之间沿第一方向发散。

前述方面与从属权利要求中所述的实施例相关联,这些实施例通过引用并入本说明书中。应注意的是,技术人员将理解相应的从属权利要求中给出的且与相应方面相关联的实施例同等地适用于上述方面中的另外的方面以及作为本公开的一部分的其它方面。

在一些实施例中,激光系统包括构造成能够提供具有基本上对称的光束参数积的多模激光束的激光源。

在一些实施例中,激光系统还包括用于变换由激光源发射的多模激光束的光束变换单元。光束变换可以基于光束横截面的光束段的重新排列,在此也称为模式变换。由于光束变换,光束参数积、特别是m2值沿与光束传播方向正交的第一方向(x方向)增大,并且沿与光束传播方向和第一方向正交的第二方向(y方向)减小。模式变换可以在一个方向上降低光束质量,同时在另一个正交方向上提高光束质量。在本申请中提出的光束变换特别可以使得光束变换单元输出的辐射的空间和/或时间相关性降低。该输出辐射在此称为辐射束,称为变换的辐射,或者为简单起见称为激光束。因此,当更多的模式有助于进一步的光束均化步骤时,光束变换可以使得干扰减少。

在光束变换单元的一些实施例中,两个反射表面相对于入射激光束布置成使得由于激光束在反射表面处的反射而发生激光束的光束段的重新排列。在一些实施例中,可以使用透明的、特别是一体式板形光学元件的表面来形成反射表面。板形光学元件的厚度选择成使得对于特定的角度取向(限定相应的光束段在光学元件内的光路),离开光学元件的各个光束段经历的光路长度差异大于入射激光束的相干长度。

在这种配置中,产生的光路长度差异进一步有助于输出光束的均匀性,因为它除了由于模式变换引起的空间相干性之外还降低激光束的时间相干性。各个光束段在变换单元内行进不同的时间段,从而降低时间相干性。由于光束段之间的相位关系至少部分地丢失,因此当光束段在聚焦区中重叠时,不太可能发生相干干扰。

光束变换单元的输出辐射在线形光束的长轴线上具有降低的空间和时间相干性,适合于输入到光束均化单元中。在所述光束均化单元中,通过傅里叶透镜(长轴线聚焦元件)实现均化,以使在傅里叶平面处光束段重叠。重叠的光束部分的任何相干性可以导致所得激光线的强度分布内的不规则性,例如产生强度峰值。干扰程度(“干扰对比度”)明显取决于干扰辐射的任何空间和时间相干性。干扰程度随着有助于均化辐射的重叠模式的数量增多而降低,例如,随着辐射的空间相干性降低而降低。此外,由于消除了辐射部分之间的相位关系,干扰程度随着辐射的时间相干性(相干长度)的降低而降低。因此,这里提出的光束变换单元特别可以用于产生均匀的激光线。

本文公开的光机械(简单)设置的概念的优点包括由于光束变换单元的宏观尺寸而在辐射强度范围中的灵活性,没有光束的任何中间聚焦,并且光束质量的提高基本上是受到光束变换单元出口孔处衍射的限制。

本文公开的概念特别涉及具有高功率/高能量激光束的高通量激光加工,特别是涉及包括沉积在玻璃上的薄膜的退火/再结晶、半导体的退火和包层的激光加工应用。所使用的激光源可以提供从(近)紫外到(近)红外延伸的波长范围内的相干辐射,其可以利用例如yb基固态激光器、准分子激光器和二极管激光器产生。例如,激光源可以以连续模式或脉冲模式操作。

根据以下描述和附图,本公开的其它特征和方面将是显而易见的。

附图说明

结合在此并构成说明书的一部分的附图示出了本公开的示例性实施例,并且与说明书一起用于解释本公开的原理。在附图中:

图1是用于产生用于激光加工的激光线的激光系统的示意图;

图2是示出可以在图1的激光系统中使用的准直单元、变换单元和均化单元的示例性光学实施例的透视图;

图3a至3c是特别可以应用于图2的准直单元的与准直光有关的实施例和原理的示意图;

图4a至4h是特别可以应用于图2的变换单元的与光束变换有关的实施例和原理的示意图;

图5a和5b是特别可以应用于图2的均化单元的与光束均化有关的实施例和原理的示意图;

图6a至6d是与排列多个并排布置并使用非焦点均化原理的激光系统有关的实施例的示意图;

图7是使得能够拼接激光线的短轴线聚焦元件的第一实施例的透视图;

