照明装置的制作方法

文档序号:15884078发布日期:2018-11-09 18:30阅读:240来源:国知局
照明装置的制作方法

具体地,本发明涉及一种照明装置,该照明装置用于照明至少一个空间光调制器装置,该至少一个空间光调制器装置优选地应用在用于显示二维(2d)和/或三维(3d)图像的显示装置中。应当理解的是,二维图像和三维图像还包括二维或三维内容或影片。

根据本发明的照明装置可以用于例如立体显示装置、自动立体显示装置(asd)或优选地用于全息显示装置,特别是用于移动全息三维显示装置、头戴式显示装置以及直观式显示装置。

照明装置可以被提供为显示装置中的背光或前光(也分别称为透射光和反射光照明装置)并且总体上用于照明光透射或反射可控的空间光调制器装置(slm)。根据本发明,光可以是相干的或不相干的。利用不相干光操作的显示装置优选地用作用于立体或自动立体三维呈现的二维显示器。例如,在全息显示装置中要求相干光。本发明更具体地涉及一种全息显示装置,其中光的相干性是重要的事项。

本发明的领域优选地包括用于自动立体和/或全息图像的三维呈现的直观式显示装置。

根据本发明的照明装置还可以应用于并因此用于投影显示装置或头戴式显示装置,这些显示装置基于使用子全息图编码的空间带宽有限全息重建。

在用于呈现二维图像或影片/视频的显示装置中,必须以高分辨率实现空间光调制器装置的整个表面的明亮且均匀的照明。用作显示面板的空间光调制器装置要求以限定的角度范围发射光。这种显示装置的许多物理形式在现有技术中是已知的。

本发明涉及一种用于显示装置的照明装置,其中子全息图用于将全息图编码到空间光调制器装置中。在显示装置中,特别是在显示装置的照明装置中,需要考虑许多问题以便能够实现最佳设计的照明。为了实现写入空间光调制器装置的信息的三维呈现的高质量,除了空间光调制器装置的整个表面的均匀照明之外,还需要耦合出来的波阵面的限定准直。这对于以要生成的全息图的重建的形式的全息呈现特别重要。全息信息(其可以例如是由三维场景的物点组成的物体)以空间光调制器装置的像素的幅度和相位值的形式被编码。每个编码的物点有助于由空间光调制器装置发射的波阵面。

相比于传统的全息方法,在全息显示装置中编码的子全息图仅需要从照明装置发射的光的减少的相干性。相干性可以通过互相干函数γ12来描述。该函数描述了波场的两个点的互相干性,并且包括时间和横向偏移。描述时间偏移的部分(其也可以被解释为纵向移位)被称为时间相干性。虽然时间相干性是谱分布或功率谱密度s(λ)的函数,但是时间相干性通常被减少到包含减少信息的单个数字。该单个数字是相干长度zc。对于激光光源,相干长度zc可以是例如几毫米或几米。

描述横向偏移的部分被称为互相干性的复杂程度μ12。互相干性的复杂程度的绝对值|μ12|限定干涉对比度的值,其可以在叠加波场的两个相邻点的情况下获得。如果该值为1,则可以获得v=1的干涉对比度。如果该值为0,则不会看见干涉效应。这意味着干涉对比度v=0。对比度也被称为可见度。互相干性的复杂程度的绝对值也被称为横向相干性或空间相干性。设计目标是在子全息图区域内提供高可见度并且在该区域外没有可见度。

互相干性的复杂程度的绝对值|μ12|应该在空间光调制器装置(slm)的限定区域内接近于1。这个空间光调制器装置的限定区域大约相当于用于编码全息图的最大子全息图。在待照明的空间光调制器装置的平面内提供具有明显更大扩展的互相干性的复杂程度的绝对值|μ12|是不期望的。较高的横向相干性降低了最终在表示优选三维图像的三维物点云内获得的信号质量。例如,不推荐使用平面波以用于照明使用子全息图编码的空间光调制器装置。使用平面波的效应是寄生衍射(例如,由于基板平面上的粉尘颗粒引起的)即使在横向距离(其远大于所使用的最大子全息图的扩展)处也会产生寄生和干扰的干涉效应。此外,在一维编码型全息显示装置(即,例如,仅竖直视差(vpo)编码的全息显示装置)中,表示一维竖直定向的子全息图的空间光调制器装置的列的复值分布的优化优先仅沿一个维度。换句话说,只要光在空间光调制器装置的相邻列的后方传播,它就会彼此不相干。来自不同列的光将不会干涉。

因此,不推荐在照明装置中使用点光源。例如,由于最终获得的图像质量和由于较大倍数的光功率损失(相比于使用自由光束光学,其可能是甚至大于五倍),因此不推荐使用单模光纤。换句话说,单模光纤的使用是光能的约束和投资的约束。使用扩展光源导致互相干性的复杂程度的绝对值|μ12|的减小的横向扩展。然而,这种待准直的光源的简单修改是不够的。因此,使用更复杂的方法以在全息显示装置内待照明的空间光调制器装置的平面中提供互相干性的复杂程度的绝对值|μ12|的子全息图尺寸定制分布是令人期望的。

现有技术文献已经描述了空间光调制器装置的平面波照明的使用,其相当于在全息显示装置内待照明的空间光调制器装置的平面中提供互相干性的复杂程度的绝对值|μ12|的扩展,该全息显示装置的数量级大于最大子全息图的尺寸。

对于全息图的一维编码,可以在具有狭缝状分布或形式的准直单元的前方提供光源分布。相比于点光源,这导致在待照明的空间光调制器的平面中的互相干性的复杂程度的绝对值|μ12|的减小的扩展。但是,一维仅竖直视差编码型空间光调制器装置的相邻列仍然是互相干的。因此,这将增加沿存在于观察者的眼睛的视网膜上的水平方向的相邻物点的干扰相干视网膜间物点串扰。

在现有技术方法中,不利的是,对于s>0的剪切距离,不能获得具有值为1的可见度。这里,剪切距离s可以被解释为单个子全息图的点的相互距离。

在显示装置中使用非光源跟踪实施例结合实施大跟踪角(即,例如αt>±20度),使得使用具有非常小的谱线宽度并因此具有合理的长相干长度(即,例如,zc≥5mm)的光源是必要的。这意味着可以在本发明的参数空间内假定时间相干性(其也被称为谱相干性)。因此,互相干性的复杂程度的绝对值|μ12|作为照明复值空间光调制器装置的波场的参数必须被优化。

此外,基本的问题是,尽管必须限制光线宽度为δλ<0.1nm并且固定所使用的波长,换句话说波长稳定性最大为δλ0±0.1nm,但相干性的复杂程度的绝对值(也称为空间相干性)应该被限制为所使用的子全息图的尺寸。

因此,本发明的目的是提供一种照明装置,该照明装置能够生成具有限定和所需相干特性的光并且能够实现与照明装置去耦的用于照明空间光调制器装置的均匀强度分布。具体地,本发明的目的是提供所需的互相干性的复杂程度的绝对值,以便获得具有分辨率为≤1/60度(其相当于人眼的角分辨率极限)的三维图像质量。

本发明的另外的目的是仅用少量的光学元件设计照明装置,其中该照明装置的结构应该简单且具有成本效益以使可以在较小费用下开发照明装置。

优化击中照明装置的去耦平面的波场是必要的以便实现均匀强度分布,该均匀强度分布进一步沿着光束路径照明空间光调制器装置。这种强度分布的优化和在特定的全息编码方法中使用的子全息图的自适应编码是实用的。然而,这将花费例如复值空间光调制器装置的动态范围。这就是为什么应该通过照明装置已经提供合理的均匀强度分布的原因。

为此,根据本发明,该目的通过根据权利要求1的照明装置来实现。

根据本发明的照明装置被提供用于照明优选地用于显示二维和/或三维图像的至少一个空间光调制器装置。为了将全息图编码到空间光调制器装置中,使用子全息图。该照明装置包含用于发射照明空间光调制器装置的光的至少一个光源。该照明装置进一步包含光束整形单元。该光束整形单元在待照明的空间光调制器装置的平面中提供光的互相干性的复杂程度的绝对值的平顶平台型分布。光的互相干性的复杂程度的绝对值的平顶平台型分布的形状至少类似于用于将物点编码到空间光调制器装置中的最大子全息图的形状。这意味着,光的互相干性的复杂程度的绝对值的平顶平台型分布的形状也可以相当于最大子全息图的形状。术语“相干性的复杂程度的绝对值”也是已知的并且缩写为空间相干性。因此,在以下描述中,术语“空间相干性”也用于术语“互相干性的复杂程度的绝对值”。

本发明在全息(优选三维(3d))显示装置内待照明的空间光调制器的平面中提供互相干性的复杂程度的绝对值|μ12|,该全息显示装置基于表示三维空间中的三维(3d)场景的三维(3d)物点云的子全息图重建。互相干性的复杂程度的绝对值|μ12|的平顶平台型分布在空间光调制器装置的平面中被提供,该平顶平台型分布至少具有用于编码物点的最大子全息图的尺寸或形状。这适用于一维子全息图编码和二维子全息图编码两者。平顶分布是所谓的矩形光束分布。