图8a至8c是使得能够拼接激光线的短轴线聚焦元件的第二实施例的示意图;以及

图9是两个并排定位的用于形成组合的(拼接的)激光线的激光系统的示意图。

具体实施方式

以下是本公开的示例性实施例的详细描述。其中描述的和附图中示出的示例性实施例旨在教导本公开的原理,使得本领域普通技术人员能够在许多不同的环境中和许多不同的应用中实施和使用本公开。因此,示例性实施例不旨在且不应被视为对专利保护范围的限制性描述。而是,专利保护的范围应由所附权利要求限定。

本公开部分地基于以下认识:为了提供均匀的激光线,应该减少激光束内的空间和时间相干性。

本公开还部分地基于以下认识:用于产生延伸的激光线的激光线的组合可以通过适当选择与被组合的各个激光线相关联的工作平面来实现。

参考图1和2,用于产生例如将用于激光加工过程的激光线的激光系统1包括用于产生激光束3a的激光源3和光学系统5。光学系统5接收激光束3a和输出辐射束5a,所述辐射束5a使得能够在相关联的聚焦区内形成激光线l。聚焦区中的辐射束5a上的强度分布使得激光线l主要在例如x方向上直线地延伸到期望的程度,而激光线l在y方向上的宽度大幅度减小。在这里,x方向和y方向相对于彼此并且相对于光束传播方向(假设光束传播方向沿z方向延伸)正交地延伸,如图1中示意性地所示。

激光线l例如聚焦在例如特定材料、例如玻璃或半导体材料的物体7上。物体7由安装件9支撑,并且通常,激光线l和物体7可以相对于彼此移动,使得通过激光线l照射期望的区域。如图1中进一步所示,多个激光系统1可以彼此相邻地提供,以一起形成由一系列激光线l、l'组成的延伸的激光线。

激光源3可以是用于产生相干辐射、例如激光束的源,所述相干辐射在从(近)紫外延伸到(近)红外的波长范围内,例如特别是在300纳米到350纳米、500纳米到530纳米、或900纳米至1070纳米的范围内,其可以使用例如yb基固态激光器、准分子激光器和二极管激光器产生。相干辐射的特征在于其光束质量,例如通过相应地在x方向和y方向上的m2值。光束质量可以是对称的,即在x方向和y方向上具有基本上相同的m2值,或者那些m2值可以基本上相同或在一定程度上不同。在这里公开的实施例中,假设如果存在差异,则在y方向上给出比在x方向上更好的光束质量(例如m2x=a·m2y)。

可以使用光纤传输或自由空间传输将激光束3a提供给光学系统5。激光源3可以是例如光纤耦合二极管激光器或多模固态激光器,两者都能够提供具有绕传播方向基本上对称的光束参数积的激光束。激光源3可以是例如中心波长为1030纳米的多模盘式激光器。具有数值孔径(na)为0.11的200微米光纤可以使得能够产生具有10mmmrad的光束参数积bpp的激光束3a。激光束的相干长度可以根据lc=λ2/δλ来确定,其中δλ是固态激光器的光谱宽度。以上示例性提到的盘式激光器的相干长度lc约为0.5毫米。

参考关于时间相干性对聚焦区中强度分布的均匀性的影响的初步讨论,在光学系统5中使用厚度在毫米范围的光学板件可产生光束段之间的足以在期望的程度上降低时间相干性的光路长度差异,如将在下面结合图4a至4h进行说明的那样。

如图1中的单独框所示,光学系统5包括准直单元11(可选)、光束变换单元13、均化单元15和聚焦单元17(可选,单独提供,或集成在例如均化单元15的光学元件中,从而形成均化和聚焦单元60)。

这些单元的光学配置设计成能够从激光束3a产生具有高纵横比的线形强度分布的辐射束5a(例如在10到100的范围内,例如对于单光束为60或对于双光束配置为30),同时,在聚焦区中较小的光束直径的方向上具有较大的聚焦深度。

为了简化和改进变换,准直单元11可以用于提供在x方向和y方向上具有相应发散的椭圆形光束形状,作为用于光束变换单元13的输入光束形状。光束变换单元13构造成能够将输入光束横截面的沿着y方向布置的光束段重新排列成沿x方向布置的光束段,以形成光束变换单元13的输出光束形状。输出光束由此有利地设计成使得例如均化单元15能够高效地工作。

参考图2和3a至3c,示例性准直单元11包括折叠变形光学装置,其包括多个透镜21(圆柱形和球形透镜)和折叠反射镜23。离开例如光纤(未示出)的激光束3a被成形为具有椭圆形状的强度分布的准直激光束11a。

图3a和3b分别示出了在y-z平面和x-y平面中的一般光束成形和准直。示例性地,y方向上的准直焦距fc,y被指示为显著大于x方向上的准直焦距fc,x。对于激光束11a,图3c示出了椭圆形光束轮廓25,其中椭圆的长轴线在y方向上延伸并且椭圆的短轴线在x方向上延伸。由于椭圆形状,激光束11a的发散特性使得在x方向和y方向上的发散相对于沿着x方向和y方向的相应光束直径具有相反的比率。

通常,激光束11a设计成能够允许光束变换单元13的有利和紧凑的尺寸。例如,激光束11a的在x方向上的光束腰和/或在y方向上的光束腰可以定位在光束变换单元13附近或者光束变换单元13内。例如,至少在x方向上的光束腰可以位于光束变换单元13的入口孔处。为了完整起见,应注意的是激光束11a的椭圆形状对光束对准和位置灵敏度的敏感性可能不如光束的圆形形状,因此,在光束对准和稳定方面可能需要较少的措施。

如图2中的虚线进一步所示,可以组合两个或三个以上激光束作为光束变换单元13的输入,以允许更大的光束强度。

参考图2和4a至4h,光束变换单元13使用特定的反射结构,用于重新排列准直激光束11a的(输入)光束段27。

图4a和4b示出了两个激光束11a、11a'被输入到光束变换单元13中的情况下光束变换的功能。如图4a所示,第一输入光束段271对应于激光束11a的(在y方向上)最低部分,而第n个输入光束段27n对应于激光束11a的(在y方向上)最高部分。

图4b示出了与在通过任何其它光学器件之前的变换的光束13a相关联的重新排列的(输出)光束段29。第一重新排列的光束段291对应于已经通过光束变换单元而没有任何反射的第一输入光束段271,即其在光束变换单元中的光路相对于其它重新排列的光束段而言是最短的。在y方向上彼此相邻布置的输入光束段的序列在变换的光束13a中沿着x方向并排重新布置,直到形成与变换的光束13a的相反的侧向端部的对应于第n个输入光束段27n的第n个重新排列的光束段29n。

光束变换单元13内的变换通常降低x方向上的光束质量,同时提高y方向上的光束质量。

图4c和4d示出了基于示例性变换光学器件31的光束变换,图4e和4f示出了变换光学器件31和施加的涂层的侧视图。

变换光学器件31是具有厚度d的固体光学透射板状材料。变换光学器件31具有基本上三角形形状的正面31a和背面31b,其具有两个源自共同边缘32的例如正交的长侧。在图4d至4f中用x'和y'示出了两个长侧的方向,在安装状态下,变换光学器件31相对于x方向和y方向倾斜。正面31a和背面31b基本上相对于彼此平行。应注意的是,示例性示出的三角形基部形状特别紧凑,因为它仅在需要时提供材料。

正面31a的第一(输入)表面区域33a沿着长侧中的一个延伸,所述长侧在y'方向(在本文中也称为变换前方向)上延伸,例如相对于y方向略微倾斜,并且用于接收激光束11a。输入表面区域33a形成光束变换单元13的入口孔(也参见图4e)。背面31b的第二(输出)表面区域35a沿着基本上在x'方向(在本文中也称为变换方向)上延伸的另一个长侧延伸,例如相对于x方向略微倾斜,并且用于出射激光束13a。输出表面区域35a形成光束变换单元13的出口孔(也参见图4f)。

输入和/或输出表面区域33a、35a可以具有施加在其上的抗反射涂层34,并且根据输入光束尺寸和预期输出光束尺寸来确定尺寸,所述预期输出光束尺寸基本上对应于输入光束尺寸。在附图中所示的示例性实施例中,输入表面区域33a在板状变换光学器件31的平面中相对于输出表面区域35a垂直地延伸。输入和输出表面区域33a、35a在边缘区域32a中重叠,使得即使在相对于x方向和y方向的倾斜取向中,穿过边缘区域的入射光束也将通过变换光学器件31不反射地透射。

在入口孔和出口孔(输入和输出表面区域33a、35a)旁,正面31a和背面31b包括相应的第三(前反射)和第四(后反射)表面区域33b、35b。在示例性实施例中,那些表面区域涂覆有高反射率涂层36。涂层反射激光束11a——在图示的示例中,第一输入光束段271除外——至少在正面31a和背面31b处至少反射一次。反射次数随着光束段27在y方向上的次序而增加。为了在变换光学器件31内提供这种多次反射,变换光学器件31不相对于光束传播方向(z方向)正交地延伸,而是倾斜成使得入口孔(输入表面区域33a)相对于y方向倾斜,并且出口孔(输出表面区域35a)相对于x方向倾斜。共同边缘32可以被认为是两个方向上的倾斜的固定点。最终方位由当垂直于传播方向定向时正面31a的法向量n与所述正面31a的法向量n之间的角度αeff表征。