显示装置的不同实施例需要对照明装置进行不同的优化并且因此需要对相干特性进行不同的优化。因此,用于组合不同波长的光的横向光束组合器布置、二维编码和一维编码的不同布置需要不同地准备由照明装置发射的光的相干性。例如,每个波长需要存在于待准直的光源平面中的自己的复值分布。因此,优选地使用几个单独准备的光源平面,每个原色(例如rgb(红绿蓝))有一个光源平面。这些准备好的波场进一步沿着照明装置中的光束路径被组合。

使用空间光调制器装置的两个相邻相移像素的横向光束组合需要定制的相干特性。待组合的像素的互相干性的复杂程度的绝对值应该接近于一(1),并且空间光调制器装置的所有其他像素的互相干性的复杂程度的绝对值应该接近于零(0)。

例如,显示装置被放置例如在想要观察优选的三维场景或物体的观察者的前方的0.5m到3.5m。场景或物体由物点组成。具有距观察者最短距离(其可以是例如0.3m)的物点使用用于将这些物点编码到空间光调制器装置中的最大子全息图。因此,在空间光调制器装置的平面中提供的互相干性的复杂程度的绝对值|μ12|的空间分布的平顶函数的实际尺寸或形状特别是由物点限定,该物点存在于显示装置的前方或后方并且具有距显示装置的最大距离。在优选的全息三维显示装置的前方的物点是真实物点。在优选的全息三维显示装置的后方的物点是虚拟物点。

在下面的部分中通过示例描述了由照明装置发射的光的相干特性的定制或优化。为了照明全息显示装置的空间光调制器装置,可以使用单模光纤和光束质量参数,其由光束质量参数m2限定,其中m2接近于1。利用此,例如可以照明用于全息重建的衍射光学元件(doe)或空间光调制器装置。光束质量参数可以例如通过使用多模分布和单模分布的光束直径的比率的平方进行描述。参数m2可以用于描述单个主光束(例如,从光纤发射的激光束或光束)的光束质量。多模光纤示出了由于满足横向驻波条件的多个传播模式引起的模式图案。并且具有比tem00-模式更高模式的光纤的远场衍射图案不能用于大多数标准应用。

可以使用扩展光源而不是点光源来根据横向距离减小互相干性的复杂程度的绝对值。这意味着扩展光源(换句话说,平面波的扩展角谱)将减小横向移位物点的相干性。可以使用动态散射平面。该散射平面可以被放置在照明装置或显示装置中提供的准直单元的焦平面中。例如,作为光源的激光或照明光纤的动态散射平面或出射平面的其他光源被成像到动态散射平面上。待准直的所得到的光源(所谓的扩展光源)的尺寸限定互相干性的复杂程度的绝对值。待准直的扩展光源的尺寸可以通过使用例如确定的孔径或通过改变放大率来适应要求,其用于将主光源成像到扩展光源的平面上。这里,扩展光源的平面是动态散射元件的平面。该原理可以适应于全息显示装置的进一步特定要求。可以例如通过旋转散射体提供动态相位散射平面。通过该旋转散射体显著干扰了初始相位分布。这意味着关于光束质量因子m2的较低要求存在。例如,此因子可以仅为2。在相比于包括例如光学单模光纤的解决方案的情况下,这显著地降低了光源(例如激光)的成本。

因此,照明必须提供尽可能低的所需空间相干性。因此,对于全息图的二维(2d)编码,应当通过使用示出了>2π的动态相位变化的近似圆形光源来提供1/60度的平面波的角谱。对于全息图的一维(1d)编码,必须提供1/60度的平面波的角谱,以用于仅针对相干方向照明空间光调制器装置。正交方向(即不相干方向)必须跨越最佳点,其中约0.35度的平面波的角谱应该是足够的。

光束整形单元的高斯(gauss)平顶光束整形器可以用于提供准直单元的入射孔径的均匀照明。因此,照明光束整形单元的约95%的光将进入准直单元,这对于光效率是最佳的。

术语平顶相当于术语平顶帽或顶帽,其也可以在文献中找到。

这里,在用于光源平面的准直的准直单元的入射平面中提供均匀强度分布。因此,在空间光调制器装置的入射平面中提供均匀强度分布。两种分布都可以被认为是平顶分布,其例如是具有纵横比为例如16:9或2:1的方形类型的平顶分布。

互相干性的复杂程度的绝对值|μ12|的平顶分布是不同的。这种分布可以是例如圆形的并且仅具有例如5mm的直径。这是相干参数的分布。

对于全息图的二维编码,发射三种不同波长(rgb)的三个光源的三个高斯光束可以被引导到光束整形单元的高斯平顶光束整形器上。高斯平顶光束整形器可以被设计为高斯圆形顶帽光束整形器。高斯平顶光束整形器包含用于光束组合并且因此将所有光色(不同波长的光束)放置在扩展光源的平面中的相同位置上的二向色镜元件。该扩展光源将通过使用准直单元来准直,该准直单元包含例如离轴抛物面镜或透镜,透镜可以是消色差透镜或非球面透镜。扩展光源的尺寸限定平面波的角谱。如果使用提供基于衍射的照明装置作为根据本发明的照明装置的两倍10x光扩展,则光源的尺寸可以增加到相当于照明装置的前方的1/6度。空间光调制器装置必须用1/60度的平面波的角谱照明。否则,观察者可以识别分辨率损失。可以使用基于布拉格衍射(braggdiffraction)的体积光栅以便提供光束扩展。因此,可以实现作为照明装置的紧凑背光单元。例如,10x光束扩展导致平面波的角谱减少10x倍。换句话说,如果在背光单元的前方存在1/6度,则从光传播方向上看,在背光单元的后方存在1/60度。这就是为什么使扩展定制光源的光准直的光准直单元可以发射1/6度的平面波的角谱的原因。该谱被背光单元减小到1/60度的值,这足以用于照明空间光调制器装置。

可以通过使用光束扩展器来控制照明装置内的光的发散度。光束扩展器可以包含含有两个透镜的望远镜系统。望远镜系统可以是例如包含约5mm的直径的透镜的非常小的望远镜系统。这使得照明装置的系统保持紧凑。

例如,如果作为光源的λ=457nm激光(蓝色)和λ=532nm(绿色)激光具有d≈1.2mm的1/e2的直径并且λ=643nm(红色)激光具有d≈3mm的直径,则可以反向使用2.5x光束扩展器以提供减小的光束直径。因此,所有三个光束现在具有d≈1.2mm的直径。如果在照明装置中使用基于2倍的10x体积光栅的楔形背光单元,则具有f=412mm的焦距的准直单元的准直透镜是足够的。有三个直接激光束、形成2.5x望远镜系统以减小红色激光的直径的两个微透镜、两个二向色镜和平顶旋转扩散器,该平顶旋转扩散器作为以例如(10000-30000)rpm的光束整形单元来提供光源的相位分布的足够动态变化以例如以4ms闪烁激光-on脉冲照明工作。因此,可以获得最大效率。

在相比于单模光纤实施例的情况下,优化的自由激光束设置可以节省例如十倍的激光功率。通过首先使用准直在照明装置内提供的光的三种颜色的组合(其对于所有颜色分别执行)不是最佳方式。

在空间光调制器装置中的全息图的一维编码子全息图的情况下,必须提供平行于一维子全息图的线段状相干性。线段状相干性不应该超过限定预定值,例如该值可以约为5mm。这意味着在子全息图竖直定向的情况下提供例如竖直约5mm和水平约0.1mm的平顶状(也称为平顶帽或顶帽)形的相干区域。以水平方式定向子全息图也是可能的。为了根据本发明的进一步解释,假定竖直的一维编码。

如果例如必须指定光程差(opd)的最大值并且因此在照明装置中使用的光源的线宽或互相干性的最大扩展,则不必考虑观察窗(观察者可以通过其观察三维场景)的整个尺寸以及其在空间光调制器装置上的投影(其可以用于限定子全息图的尺寸)。观察者的人眼的入瞳是重要参数。入瞳可以用于指定所用光源的线宽δλ或互相干性|μ12|的最大扩展以便在需要它们的地方(即,在子全息图内)获得足够的相干参数,并且在子全息图外获得低相干性或没有相干性。接近于一的互相干性的复杂程度的绝对值|μ12|的分布的区域的水平扩展应该是在显示装置中提供的空间光调制器装置的一维线的水平扩展的至少一部分。例如,如果提供竖直定向的一维编码,则空间光调制器装置的相邻列不应该是互相干的。因此,接近于一的互相干性|μ12|的水平扩展可以是例如仅40μm,其是单列的宽度。同时接近于一的互相干性|μ12|的竖直扩展可以是例如5mm,其是使用的最大子全息图的高度。如果在空间光调制器装置的平面中提供滤色器条纹,则接近于一的互相干性|μ12|的水平扩展应该是单色的滤色器条纹的水平扩展的至少一部分。因此,接近于一的互相干性|μ12|的水平扩展可以是例如3×40μm=120μm,其是红色、绿色和蓝色像素列的宽度或水平扩展。