在图4d中,示出了三个示例性光路37a、37b、37c,用于将输入光束11a倾斜入射到板形变换光学器件31的反射表面上。而光路37a不包括反射,光路37b、37c反射多次。对于入射角αeff,变换光学器件31产生对应于d=2d/cos(αeff)的相邻光束段之间的路径长度差d。换句话说,对于每对附加的反射,都向光束变换光学器件31内的光束段的路径增加该路径长度差d。

随着反射次数的增加(并且由此随着输入/重新排列的光束段的次序增加),光路长度增加,使得重新排列的光束段291至29n内的光束横截面由于光束的发散而在锐度方面降低。当比较重新排列的光束段291和29n时,这可以在图4b中在x-(和y-)方向上看到。

总之,变换光学器件31内的输入光束部分的多重反射概念重新排列光束段,使得变换的光束13a在出口孔处沿其较大直径的方向(在附图中沿x/x'方向)比沿其较小直径的方向(在附图中沿y/y'方向)具有更大的发散。在图4e和4f所示的实施例中,通过使变换光学器件31的方向相对于入射激光束11a(11a')倾斜并且通过提供具有反射涂层(第三和第四表面区域33b、35b)或抗反射涂层(入口/出口孔,即第一和第二表面区域33a、35a)的区域来实现多重反射概念。

离开变换光学器件31的光束13a的光束参数积bpp在两个方向x和y上给出,即沿着变换的光束13a的长尺寸和短尺寸给出,如

bppx(长尺寸)=bppfiber·a以及bppy(短尺寸)=bppfiber/a,

其中,参数a对应于变换单元13的分割参数(即与变换单元13相关联的光束段29的数量),并且通常具有3至15或甚至高达20或多于20的范围内的值。然而,由于衍射,对于短尺寸,光束参数积的改进可以限于约2的m2值。

参考图4e和4f,变换光学器件31包括低吸收、高透射和优选低热膨胀材料、例如熔融石英。变换光学器件31的厚度d可以例如在3毫米至20毫米的范围内。正面31a和背面31b的平坦度以及它们的平行取向可以在达λ/10或更小的范围内。抗反射涂层可以是99.9%的透射涂层,反射涂层可以是在所需的光谱范围内的99.98%的反射涂层,从而提供在例如99%至99.8%的范围内的透射。

为了尽管在倾斜配置的情况下但仍提供光束的高效耦入,输入表面区域33a的形状可以适应于倾斜取向。例如,输入表面区域33a的x'方向上的宽度w可以在y'方向上减小,如图4e中由前过渡线33t所示。例如,变换光学器件31包括锐角梯形形状的输入表面区域33a,其中,锐角梯形在其较长(并且在y'方向下)基部边缘上具有两个相邻的锐角。与此相反,输出表面区域35a与后反射表面区域35b之间的沿y'方向的过渡(在图4f中由后过渡线35t表示)可以处于恒定高度(y'值)以限定变换的辐射的相应取向。构造为矩形的输出表面区域35a的高度h被选择为沿x'方向恒定。

在本实施例中,如果矩形出口孔的上边界平行于x-z平面定向并且如果正面31a的法向量n相对于z方向以相应的角度αeff倾斜地定向,然后,创建虚拟入口孔,其具有相对于由前反射表面区域33b提供的反射区域的起作用前过渡线(沿y方向延伸)。此外,还创建虚拟出口孔,其具有相对于由后反射表面区域35b提供的反射区域的起作用水平后过渡线(沿x方向)。因此,可以执行将入射光束11a分割成方形光束段29,如图4b中示例性地示出的那样。

应注意的是,尽管所示的示例性实施例表示(抗反射涂层)区域33a和35a分别设置在相反侧,即分别设置在变换光学器件31的正面31a和背面31b上,但是在一些实施例中,这些区域可以设置在同一侧。在图4g和4h中示出了光束变换单元31'的相应实施例。

如图4g所示,入口孔和出口孔由沿着光束变换单元31'的三角形基本形状的底边(即在x'方向上)和侧边(即在y'方向上)设置在光束变换单元31'的同一侧(这里称为正面31a')处的抗反射涂层34'的范围限定。正面31a'以及背面31b'(如图4h所示)的其余部分涂有高反射率涂层36'。因此,准直激光束11a将在同一侧、即通过正面31a'进入和离开光束变换单元31'。因此,该系统可以以更紧凑的方式设计。

变换的光束13a在均化单元15中均化以在聚焦区z中产生沿着激光线l的长尺寸(x方向,长轴线)具有高均匀性的礼帽形强度分布。对于单个激光线l,这种均化将在下面结合图4和5简要描述,例如,可以基于非成像或成像均化器配置结构,例如在上面提到的ep1896893b1中公开的配置结构。

在一些实施例中,执行激光线的排列,这需要在相邻激光线l、l'之间平滑地变换。这在本文中称为激光线的“拼接”。为了改进和简化拼接,本文公开了一种非焦点概念,其将结合图6a至6d进行解释。此外,还结合图8a至8c公开了用于进一步改进和简化拼接的反射聚焦配置。所述反射聚焦配置使得能够接受拼接多个单元所需的光束发散。

在一些实施例中,均化单元15可以包括多透镜元件和在x方向上起作用的聚焦元件。可以通过另外的聚焦单元17进一步执行在y方向上的聚焦,所述聚焦单元17包括仅在y方向上起作用的聚焦元件(在短轴线上限定线厚度)并确定工作平面的位置在其焦点处。因此,在得到的聚焦区z中,获得在x方向上均匀延伸的强度分布,所述强度分布在y方向上具有大的聚焦深度。

关于多透镜元件,例如,可以使用单切面积分器(非成像均化器)或双步切面积分器(成像均化器)来形成礼帽形状。通常,成像均化器可以提供更好的均匀性。积分器可以是尺寸范围从例如小于0.5毫米到5毫米或多于5毫米的柱面透镜的微透镜阵列,这些微透镜阵列定向为在x方向上提供聚焦。因此,微透镜之间的间距可以在0.5毫米至5毫米的范围内、例如0.5毫米至4毫米的范围内。例如,均化器的数值孔径na可以在0.05至0.15的范围内。

关于在x方向上起作用的长轴线聚焦元件,可以使用傅里叶透镜在工作平面中使各个光束部分沿x方向重叠。聚焦元件对应于近场到远场的一维变换,从而在焦平面中重叠——由于基本上没有光束段的干扰或者具有减少的光束段的干扰的相干性降低——每个透镜元件的强度分布。在x方向上起作用的长轴线聚焦元件(例如傅里叶透镜)的焦距可以在0.5微米到10微米的范围内。这使得能够产生(在线的长轴线上)长达0.5米或多于0.5米的激光线。

在一些实施例中,聚焦元件的焦距被选择为小于或大于相对于工作平面的距离(例如以因数1.x到2小于或大于)。由此,可以实现对激光线l的侧边(边缘)处的斜率的控制和衍射峰值的减小,并且可以避免强度分布的相应扩大。

图5a和5b示意性地示出了均化单元15的一实施例,所述均化单元15包括两个多透镜元件41a、41b(分别包括多个透镜元件42)和傅里叶透镜43。具体地,图5a示出了在x方向上起作用的光学元件(即没有(短轴线)聚焦单元17的在y方向上起作用的任何聚焦元件)。因此,多透镜元件41a、41b具有例如共同的焦距f,傅里叶透镜43在x方向(线的长轴线)上具有焦距f。图5b示意性地示出了可以在由傅里叶透镜43的焦距f限定的傅里叶平面fp处实现的沿x方向的强度分布45的礼帽形状。在特定的应用中,傅里叶平面fp可用作物体7所在的工作平面。

应注意的是,多透镜元件41a、41b中的第一个位于与变换光学器件31的出口孔间隔一定距离处,使得变换的光束13a通常将在x方向和y方向上变宽。此外,第一多透镜元件41a的每个透镜元件42小于加宽的光束段29。例如,40个透镜元件42可以覆盖10个光束段29。为了减少成像均化器中的任何干扰,多透镜元件41a、41b可以以大于其共同的焦距f的距离分离。例如,多透镜元件41a、41b之间的距离可以在1f至1.3f的范围内。傅里叶透镜43使各透镜元件42的图像在聚焦区中重叠,特别是在傅里叶平面fp中,如光束线44所示。

再次参考图5b中所示的强度分布45的礼帽形状,该分布的限界出礼帽形状的范围的侧翼46(这里也称为斜坡)非常陡峭,对应于在x方向上强度快速下降,例如在小于5毫米的范围内实现强度降低至大致10%。如果不执行多个激光线的拼接,则这是可接受的,但是这种陡峭的斜坡可能不太适合于相邻激光线的拼接。考虑到下面描述的非焦点设置将变得显而易见的是,当在相邻的平顶形强度分布之间产生平滑过渡时,陡峭的斜坡可能更难以定位。因此,在特别适合于拼接的实施例中,斜坡中的至少一个延伸超过至少约5毫米并且小于约60毫米,例如,在约10毫米到约40毫米的范围内延伸。