使用仅为例如1/4的滤色器宽度的一小部分的水平扩展也将是可能的。接近于一的互相干性|μ12|的竖直扩展(其是满足条件|μ12|≈1的相互距离)应该具有相当于空间光调制器装置的最大子全息图的扩展的最大限制。这可以是例如5mm。但是,仅使用相当于观察者眼睛的入瞳通过物点到显示装置的空间光调制器装置上的投影的扩展是足够的。例如,如果观察者位于全息一维编码显示装置前面约3.5m,则将物点放置在距观察者的一半路处,即z=1.75m。亮度可以是例如100cd/m2。这导致约的观察者眼睛的入瞳的平均直径。这意味着在将物点限制为z=1.75m的最大距离的这种情况下,2.9mm的相干性的区域的竖直扩展是足够的,其远小于5mm。

由于人眼的入瞳限定了将在空间中漂浮的三维场景成像到人眼的视网膜上的显示装置的子全息图的最经济尺寸(不一定是形状),所以存在于空间光调制器装置的平面中的互相干性的复杂程度的绝对值|μ12(xslm,yslm)|的分布的横向扩展也通过入瞳的直径来限定。人眼的入瞳可以用于指定互相干性的复杂程度的绝对值,以便获得足够但最低的相干参数。但是不需要采用最大子全息图的尺寸。可以避免为入瞳跟踪的空间和时间不确定性增加额外的毫米。互相干性的复杂程度的绝对值的扩展可以小于所使用的子全息图的最大尺寸。

例如,在使用例如100cd/m2的亮度以及因此的2.9mm的人眼的入瞳的平均直径的情况下,对于从显示装置到观察者的一半路的重建物点的最大距离z,2.9mm的互相干性的复杂程度的绝对值的扩展是足够的。这适用于全息图的一维编码的相干方向。并且这适用于用于全息图的二维编码的空间光调制器装置的二维平面。对于这个示例和子全息图的二维编码,优选互相干性的复杂程度的绝对值的圆形平顶形分布,该圆形平顶形分布具有本质上接近于0和接近于1的值和例如d=2.9mm的直径,这是优选的但不是绝对必须的。

通过使用查找表(lut),可以考虑用于子全息图的编码的静态强度分布。这也可以扩展到动态变化。因此,不必在空间光调制器装置(slm)的入射平面中提供恒定的强度分布。然而,这种补偿牺牲了调制的动态范围。这是为什么应该使用合理均匀性的原因。

在从属权利要求中限定了本发明的进一步优选实施例和改进。

在本发明的第一优选实施例中,照明装置可以被设计成使得在空间光调制器装置的平面中提供的互相干性的复杂程度的绝对值的平顶平台型分布可以具有平顶函数,该平顶函数在最大子全息图的区域内具有接近于1的值并且在最大子全息图的区域外具有接近于0的值。

例如,在使用用于二维编码的例如约7mm×7mm的尺寸的最大子全息图的情况下,在空间光调制器装置的平面中提供的互相干性的复杂程度的绝对值|μ12|的空间分布是平顶函数,该平顶函数在7mm×7mm的方形区域内具有接近于一(1)的值并且在方形平顶区域外具有接近于零(0)的值。在使用圆形且具有7mm的直径的最大子全息图的情况下,在空间光调制器装置的平面中提供的互相干性的复杂程度的绝对值|μ12|的空间分布是圆形平顶函数,该圆形平顶函数在具有的直径的圆形区域内具有接近于一(1)的值并且在圆形平顶区域外具有接近于零(0)的值。

在本发明的进一步优选实施例中,互相干性的复杂程度的绝对值的分布可以是平顶线段状分布,该平顶线段状分布在使用全息图到空间光调制器装置中的一维编码的情况下具有平顶线段状函数。子全息图到空间光调制器装置中的一维编码优选地使用线状形的子全息图。子全息图可以竖直地或水平地定向。如已经提到的,为了本发明的本说明,提供竖直定向的子全息图。在这种情况下,子全息图是存在于空间光调制器装置的平面内的竖直定向衍射透镜状复值分布。在这种情况下,一维编码提供三维物体的仅竖直视差(vpo)。例如,在使用一维编码和具有例如约7mm×0.1mm的尺寸的最大子全息图的情况下,在空间光调制器装置的平面中提供的互相干性的复杂程度的绝对值|μ12|的空间分布是平顶线段状函数,该平顶线段状函数在约7mm×0.1mm(即7mm的竖直扩展和0.1mm的水平扩展)的杆状形的区域内具有接近于一(1)的值并且在该区域外具有接近于零(0)的值。如果使用仅竖直视差(vpo)编码,则互相干性的复杂程度的绝对值|μ12|的空间分布的形状相当于或至少类似于空间光调制器装置中竖直定向的线。因此,互相干性的复杂程度的绝对值的空间分布的竖直扩展是例如约7mm并且空间分布的水平扩展是例如0.1mm。对于放置在例如观察者前面600mm的显示装置,互相干性的复杂程度的绝对值|μ12|的空间分布的水平扩展可以显著小于0.1mm,即甚至小于0.05mm。

有利地是,光束整形单元可以包含至少一个光束整形扩散器,该至少一个光束整形扩散器具有在其远场中产生限定的强度分布(例如,其是平顶强度分布)的相位结构。光束整形扩散器的一个功能是提供空间光调制器装置的均匀照明。通常,这通过在准直单元的入射平面处提供均匀强度分布来获得,该准直单元使定制的扩展光源的光准直。光束整形扩散器的另一个功能是在必须由准直单元准直的定制的扩展光源的平面中提供动态相位分布。两个功能可以分开并且因此由不同的光学元件或光学元件组提供。然而,这不是关于材料费用或关于实施例的紧凑性的最有效方式。

至少一个光束整形扩散器可以被设计为光束散射板、光束散射箔或任何其他散射元件。光束整形扩散器在其远场(换句话说,例如,距离光束整形扩散器几厘米)中产生平顶平台型强度分布。

优选地,至少一个光束整形扩散器被设计为旋转或横向移动的光束整形扩散器。在光束整形扩散器上提供具有限定的相位分布并在其远场中产生限定的强度分布的结构。该结构优选地是可以例如实现为表面起伏结构的散射相位分布。因此,光束整形扩散器可以形成提供限定的强度分布的旋转散射板。限定的强度分布可以用于获得空间光调制器装置的平面的均匀照明。

在本发明的进一步有利的实施例中,可以提供的是,光束整形扩散器被分成段。这些段设置有致动器,该致动器被控制成使得产生光的动态随机相位分布。

可以提供压电致动器(pzt)或其他类型的致动器作为用于光束整形扩散器的各个段的致动器。在与光束整形扩散器的小段组合的情况下,这些致动器可以用于提供动态相位随机。

例如,压电致动器通过使用尖端放大结构以合理的高幅度提供快速移动。因此,例如,在约100μm的范围内快速同步移动通过这种旋转分段光束整形扩散器来实现。使用与空间光调制器装置同步的脉冲音圈操作也是可能的。该脉冲音圈操作可以在毫秒(ms)范围内提供光束整形扩散器的段移动的合理幅度。

因此,例如,具有杠杆结构的压电致动器(即弯曲致动器、提供达到几毫米移动的双压电晶片弯曲机或提供放大运动的磁盘双压电晶片致动器)可以用于在1ms内仅沿≥100μm移动几平方毫米(mm2)的段。通过使用同步推拉方法,可以使用两个循环来进行操作,即在一个方向上移动并且向后移动。因此,采用这种方法不需要旋转散射板。随机相位结构的横向移位操作通过横向移动来实现,该横向移动与光源的脉冲同步。如果光源为on,则动态随机相位图案也为on。换句话说,横向移位是旋转随机相位结构的替代方案。

可以通过光学系统和光束整形单元有利地产生扩展光源。扩展光源发射具有互相干性的复杂程度的绝对值的平顶平台型分布的光并且将其引导到包含子全息图的空间光调制器装置的入射平面,以便照明显示装置的空间光调制器装置。扩展光源发射复数值的光分布。

有利地是,存在于空间光调制器装置的入射平面中的互相干性的复杂程度的绝对值的分布可以通过使用复值辛克函数(sincfunction)状分布(优选地用于矩形形状的子全息图)或复值贝塞尔函数(besselfunction)(优选地用于圆形形状的子全息图)在扩展光源的平面中产生。

存在于空间光调制器装置的入射平面中的互相干性的复杂程度的绝对值的分布的形状可以有利地适应于空间光调制器装置的子全息图的形状。

可以优选地在扩展光源的平面中提供孔径光阑,以提供由扩展光源发射的光的所需幅度分布。该孔径光阑也可以用于阻挡干扰光。

在本发明的优选实施例中,可以提供的是,提供相位函数(优选透镜函数)以便从空间光调制器装置的平面中的远场平面移动互相干性的复杂程度的绝对值|μ12|的设计分布,该远场平面可以是例如准直的扩展光源的傅里叶平面。