沿着变换的光束13a的短尺寸(在y方向上),可以通过相应的柱面聚焦元件(结合图7和8a至8c讨论示例性配置)实现具有例如30微米至100微米的fwhm的准高斯型强度分布。聚焦元件(透镜或反射镜)通常具有80毫米至200毫米的焦距,因此,定位在傅里叶平面fp之前不远处并且基本上沿着激光线l的整个长度延伸。

参考图6a至6d,非焦点均化概念基于以下认识:使工作平面从在x方向上起作用的长轴线聚焦元件的焦平面(例如,从图5a中的傅里叶透镜43的傅里叶平面fp)移位,减小了单独的激光线l的侧向端部处的斜率。因此,增大了对于相邻激光线l、l'在x方向上对准的公差。此外,不那么陡峭的斜坡产生更宽的拼接区,从而产生不那么苛刻的定位公差。另外,将最后的聚焦透镜定位成远离远场、例如在傅里叶平面fp之前,可使得边缘处的衍射效应较少,从而使得相邻的激光线的更平滑地重叠。

具体地,图6a示出了用于拼接由相应的激光系统产生并沿x方向延伸的多个激光线l1、l2、l3的激光线的强度分布。每个激光线l1、l2、l3都基本上对应于梯形的强度分布51,其中,礼帽形状在每一侧由斜坡53l、53r限界,这例如使得强度在例如25毫米内基本上直线下降到大致10%。

图6b示意性地示出了如将结合图6c所解释的可以在相对于聚焦元件的聚焦区偏移的相应工作平面处实现的在x方向上的强度分布54的礼帽形状。

在一些实施例中,非焦点均化概念通过适当选择光学元件的焦距和它们之间的距离,使工作平面远离聚焦元件的聚焦区,使得礼帽轮廓的平台在强度分布的半峰全宽fwhm的最大95%上延伸。在此,过渡区57以及每个斜坡53l、53r在强度分布的fwhm的至少2.5%或超过2.5%、例如强度分布的fwhm的5%或超过5%、例如10%上延伸。因此,提供了关于x方向上的对准的期望的不敏感性。

由于相邻的强度分布51以基本上相同的斜坡53l、53r但以相反的方向重叠,因此强度分布的重叠产生基本上平坦的总强度55,如图6a中的虚线所示。相邻的强度分布51之间的过渡区57中的调制与斜坡53l、53r的陡度和激光线l1、l2、l3对于它们在x方向上的位置的对准的精确度有关。

关于在均化和聚焦单元60中实现的示例性非焦点设置,图6c示出了在x方向上起作用的那些光学元件,而图6d示出了在y方向上起作用的那些光学元件。示例性地,图6c示出了使用成像均化器的光学设置。然而,应该知晓,非成像均化器也可应用该基本概念来改进激光线l1、l2、l3的拼接。

参考图6c,均化和聚焦单元60包括作为示例性多透镜元件的柱面透镜的两个微透镜阵列61a、61b和作为在x方向上起作用的聚焦元件的具有焦距f的长轴线聚焦元件(例如,傅里叶透镜63)。可以考虑将微透镜阵列61a、61b和长轴线聚焦元件63构成类似于图5a中所示的配置的均化单元。虽然在此长轴线聚焦元件63被称为傅里叶透镜,但原则上也可以实施反射结构。

参考图6d,均化和聚焦单元60还包括在y方向上起作用的短轴线聚焦元件65。

短轴线聚焦元件65基本上延伸穿过由微透镜阵列61a、61b和傅里叶透镜63提供的放大光束。短轴线聚焦元件65通常具有明显小于焦距f的焦距fy,例如为焦距f的1%至10%。例如,焦距f可以约为2000毫米,而焦距fy可以在80毫米到250毫米的范围内,例如约为150毫米。

短轴线聚焦元件65可包括一(柱面)聚焦透镜和/或一(柱面)聚焦发射镜,它们布置成在y方向上起作用(仅在y方向上起作用,即在x方向上基本上不起作用,例如圆柱轴线沿着y方向)或多个那些光学元件。

在图7所示的示例性实施例中,短轴线聚焦元件65构造为抛物面反射器70。抛物面反射器70具有高反射表面71,所述高反射表面71在y-z平面中具有抛物线形状以将激光束在例如90°角度下沿着激光束的条形形状在短轴线方向上聚焦在间隔焦距fy处。