冯西泰–塞尼克定理(vancittert-zerniketheorem)描述了互相干性的复杂程度的绝对值|μ12|必须在待准直的扩展光源的傅里叶平面中进行计算。通常,要以所需的互相干性照明的空间光调制器装置的平面不是准直的扩展光源的傅里叶平面。为了允许这种变换,可以将透镜函数增加到扩展光源的复值空间光分布。这种附加透镜函数给予了将互相干性的复杂程度的绝对值|μ12|的设计或所需分布从由冯西泰–塞尼克定理给出的傅里叶平面转移到待照明的空间光调制器装置的平面中的机会。该附加透镜函数可以被指定为通过使用单个准直透镜或通过可以包含若干光学元件的准直单元准直的扩展光源的场透镜函数。场透镜函数将互相干性的复杂程度的绝对值|μ12|(其例如通过使用冯西泰–塞尼克定理获得)移动到空间光调制器装置的平面中。因此,不同的全息显示装置和全息显示装置的不同照明装置可以使用该透镜函数的不同实施方式,该透镜函数将互相干性的复杂程度的绝对值|μ12|的空间分布移动到空间光调制器装置的平面中。

有利地是,可以提供的是,在至少一个光源的平面中或者在次级光源的平面中提供幅度掩模和/或相位掩模或衰减相移掩模。

互相干性的复杂程度的绝对值|μ12|的空间分布的定制形状通过定制由全息显示装置的准直单元准直的光源的复值分布来提供。

光束可以扩展到扩展光源平面的所需尺寸。光束的光束腰部可以被放置在扩展光源的平面处。该平面包含例如散射元件(例如旋转散射板),该散射元件提供动态相位随机和光束整形。此外,该平面包含幅度分布,该幅度分布可以由幅度掩模提供。并且,该平面还包含相位分布,该相位分布可以由相位掩模或相移掩模提供。幅度分布和相位分布也可以通过衰减相移掩模提供。此外,可以在该平面中或靠近该平面提供场透镜。通过使用准直单元对该定制的复值扩展光源的该平面进行准直。准直光可以通过使用体积光栅背光单元进行变形扩展。然后,光照明空间光调制器装置。应该确保的是,互相干性的复杂程度的绝对值|μ12|在空间光调制器装置的这个平面中具有所需的形状。

通常,光源是具有复值分布的扩展光源。可以通过使用幅度掩模来提供幅度分布。可以在待准直的扩展光源的平面中提供幅度掩模。可以通过使用相位掩模或所谓的相移掩模来提供相位分布。可以在待准直的扩展光源的平面中提供相位掩模或相移掩模。两种掩模类型即幅度掩模和相位掩模(或相移掩模)可以在单个掩模内组合,该单个掩模是衰减相移掩模。幅度掩模和相位掩模(或相移掩模)或组合的幅度-相位掩模产生光的复值强度分布。除了存在于待准直的扩展光源的平面中的光的复值强度分布之外,可以在可以由准直单元进一步沿着光束路径进行准直的扩展光源的平面内实现时间变化的随机相位分布。时间变化的随机相位分布可以通过使用旋转散射板或快速横向移动的散射箔产生,该散射箔提供在大于或等于±π的范围内的空间随机相位跃变。因此,在扩展光源的平面中,静态复值分布可以与随机相位分布组合,其提供扩展光源内存在的局部相位的快速时间波动。

换句话说,单相型扩散器是足够的。可以使用该扩散器以便提供空间光调制器装置的均匀照明。并且,该扩散器可以用于提供动态随机相位变化。然而,两个功能也可以由分离的光学元件提供。光束整形扩散器还可以用于补偿特定的强度分布或光功率损失,其例如是由于背光单元。因此,实现的强度分布可以与平顶强度分布不同。这可以以最终在空间光调制器装置的入射平面处获得的强度分布是平顶强度分布的方式来执行。换句话说,可以考虑整个光学系统的特性。

在使用互相干性的复杂程度的绝对值|μ12|的矩形形状的平顶分布的情况下,幅度分布具有二维sinc函数。另外的变迹分布(例如,高斯型变迹分布)可以沿着两个方向用于二维编码,以便考虑主sinc函数具有有限带宽,即在其横向扩展限制。静态相位分布是sinc函数中的一个。

在使用互相干性的复杂程度的绝对值|μ12|的圆形形状的平顶分布的情况下,幅度分布相当于艾里函数(airyfunction)。另外的变迹分布(例如,高斯型变迹分布)可以沿着设计的扩展光源的径向扩展使用,以便考虑主艾里函数具有有限带宽,即在其横向扩展限制。静态相位分布是与艾里函数相关的分布。这意味着形成艾里函数的电场的复值分布的相位分布,其仅是强度分布、其与电场的分布的平方成比例。

在使用仅竖直视差(vpo)编码和互相干性的复杂程度的绝对值|μ12|的棒状形平顶分布的情况下,幅度分布具有一维sinc函数。使用两个sinc函数也是可能的。然而,两个正交的sinc函数的扩展的纵横比可以是例如60比1。这表明沿着另一个方向(其是一维编码全息显示装置的所谓的不相干方向),可以使用平台型强度分布。这实际上意味着sinc函数仅在一个维度上存在。换句话说,一维sinc函数足以用于全息图的一维编码。

另外的变迹分布(例如,高斯型变迹分布)也可以沿着两个方向使用,以便考虑主sinc函数具有有限带宽,即在横向扩展限制。静态相位分布是sinc函数中的一个,其至少沿一个维度存在。

对于所有三个前述实施例,扩展光源的强度分布的随机动态相位变化部分可以是相同的。这也适用于将互相干性的复杂程度的绝对值|μ12|的设计或所需分布移动到待照明的空间光调制器装置的平面中的透镜函数。

有利地是,可以在扩展光源的平面中提供用于产生时间变化的随机相位分布的散射元件或光束整形单元。散射元件或光束整形单元可以在大于或等于±π的范围内提供空间随机相位跃变。此外,散射元件或光束整形单元可以提供空间随机相位分布,该空间随机相位分布被定制以便产生存在于空间光调制器装置的入射平面中的平顶状强度分布。

优选地,可以提供的是,提供变迹分布以抑制互相干性的复杂程度的绝对值的空间分布的衍射图案中的旁瓣。变迹分布可以增加到扩展光源的复值分布。

在本发明的进一步有利的实施例中,可以提供的是,在使用全息图到空间光调制器装置中的一维编码的情况下,提供体积光栅以沿着一个维度扩展光以产生一维光强度分布。

可以组合的光沿着一个维度扩展,以便提供一维预成形的强度分布。可以提供体积光栅(例如,基于布拉格衍射的体积光栅)以产生这种一维强度分布。体积光栅可以设置在透明基板的顶部。例如,体积光栅的衍射角(其可以是rgb(原色、红色、绿色、蓝色)复用的衍射角)可以是例如87度,其对于一维光束扩展而言导致20的扩展因子,这被称为变形光束扩展。然后,可以使用一维扩展强度分布来照明光束整形单元,这在其远场产生互相干性的复杂程度的绝对值|μ12|的平顶强度分布。换句话说,对于全息图的一维编码,必须实现光线以便跨越观察者平面中的最佳点。可以通过使用基于体积光栅的光束扩展(例如,通过使用10x体积光栅)在照明装置中实现光的所需扩展。例如,作为透明基板的在pmma(聚甲基丙烯酸甲酯)中的例如84.26度的体积光栅几何结构将避免在透明基板上需要复杂的抗反射涂层。还可能的是,也可以使用其它的扩展组分作为串联的变形棱镜(例如,三到四个棱镜)或高斯线平顶光束整形器。

供选择地,在使用全息图到空间光调制器装置中的一维编码的情况下,可以提供鲍威尔透镜(powelllens)以沿着一个维度扩展光以产生一维光强度分布。

鲍威尔透镜也可以用于从光束(例如,高斯激光束)产生光线。由至少一个光源发射的光束可以照明鲍威尔透镜以产生一维光线。

用一维光线或光强度分布照明光束整形单元的最紧凑的方法是使用体积光栅,该体积光栅可以基于布拉格衍射并且引入所需的光束扩展。

一维编码显示装置的互相干性的复杂程度的绝对值|μ12|的定制空间分布提供重要的优点。待照明的空间光调制器装置的相邻列或行是相互不相干的。这种互相干性的复杂程度的绝对值|μ12|的定制空间分布的效果是在观察者的眼睛的视网膜上产生的水平/竖直相邻的物点的图像(换句话说,由空间光调制器装置的相邻列/行产生的物点的图像)是相互不相干的。因此,相邻物点的图像不会引起相干视网膜间物点串扰。换句话说,沿着空间中产生的三维图像的水平/竖直方向完全抑制了相干视网膜间物点串扰。术语“视网膜间物点串扰”是由于相邻点扩散函数(psf)的相干叠加,其最终发生在观察者眼睛的视网膜上。在空间中产生的相邻物点被转换为存在于观察物点的用户/观察者的眼睛的视网膜处的相邻点扩散函数。在观察者的眼睛的视网膜处产生的干涉图案取决于表示通过使用子全息图编码技术(如例如在wo2004/044659a1中所公开的)在空间中产生的两个相邻3d物点的相邻点扩散函数的复值分布。例如,甚至轻微的相位变化也可以引起在观察者的眼睛的视网膜处获得的强度分布的显著变化并且因此可以由观察者检测到。描述相邻点扩散函数依赖于互相干性和相互相位差的这种叠加的示例可以在g.fütterer,“用于测量光刻“相移”掩模和vuv结构的uv剪切干涉测量法”,现代光学进展,第4卷,ioip,mpf,埃尔兰根-纽伦堡大学,2005,isbn:3-932392-61-2的文献的第4.1.1节中找到。