下面将结合图8a至8c说明使用反射柱面光学器件的短轴线聚焦元件65的另一实施例。

再次参考图6c和6c,为了减小每个礼帽形强度分布的两侧的斜率,从而允许如本文所公开的激光线的特定拼接,短轴线聚焦元件65布置在与傅里叶透镜63(在图6d中由虚线表示)间隔一非焦距66处,所述非焦距66在焦距f的20%至90%的范围内或120%至200%的范围内。即,短轴线聚焦元件65的位置偏离将傅里叶透镜63的焦点和短轴线聚焦元件65的焦点定位在同一平面内所需的短轴线聚焦元件65的位置。例如,短轴线聚焦元件65定位在与傅里叶透镜63间隔0.5f处。短轴线聚焦元件65的这种位置将导致工作平面wp的位置与傅里叶透镜63的傅里叶平面fp的位置大约相差焦距f的55%。该位置上的差异足以以适合于拼接两个相邻激光系统1、1'的强度分布的方式减小侧斜率。

换句话说,工作平面wp相对于傅里叶透镜63的距离在焦距f的约30%至80%或130%至180%的范围内。基于此并且知道短轴线聚焦元件65的焦距fy,例如,可以确定短轴线聚焦元件65相对于傅里叶透镜63的位置落在上面给出的范围内。

作为短轴线聚焦元件65的一个示例,图8a至8c示出了光学聚焦系统80,其使得能够沿y方向聚焦入射激光,从而在工作平面wp处提供具有线长度ll(在附图中沿x方向)的线焦点81。参考图6a,线长度ll包括半峰全宽fwhm和其余的过渡区57在每一侧处的两半。

光学聚焦系统80特别设计成能够提供至少在一端延伸超过光学聚焦系统80的侧向系统宽度ws的线长度ll。系统宽度ws通常由围绕光学聚焦系统80的壳体83的尺寸给出。通常,壳体83具有出射窗85,激光通过所述出射窗85出射到待照射的物体87上。物体87例如定位在安装件89的顶部上。光学聚焦系统80和/或安装件89可安装至一个或两个以上多轴机器人、例如六足机器人(未示出),以使得能够获得激光线在物体87上的正确方位。

具有延伸超过系统的线长度ll使得能够拼接激光线,从而通过简单地将基本上相同的光学聚焦系统80的壳体83并排的定位来产生组合式激光线91,如图9所示。调整每个线长度ll和斜率(以及每个激光系统的发射光强度)在此使得能够形成具有如图6a所示的均匀强度的组合式激光线91。

在图9中,形成激光线(段)的光束在x方向上的发散由角度δ表示。这种光束发散使得能够将激光系统并排定位。壳体83之间所需的最小距离dmin和从出射窗85到工作平面wp的距离(这里称为自由工作距离wd)限定了角度δ。

然而,由于所需的光束发散,因此用柱面透镜聚焦是不可行的,因为光束在柱面透镜的外端处的入射角倾斜,这将导致聚焦像差。

相反,图8a至8c中所示的光学聚焦系统80的配置对那些聚焦像差不那么敏感。光学聚焦系统80包括一组用于影响y方向上的光束会聚的两个柱面反射镜,柱面反射镜的圆柱轴线沿x方向延伸。特别地,在傅里叶透镜63的下游,形成光束93,光束93在y方向上准直并在x方向上发散。发散(凸)柱面反射镜95a(半径r1<0)使光束93以角度β离开x-z平面被反射到聚焦(凹)柱面反射镜95b(半径r2>0)上,所述柱面反射镜95b安装在与发散(凸)柱面反射镜95a间隔距离l2处。选择两个柱面反射镜的聚焦功率,使得工作平面wp与聚焦(凹)柱面反射镜95b相距一距离l1,从而聚焦(凹)柱面反射镜95b在角度γ下反射光束93。根据角度γ,出射光束93a(对应于图1中的辐射光束5a)可以相对于x-z平面在一定角度下传播。

光路长度修改单元可以提供光束路径的进一步折叠,通常,激光系统可以相对于物体87预先定位或可自由定位,以确保期望的入射角ε。入射角ε在图8c中相对于例如在一个平面中延伸的物体87的表面法线n示例性地表示。

示例性参数值包括对于角度β的从约40°到约60°的范围以及对于角度γ的从约20°到约30°的范围。光学聚焦系统80可具有两个柱面反射镜的组合聚焦功率(fy),其范围为90毫米至300毫米,从而例如使得距离l1的范围为约200毫米至约1200毫米并且距离l2的范围为约70毫米至约400毫米。这些参数范围进一步对应于在约1.7至约2.3的范围内的比值β/γ以及在约1.6至约2.1的范围内的两个柱面反射镜r1/r2的曲率比值的绝对值(例如对于r1=410毫米且r2=230毫米,图8c中示出在y-z平面中弯曲,而在x方向上基本上存在直线型延伸)。特别地,参数fy、l2和β是可以根据激光系统的具体应用来选择的独立的参数。