通常,相干长横向距离干涉效应通过使用在空间光调制器装置(slm)的平面中的互相干性的复杂程度的绝对值|μ12|的子全息图尺寸或形状定制分布来抑制。

在本发明的优选实施例中,可以提供的是,静态或动态波阵面整形用于提供包含互相干性的复杂程度的绝对值的限定分布的增加的场深度。

本发明的目的进一步通过显示装置来实现。

提供一种用于重建二维和/或三维物体或场景的显示装置,特别是全息显示装置。该显示装置包含根据本发明的照明装置和空间光调制器装置。从光的传播方向看,空间光调制器装置设置在照明装置的下游。

显示装置可以有利地包含场透镜或复合场透镜。复合场透镜可以包含至少一个体积光栅。

此外,本发明的目的进一步通过用于利用具有限定相干特性的光强度分布照明空间光调制器装置的方法来实现。子全息图在空间光调制器装置中用于编码全息图。该方法包含以下步骤:

-通过至少一个扩展光源发射光,

-通过准直单元对在至少一个扩展光源后面传播的光进行准直,

-通过光束整形单元在空间光调制器装置的平面中产生光的互相干性的复杂程度的绝对值的平顶平台型分布,其中互相干性的复杂程度的绝对值的平顶平台型分布的形状至少类似于空间光调制器装置中用于编码物点的最大子全息图的形状,

-利用光的互相干性的复杂程度的绝对值的平顶平台型分布照明空间光调制器装置。

现在有各种可能性以用于有利地配置和改进本发明的教导和/或将上述实施例彼此组合——尽可能地。在这点上,一方面参照依赖于独立权利要求的专利权利要求,并且另一方面参照下面借助于附图对本发明优选示例性实施例的说明。结合借助于附图对本发明的优选示例性实施例的说明,通常还解释了教导的优选配置和改进。

在附图中:

图1示出了根据本发明的空间光调制器装置的像素排列;

图2示出了根据本发明的照明装置的第一实施例;

图3示出了根据本发明的照明装置的第二实施例;

图4示出了根据本发明的照明装置的第三实施例;

图5示出了包含若干段的光束整形单元;

图6示出了根据本发明的在显示装置中使用的设计的复值扩展光源的通用实施例;

图7示出了艾里分布的强度的线扫描,该艾里分布的强度与幅度a的平方和相应的相位分布成比例;

图8示出了可以在扩展光源的平面中使用的sinc型幅度分布als;强度分布与幅度分布的平方成比例;

图9示出了可以在扩展光源的平面中使用的sinc型幅度分布als的三维等高线图;在x方向和y方向上应用高斯型变迹;

图10示出了与图8和9相关的二元相位分布φls(白色:π/2,黑色:-π/2,其中2×π相当于一个离散波长,该波长是例如λb=450nm、λg=520nm或λr=640nm);

图11示出了在空间光调制器装置的平面中的互相干性的复杂程度的绝对值|μ12|的空间分布的俯视等高线图,其通过使用图9的幅度分布als和图10中所示的二元相位分布φls来获得;

图12示出了图11中所示的分布的三维等高线图;

图13示出了图11和12中所示的互相干性的复杂程度的绝对值|μ12|的空间分布的图像;

图14示出了复值扩展光源的幅度的空间分布als,其针对二维编码和矩形形状的子全息图进行优化,其中图14涉及图9中所示的一维编码的情况;高斯变迹被包括;

图15示出了二维复值sinc函数的二元相位分布φls,其与图10中所示的一维编码的情况有关并且现在针对二维编码和矩形形状的子全息图进行优化;

图16示出了互相干性的复杂程度的绝对值|μ12|的分布,其与图11有关并且现在针对二维编码和矩形形状的子全息图进行优化;

图17示出了图16的分布|μ12|的三维等高线图;

图18示出了针对使用圆形子全息图的二维编码优化的复值扩展光源的艾里型等效振幅分布als;应用高斯型变迹;扩展光源的强度分布与幅度分布的平方成比例;

图19示出了相位分布φls,该相位分布φls应当与图18的幅度分布als组合以实现互相干性的复杂程度的绝对值|μ12|的分布,该分布针对二维编码和圆形形状的子全息图进行优化;

图20示出了针对二维编码和圆形形状的子全息图优化的互相干性的复杂程度的绝对值|μ12|的分布,其与图11有关但针对二维情况进行优化;

图21示出了针对二维编码和圆形形状的子全息图优化的互相干性的复杂程度的绝对值|μ12|的分布,其与图12有关但针对二维情况进行优化;

图22示出了针对二维编码和圆形形状的子全息图优化的互相干性的复杂程度的绝对值|μ12|的分布,其与图13有关但针对二维情况进行优化;

图23示出了作为扫描照明的实施方式的示例设置在扫描镜元件后面的准直单元,这里是在楔型照明单元的前面;

图24示出了在设置在楔型照明装置的入口处的准直单元与空间光调制器装置之间存在的光程长度的局部差异;以及

图25示出了能够提供用于扫描照明装置的波阵面的曲率的快速动态变化的装置。

在各个附图和所附描述中,相同的附图标记表示相同的部件。在下文中,命名“前方”和“后方”(例如在空间光调制器装置前方)是指关于光的传播看到的光。

图1示出了空间光调制器装置的像素排列,该空间光调制器装置在下文中被称为slm,其可以用于全息三维(3d)物体或场景的仅竖直视差(vpo)型一维编码。这表示夹层型复值slm的通光孔径分布。slm可以例如通过在透射相位slm(a+p-slm)前面(从光的传播方向看)设置透射幅度slm来形成。从该图1可以看出,竖直像素孔径远小于水平像素孔径。这可以用于柱型一维子全息图。由slm提供的子全息图可以是一维柱状衍射透镜。a+p-slm夹层的入射孔径与出射孔径之间的距离不应该超过所用像素的最小孔径的十倍。这适用于例如n=1.5的在两个slma+p之间存在的折射率。在该示例中,必须考虑所示的像素的通光孔径的小竖直扩展。用于图1的slm的相邻列的不同填充图案表示使用竖直定向的滤色器条纹。rgb(红色、绿色、蓝色)型滤色器条纹的使用可以是一维全息图编码的选项,其被称为vpo。所示的像素尺寸和像素形状是指使用仅竖直视差的全息显示装置,其可以被放置在观察者前面例如0.6m的距离处。

在以下部分中,示例性布局用于描述在根据本发明的照明装置中提供的光源的定制。可以使用具有d=355mm的14”的对角线的全息显示装置。纵横比可以是16:9,其导致约w=310mm的宽度和约h=175mm的高度。在显示装置中使用的场透镜可以具有fcfl=1m的焦距。在fcfl中的cfl表示复合场透镜。对于这样的复合场透镜,可以使用体积光栅场透镜,该体积光栅场透镜包含第一体积光栅元件和第二体积光栅元件,该第一体积光栅元件实现例如在具有例如n=1.5的折射率的介质内的平面波0度与平面波30度预衍射,该第二体积光栅元件具有例如在具有例如n=1.5的折射率的介质内的30度平面波与例如在空气中0度和f=1m的焦点的重建的几何结构。这两个体积光栅元件的组合(0度/30度和30度与焦点)产生基于轴上场透镜的体积光栅。

为了在空间中重建和显示彩色三维图像,照明装置可以包含三个光源,其中每种颜色(rgb)有一个光源。从三个光源发射并用于照明slm的波长是例如λb=457nm、λg=532nm和λr=647nm。像素几何结构可以通过λx=135μm、λy=35μm、cax=85μm和cay=18μm来限定,其中x定义水平方向、y定义垂直方向、λ是slm的间距和ca是单个像素的通光孔径。slm平面的幅度分布可以相当于图1中所示的幅度分布。所示的slm面板的幅度分布可以是幅度调制面板中的一个、相位调制面板中的一个或幅度+相位调制复值slm夹层中的一个。

复值slm夹层,(其例如在幅度调制面板前面使用相位调制面板)可以用于全息三维(3d)场景的二维(2d)编码。换句话说,图1中所示的基本像素排列也可以用于解释全息图的二维编码。

复值slm夹层可以设置有彩色条纹排列,例如,竖直定向的彩色条纹排列,该彩色条纹排列包含排列成列的滤色器条纹。具有列状交错rgb滤色器条纹的slm夹层可以用于全息三维场景的一维(1d)仅竖直视差(vpo)编码。使用水平定向的彩色条纹排列也是可能的。具有交替的rgb滤色器条纹的这种类型的slm夹层可以用于全息三维场景的一维(1d)仅水平视差(hpo)编码。图1中所示的实施例也可用于解释全息图的一维编码。

重要的是,认识到这里有两种不同的情况,二维编码(以下称为2d编码)和一维编码(以下称为1d编码)。对于1d编码,在观察者平面中在一个方向(其可以是例如水平方向)上有最佳点。在另一个方向(其可以是例如竖直方向)内,在观察者平面中有观察窗或可见区域,观察者可以通过该观察窗或可见区域看见或观察三维场景的竖直视差。这相当于全息场景的仅竖直视差(vpo)重建。向观察者的两只眼睛呈现两种不同的视图。

观察窗/可见区域可以在例如由slm产生的衍射图案的第0衍射级和第1衍射级中的一个之间跨越。对于1d编码,仅需要考虑竖直方向或水平方向,这取决于所需的视差。为简单起见,以下说明中的解释指的是仅竖直视差全息图或重建。观察窗的不同尺寸(例如,vw_x_blue=3.4mm、vw_y_blue=13.1mm、vw_x_green=3.94mm、vw_y_green=15.2mm、vw_x_red=4.8mm和vw_y_red=18.5mm)可以利用上面公开的像素几何结构和场透镜的焦距获得。可以认识到的是,对于2d编码,观察窗的水平扩展略大于人眼的入瞳(其例如是仅)。因此,观察窗的竖直扩展大于所需的竖直扩展。设置在显示装置中用于检测观察者的眼睛的位置并且将光引导到观察者平面中观察者的眼睛的右侧位置上的跟踪单元的精度是例如1mm。这意味着相当于仅θvertical=±0.375度的角度范围的例如vw_y_blue=13.1mm的观察窗的竖直扩展应该是可接受的。

形成1d编码显示装置的最佳点的光的不相干方向具有例如±0.5度的互不相干的平面波的角谱。这在照明单元(其例如是背光照明单元)中提供。这意味着已经有宽的平面波的角谱。例如,如果选择观察窗的最小宽度和在1m的焦距处的10mm的最佳点,则这相当于仅±0.286度的角度范围。这意味着可以沿着不相干方向使用互不相干平面波的角谱,该不相干方向仅跨越±0.286度的角度范围。如已经已知的,例如可能由于击中slm的单个平面波的衍射而跨越的角度范围和平面波的角谱或互不相干平面波的角谱是不同的术语。

人眼的角分辨率是1/60度,其是指±1/120度。在相干方向(其可以是竖直方向(对于1d编码)或竖直和水平方向(对于2d编码))内,slm的照明光的平面波的角谱必须小于或等于此角度范围以便避免重建的三维场景的拖影。

对于1d编码显示装置,照明装置可以包含至少一个狭缝状光源。例如,仅为了简单起见,可以假定使用离轴抛物面镜元件的简单照明具有与显示装置中组合的体积光栅场透镜相同的焦距,即,fillumination=1m。±1/120度的角度范围相当于具有0.3mm的横向扩展的光源。并且±0.286度的角度范围相当于具有10mm的扩展的光源。

换句话说,如果fillumination=1m的焦距用于2d编码显示装置,则可以实现具有的直径的扩展光源。用于以相干方式照明slm的光的平面波的角谱总是仅在±1/120度的范围内,而与显示装置中使用的场透镜的焦距无关。这与在1d编码显示装置中使用的不相干方向不同。最佳点必须跨越10mm的扩展。这取决于显示装置中使用的场透镜的焦距。

因此,例如dx=0.3mm和dy=10mm的光源区域可以用于1d编码显示装置,其提供仅竖直视差(vpo)全息图和具有1m的焦距的准直单元。光源区域类似于狭缝,其在该示例中具有1比33.3的纵横比。

照明装置中的动态散射平面具有提供动态随机相位分布的函数。一种选项可以是在优选的全息显示装置的照明装置内使用旋转散射元件,如旋转散射板。

对于2d编码,光束或三个光束(如果提供三个光源的话)可以聚焦到待准直并且是照明装置的一部分的扩展光源的平面上。供选择地,可以将用作主光源的多模光纤的出射平面成像到待准直的扩展光源的平面上。如前所述,对于2d编码,应该有利地产生具有的直径的扩展光源。

以下说明涉及针对每种颜色分别适应平面波的角谱。

存在若干选项以实现rgb(彩色的)照明。由三个光源发射的三个光束可以聚焦在相同的散射平面上,或者每种颜色可以具有单独的光源平面。可以在消色差或复消色差光学系统前面使用颜色组合单元,其可以用于光的准直。因此,可以针对每种颜色分别优化平面波的角谱。对所有颜色使用单个散射板的缺点是单个散射平面引入取决于所用波长的散射角。因此,蓝光将在准直单元的孔径内或准直单元的出射平面内产生合理的均匀强度分布,而红光将产生更大的散射角以及因此更高的光功率损失。

如果在基于相邻相位像素的光束梳理的显示装置中使用复值slm,则互相干性的复杂程度的绝对值的空间分布的最佳准备需要每种颜色的光源平面内的不同的复值分布。

可以在非常紧凑的设置内实现三个分离的光源平面。例如,用作光源的光纤(其可以是多模或单模光纤)的端部可以通过使用所谓的斯坦海尔三重态(steinheiltriplet)成像到动态随机相位平面上。例如,可以使用成像对的消色差双合透镜或非球面透镜,其不能实现1:1成像而是例如1:5成像。针对三种设计波长中的一个优化的非球面透镜还可以使用rbg分离的相干准备在照明装置内提供紧凑的设置。

回到之前公开的示例性实施例,如果使用2d编码,则对于准直单元使用f=1m的焦距并且对于场透镜使用f=1m的焦距导致的光源的直径,并且如果使用1d编码,则可以使用dx=0.3mm和dy=10mm的光源尺寸。可以看出,例如,作为具有例如1:3的椭圆率的光源的激光二极管的椭圆形光束轮廓可以以直角定向,以便使能量传递最大化。需要进一步扩展光以实现例如1:33的纵横比,其是在1d编码显示装置中使用的光源所必需的。折射或衍射光束整形或柱面透镜可以用于获得光的一维扩展。

在照明装置中使用衍射背光单元改变了光源的离散尺寸。例如,具有f=400mm的准直透镜可以在基于体积光栅的背光单元前面使用,其提供两倍10x的变形光束扩展。

如已经公开的,互不相干平面波的角谱是必须考虑的边界条件。照明光栅的光的平面波的角谱——由于光栅衍射方程——根据衍射角来改变,并且对于小的衍射角只能被视为不变。必须尽可能低地(即在不应该相互干扰的相互距离处)选择互相干性的复杂程度的绝对值的分布。放置在最大正z值(最接近于观察者)处的物点限定要使用的互相干性的区域,其应该是最大子全息图的尺寸或形状。对于应该干涉的slm的像素的相互距离,必须实现接近于一的互相干性的复杂程度的绝对值|μ12|的值。在slm的像素的相互距离处实现减小的互相干性(其不应该相互干扰)意味着使用定制的平面波的角谱。换句话说,slm必须用不是平面波的平面波的角谱照明。点光源不是实现这点的最佳方式。因此,只要最终存在于slm的入射平面处的平面波的角谱在所需范围内,m>1的光束质量因子可以是可接受的,该所需范围是例如沿着相干方向≤1/60度和例如沿着不相干方向≤0.5度。不相干方向的值仅适用于一维编码。这意味着优选扩展光源。并且扩展光源的特征在于互不相干平面波的角谱。这必须以明确的方式实现。这就是为什么可以实施动态散射元件的原因。这些元件可以例如被安装在pzt(例如由铅-锆-钛酸盐制成)或音圈元件上,该音圈元件实现沿着一维或沿二维的移位型横向运动。另一种选项可以是将散射元件安装在马达上并且实现旋转散射板。这两个构思都可以在照明装置中使用。基于10x光束扩展的楔型背光单元内使用的平面波的角谱是照明slm所需的平面波的角谱的十倍。1/6度的值是平面波的角谱的实际值,因为如果在楔型背光单元内使用10x放大率,则平面波的角谱将减小10倍的事实。因此,使用10x光束扩展来将1/6度的输入值转换为1/60度的输出值。