如图8c所示,特别是发散(凸)柱面反射镜95a邻近工作平面wp定位,使得壳体83通常将覆盖该反射镜并提供与工作平面83间隔大约相同距离的出射窗85,从而限定光学聚焦系统80与物体87/工作平面wp之间的自由工作距离wd。自由工作距离wd的示例性值在例如约10毫米至约1000毫米的范围内。

光学聚焦系统80使用纯圆柱式部件在y方向上提供衍射受限的聚焦。与抛物面反射镜相比,这是有成本效益的。另外,反射设计没有耦合像差或具有较少的耦合像差(与透镜实施例相比)并且提供了光束93的非常高的透过率。

为了拼接激光线,本文公开的实施例使得每条线能够在x方向上具有特定的光束发散,使得相邻的壳体不会发生碰撞。用于拼接的对应的限制条件可以被确定为fwhm——线长度fwhm(在工作平面中)与壳体83的宽度ws相同或者大于壳体8的宽度ws。发明人认识到,由于在x方向上线发散,因此,基于透镜的远心设计可能具有通过使用反射聚焦可减少或甚至避免的缺点。

因此,均化和聚焦单元、特别是傅里叶透镜63,构造成能够提供所需的最小发散。通常,所需的光束发散度与自由工作距离wd、期望的fwhm——线长度fwhm和期望的过渡区57的长度有关。例如,角度δ可以近似为与fwhm——线长度fwhm相对于自由工作距离wd的比值成正比。

上述调整拼接激光线的线长度ll的需求可以通过构造成用于调整傅里叶透镜63与光学聚焦系统80之间的光路长度的光路长度修改单元100来解决。在光路长度修改单元100内,光束例如在y方向上准直,但在x方向上发散。在此,光路长度修改单元100包括例如具有位于平移台(由箭头103表示)上的折叠反射镜101的光束折叠结构。因此,当移动折叠反射镜时,光路长度修改单元100内的光路可以延长,并且线长度ll将增大,反之亦然。图8a用实线示出了光路长度修改单元100中的长光路长度设置,并用虚线示出短光路长度设置。

应注意的是,本文公开的方面中的至少一些、例如与均化(特别是激光线的拼接)有关的方面,也可在用于线形照射的已知激光系统中实现,所述已知激光系统例如使用本领域中已知的变换光学器件而不是如本文结合图4c至4h所公开的一体式板形光学元件。此外,图8a至8c中所示的短尺寸聚焦系统也可以在用于线形照射的已知激光系统中实现,以提供激光线的特定拼接形状和/或尺度。

在这方面,均化和聚焦单元(用于使条形的激光束均化以形成例如将在激光系统的布置中用于物体的线形照射的沿第一方向延伸的激光线)可包括:

聚焦单元,其包括在第二方向上起作用的短轴线聚焦元件,从而将激光线的工作平面在激光束的传播方向上的位置限定在其焦平面处;以及

均化单元,其构造成能够在均化单元的焦平面处使沿第一方向布置的条形的激光束的一部分沿着条形的激光束重叠,其中,光束在均化单元与聚焦单元之间沿第一方向发散。

发散光束使得能够拼接由并排定位的均化和聚焦单元产生的激光线,因为每个激光线都可以在工作平面上延伸超过相应的均化和聚焦单元的任何结构部件。

在一些实施例中,均化和聚焦单元还包括定位在均化单元与聚焦单元之间的光路长度修改单元,其中,光路长度修改单元构造成用于调整均化单元与聚焦单元之间的光路长度。改变光路长度在保持工作平面的位置的同时影响激光线在工作平面上的线长度,因为在第一方向上发散的光束将更多(或更少)地扩散。在一些实施例中,光路长度修改单元包括具有定位在平移台上的折叠反射镜的光束折叠结构。利用平移台移动折叠反射镜的位置将改变光路长度修改单元内的光路长度,从而改变均化单元与聚焦单元之间的光路长度。

在本文公开的示例性实施例中,参考坐标x、y和z。技术人员将理解,那些坐标可表示与系统的相应部分和光束传播方向有关的正交坐标系,但是由于光束路径的折叠,可能不与常见的正交坐标系对齐。通常,可以认为x方向和y方向与实际传播方向(z方向)正交并且相对于彼此正交。

尽管本文已经描述了本发明的优选实施例,但是在不脱离下面的权利要求的范围的情况下,可以包含改进和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1