由于可以被用来描述例如衍射楔型的背光单元的方面的平面波的角谱的光栅方程,所以获得平面波的角谱的略微非对称缩小。例如-(84.2608±0.7)度的入射角导致(0+0.0743-0.0657)度的出射角。这意味着由于10x光束扩展导致的平面波的角谱的压缩是略微非对称的但约为1/10。对于略微大于84.2608度的角度,光束扩展因子略微大于10,并且对于略微小于84.2608度的角度,光束扩展因子略微小于10,这导致平面波的角谱的略微非对称压缩或者缩小因子,其为约1/10。

提供存在于扩展光源的区域内的相位值的快速统计学随机变化的元件必须适应所需的帧速率(framerate)(每秒帧,fps)。例如,以60hzfps的用于四个观察者和用于每个左眼和右眼的rgb导致24×60hz=1440hz。该值必须通过跟踪单元来提供,该跟踪单元是例如基于平面内旋转lc(液晶)的有源控制光栅单元。rgb时间顺序slm必须以1440hz/4=360hz工作。可以用于“光源on”的时间窗略微小于1/1440s,即仅1/1600秒。通常,作为光源的激光二极管可以提供这点。但是,如果激光被作为不能被调制成那么快的光源,则可以使用高速快门(fastshutter)。这些元件可以是例如基于lc、lc-散射体积光栅、声光调制器(aom)、依赖饱和度的吸收滤光器、基于pzt或甚至基于mems(微机电系统)技术。例如,pzt元件实现了24khz的频率。这些频率还可以通过使用音圈致动器来获得。仅小于100μm的移动可以是需要的,以便提供光源相位分布的足够随机性。离散值取决于离散实施例。多模光纤的端部可以设置在动态散射平面的前方。将三个光学多模光纤的三个端部成像到动态散射平面上也是实用的。这给予机会实施红、绿和蓝光源之间的轻微变换,红、绿和蓝光源之间的轻微变换导致在准直单元(例如,包含消色差透镜)后方提供并且用于rgb独立校准的略微不同的出射角。因此,可以优化例如照明装置的背光单元的整体衍射效率。在准直单元前方可以使用已知的例如三个cmos(互补金属氧化物半导体)芯片便携式摄像机或一组二色滤光器的颜色组合棱镜系统。准直单元可以包含例如消色差透镜,该消色差透镜与光束整形单元组合通过提供例如所谓的平顶强度分布来增加整体光效率。这些元件在照明例如准直单元的准直消色差透镜的合理恒定强度区域内不提供恒定相位值。因此,在准直单元的消色差或者甚至复消色差透镜的出射平面中,将会存在非理想的相位分布。可以提供一些选项以补偿不期望的相位分布,该不期望的相位分布将降低全息三维物体的图像质量。

一种选项是将准直单元的准直透镜包括到价值函数(meritfunction)优化中,其是众所周知的并且已经在几个标准光学仿真软件产品中实施。因此,可以进一步改进照明基于体积光栅的背光单元的相位分布。此外,在动态散射元件前方的三个波长(例如,λb=457nm,λg=532nm和λr=647nm)的组合作为光束整形单元使得可以使用三种颜色特定的光束整形元件,其每个仅作用于单个分配的颜色。因此,可以独立地针对每种颜色优化存在于动态散射元件的平面(其是待准直的光源的平面)中的光斑的强度分布。因此,优化的色彩平衡(即例如,均匀的白色)可以在整个slm平面内获得。

例如,图2示出了使用单个例如表面起伏型光束整形扩散器(bs)。光束整形扩散器可以提供平顶强度分布,该分布在例如消色差准直透镜的入射平面内是例如矩形形状的。

第二种选项是测量由体积光栅背光单元发射的相位分布,即相位分布最终照明slm。查找表(lut)可以用于存储补偿值。这些补偿值可以用作计算由slm生成的复值波场的校正值。可以测量照明slm的相位和强度分布。结果可以用作校正数据,以便在显示装置的观察窗的平面中提供设计的相位值和幅度值。

由照明装置的背光单元发射的波场的测量还包括三种光色rgb的局部出射角。局部出射角垂直于局部波阵面,即局部相位分布。换句话说,三种光色rgb的相位分布的测量导致三种颜色的局部出射角的分布。

slm的略微不同的照明角可以通过显示装置的跟踪单元来补偿。这种跟踪单元从查找表中获取补偿值。这样的查找表还可以包含用于校正显示装置内存在的像差的值。这还包括补偿,其可能是消除记录情况和例如复用场透镜的显示装置内的使用之间的差异所需要的。记录是指将全息记录薄膜暴露于干涉图案,该干涉图案由叠加的波形成。暴露的结果是记录材料的修改。产生折射率n的局部变化。材料可以改变厚度并且因此改变重建的几何结构。效应的重要程度取决于所使用的离散材料。例如用于显示装置中的体积光栅或具有例如1mm的厚度用于承载至少一个体积光栅的附加盖玻璃的光聚合物的收缩可以降低由不同体积光栅场透镜实现的点扩散函数(psf)的斯特列尔比(strehlratio)。换句话说,设置在slm后方的场透镜可能不会产生理想的焦点,这可能是全息记录薄膜收缩的结果。因此,优选地使用低收缩材料。基于布拉格衍射的体积光栅可以例如在全息三维显示装置的准直单元、背光单元和场透镜内使用。尽管可以使用预补偿计算机生成的全息图(cgh)以便在已经暴露期间补偿这些像差,但是复值slm和跟踪单元可以用于优化最终获得的点扩散函数。各个测量的显示装置可以在查找表内使用单独的校正值。在计算全息图数据期间也可以考虑像差。

在前面的公开内容中,可以使用在准直单元前面的照明装置中提供的增大尺寸的光源。如果用由准直透镜或准直单元的准直离轴抛物面镜提供的准直光照明slm,则光源应该具有相当于≤1/60度的区域。可以使用准直离轴抛物面镜以便减小准直单元所占的体积。

如果在照明装置中使用改变平面波的角谱的其他元件,则必须考虑这点。如果在照明装置中使用沿着两个方向实现10倍变形光束扩展的背光单元,则可以使用高达1/6度的平面波的角谱来照明该背光单元。

定制的扩展光源的实际直径可以是:例如,如果使用具有fcollimation=400mm的焦距的准直透镜,则实际直径是

图2示出了一种照明装置,其中由三个光源li(i=1、2和3)(例如三个激光光源)发射的三个光束被组合以便产生相干白色光源。r表示红色光源,g表示绿色光源和b表示蓝色光源。附图标记m表示镜元件。在通过镜元件m反射蓝色光束之后,提供介质镜元件dc-m-tbrg以将蓝色光束b与绿色光束g组合。在组合光束b和g之后,提供介质镜元件dc-m-trrbrg以便将红色光束r与蓝色光束b和绿色光束g组合。提供包含凸透镜lt1和凹透镜lt2的望远镜系统以调整红色光束的尺寸。在这个示例中,红色光束的放大率可以是例如m-r=1/2.5。这意味着红色光束的尺寸必须减小2.5倍。以这种方式,所有光束在光束组合单元lbcu的出射平面处具有相同的尺寸。该示例示出了初始光束直径的差异不是问题并且可以容易地实施变化。哪个光束的尺寸必须扩大或缩小或者哪个离散因子必须被使用取决于所使用的离散光源。例如,也可以是必须增加红色光束直径的情况。然而,优选地使用类似的光束直径。离散值取决于用于产生定制的扩展光源的离散实施例。因此,红色光束的直径是绿色光束的直径的1.25倍,绿色光束的直径例如比蓝色光束的直径大1.25倍也是可能的。然而,设计目标是必须在slm平面中提供互相干性的复杂程度的绝对值|μ12|的定制分布。

光束组合单元lbcu包含具有凸透镜lt1和凹透镜lt2的望远镜系统、镜元件m、介质镜元件dc-m-tbrg和介质镜元件dc-m-trrbrg。

此外,组合光rgb光束lb-rgb沿着一个维度扩展,以便提供一维预成形光强度分布lb-线。为了扩展组合光rgb光束lb-rgb,体积光栅vg(例如,基于布拉格衍射的体积光栅)设置在光束路径中。体积光栅vg是rgb复用的。此外,体积光栅vg应用在透明基板s的顶部上。rgb复用体积光栅vg的衍射角可以是例如87度,这导致一维变形光束扩展的20倍。然后使用一维扩展强度分布lb-线以照明光束整形单元。之前具有圆形形状的扩展光束的形状由标有附图标记lb-线的细虚线示出。光束整形单元包含光束整形扩散器bs和马达r-m。光束整形扩散器可以被设计为例如光束散射板或光束散射箔或动态光束整形扩散器。提供光束整形扩散器bs(其在这里设置在具有例如1:33的纵横比的扩展光源lb-线的平面中),以便在准直单元(这里未示出)的平面中产生平顶强度分布。准直单元设置在光束整形扩散器bs后面的焦距f处。准直单元的出射平面的光传播例如到包含至少一个体积光栅的背光单元,该至少一个体积光栅将波场或光扩展至待照明的slm的尺寸。换句话说,图2中所示的光束整形扩散器bs最终确保slm的均匀照明,即具有平顶强度分布的照明。

这里,必须区分存在于准直单元的出射平面中的平顶强度分布(并且进一步沿着光束路径,存在于slm的入射平面中的平顶强度分布)和存在于slm的入射平面中的互相干性的复杂程度的绝对值|μ12|的平顶分布。

在其远场(即例如在随后的光束路径中使用的准直单元内几厘米远)的互相干性的复杂程度的绝对值的平顶强度分布。

通过光束整形扩散器bs的表面起伏轮廓提供随机散射相位分布。这种相位分布被动态地改变,因为光束整形扩散器bs被设计为例如旋转光束整形扩散器。

因此,旋转光束整形扩散器bs在其远场中提供限定的强度分布,其可以用于获得slm平面的均匀照明。此外,提供旋转马达r-m以通过旋转光束整形扩散器bs来产生动态相位随机。光束整形扩散器bs的移动应该合理快速。换句话说,应该在slm的单个帧的时间窗(其例如是4ms)内在定制的扩展复值光源的平面中产生几个不同的随机相位图案,优选大于100个。

对于1d编码,需要线状扩展光源。必须实现这点以便产生空间相干性,该空间相干性沿着子全息图的方向具有大的扩展并且沿着最佳点的方向具有小的扩展。最佳点被跨越以使用例如±≤0.5度互不相干的平面波的角谱。通过使用互不相干的平面波的角谱而不是通过单个平面波的衍射来产生最佳点。

可以通过使用基于10x体积光栅的光束扩展来实现一维扩展。

例如在pmma(聚甲基丙烯酸甲酯)中实现的例如84.26度的体积光栅的几何结构避免了需要复杂和昂贵的抗反射涂层。供选择的实施例(其可以提供所需的光扩展)例如是串联的变形棱镜,(即使用例如三至四个串联棱镜)或高斯线光束扩散器。还可以使用鲍威尔透镜以便从高斯型激光束产生线。

线光束扩散器的操作是实用的。直接组合光束可以照明powell透镜或跟随对该光进行准直的光学系统(例如透镜)的一维光束扩散器。然后,该powell透镜或一维线扩散器跟随光束整形扩散器bs,该光束整形扩散器bs实现准直单元的入射孔径的均匀照明。在第二扩散器处,如果也使用第二扩散器,则存在仅具有例如1.2mm的高度的线状强度分布。这是将仅造成小的能量损失的简单系统。

详细地说,单个光束整形扩散器可以产生最终存在于slm的入射平面中的平顶强度分布布——同时——在定制的复值的平面中所需的随机动态相位分布,以便提供在slm的平面中的互相干性的复杂程度的绝对值|μ12|的所需分布。这种互相干性的复杂程度的绝对值|μ12|的平顶平台型分布应该具有所使用的最大子全息图的形状。然而,也可以分离光束整形和动态相位随机。然而,这不是绝对必要的,并且它可能无法实现紧凑的实施例。照明光束整形扩散器的紧凑方式,其也可以作为动态相位随机性发生器,具有一维线状强度分布,其由体积光栅(例如基于布拉格衍射的体积光栅)引入所需的光束扩展提供。图2中示出了一示例。

供选择地,可以如所公开的简要使用基于散射的方法。在这种情况下,形成所有主光源r、g、b以便具有相同的光束直径,如例如1.2mm。消色差线生成光束扩散器用具有例如大致相同的直径的组合光束照明。该线生成光束扩散器例如仅在一个方向上传播光束。在该示例中,对于照明fcl=1m的slm的准直单元的示例性焦距和在fcl=1m的slm后面提供的组合场透镜的焦距,光束在通过放置在距线光束扩散器的焦距处的准直透镜进行准直后具有1.2mm×20mm的尺寸。

产生具有低发散度的线状强度分布的另一个选项可以是用例如圆形光束照明高斯线光束整形扩散器。生成具有例如±30度的发散角的线。然后,在该高斯线光束整形扩散器后面设置准直单元。在该准直单元后面有准直线状强度分布。该线状强度分布用作扩展光源。并且,它可以用于照明提供最终照射slm的平顶强度分布的另一个光束整形扩散器bs。这种分布例如是矩形的并且可以具有2:1的纵横比。

光束整形扩散器例如以10000rpm至30000rpm旋转,以便提供合理的相位随机性,其对于闪烁照明的原色的2ms至4ms激光-on脉冲是必要的。可以使用5度角扩展。在光束整形扩散器bs后面传播的光被进一步修改。更详细地,旋转光束整形扩散器bs的平面通过使用例如0.25的放大率在图像平面上成像。因此,在该示例中,光束形状从1.2mm×200mm减小到0.3mm×5mm,而发散度从5度变为20度,这在使用具有1m的焦距的基于体积光栅的准直透镜的情况下应该足以照明例如14”显示装置。

以这种方式产生的小的一维光源线设置在准直透镜的焦平面中。因此,相干性被准备为是足够的并且仅沿竖直方向存在。此外,仅存在最小的光学损耗。

例如,图2示出了在其远场的限定平面中产生限定的平顶强度分布的光束整形扩散器bs如何可以用线状强度分布,或者通常用具有1:33的高纵横比的强度分布照明。

图3和图4还示出了例如圆形或椭圆形初始光束如何可以被转换为照明在其远场的限定平面中产生限定的平顶强度分布的光束整形扩散器bs的线状强度分布。然而,图3还示出了如何通过使用两个消色差透镜lt1和lt2的望远镜状装置来调整存在于光束整形扩散器bs的出射平面处的线状强度分布的尺寸。

可能会出现这样的问题,即究竟为什么需要中间的大线状强度分布。这可能具有几个原因。一个原因可能是在其远场的限定平面中产生限定的平顶强度分布的光束整形扩散器bs必须用最小光束尺寸照明,该最小光束尺寸必须例如沿着至少一个维度存在。在例如随机微透镜结构用于多色照明的情况下就是这种情况。可以用作折射和衍射结构的微透镜结构可以使用例如voronoi图来设置。

另一个原因可能是定制的复值扩展光源必须具有确定的尺寸和确定的平面波的角谱,其在其后面传播,或者通常为确定的发散度。这是使用例如附加望远镜装置的原因。

此外,图3示出了设置在设计的扩展光源dls的平面中的附加的场透镜fl。通常,场透镜增加通过光学系统传递的光功率。换句话说,可以使用场透镜以便减少可能沿着光束路径存在的光功率损失。从图4中可以看出,场透镜fl也可以靠近在其远场的限定平面内产生限定的平顶强度分布的光束整形扩散器bs的出射平面使用。此外,可以使用场透镜来限定互相干性的复杂程度的绝对值|μ12|的分布的平面,即,将互相干性的复杂程度的绝对值|μ12|的所需分布转换到所需平面中。

在设计的、定制的复值扩展光源的后面(其例如在图3和4的右侧处被示出),必须设置准直单元。准直单元包含至少一个准直透镜。在准直单元后面存在窄的平面波的谱。这可以通过使用例如基于变形光束扩展的背光单元来进一步减少。

紧凑的激光模块可以具有较小的光束直径,即例如仅在500μm范围内。作为光束整形扩散器的工程扩散器必须被定制为这种减小的光束直径以便提供最佳性能。这意味着例如95%的光被转移到slm上的平顶分布区域中并且只有5%或更少的光可以在该区域或地区外找到。

如果光束的初始光束直径足够小,则不再需要例如可以通过使用如图2所示的望远镜系统获得的(红色光束)的进一步减小。因此,它可以是仅具有紧凑的激光模块、体积光栅和作为光束整形扩散器的移动工程扩散器的紧凑方式。

此外,在光束整形扩散器前面可以设置透镜。透镜将离开体积光栅的光束聚焦到必须定制的工程光束整形扩散器上,以便考虑这种非标准高斯分布。将光束腰部放置在工程光束整形扩散器bs上意味着在该平面中具有平面相位(平面波)。光束整形扩散器bs后面的发散角由两个参数限定,这两个参数是用于照明光束整形扩散器bs的数值孔径(na)和由光束整形扩散器bs引入的发散度。

如已经公开的,图2示出了用于仅利用一维空间相干光照明1d编码的slm的定制的一维光源线生成照明装置的示例性实施例。如图所示,在一维扩展高斯平顶光束整形扩散器bs后面,不使用附加光源尺寸改变光学器件。如果光束尺寸足够,则可以提供这种照明装置的设置。相比于前面解释的示例,工程光束整形扩散器bs具有更宽的角扩展。

在定制的一维光源线照明装置的进一步实施例中,一维扩展的rgb组合光束被聚焦到平顶强度分布生成光束整形扩散器上,该扩散器被定制为照明它的特定波场。这意味着在光束整形扩散器之前设置的透镜(例如,透镜l)不一定是经典的消色差透镜。而它是消色差双焦透镜。因此,提供光束整形的工程光束整形扩散器必须被定制,以便与离散照明一起工作并且在随后的准直单元的入射平面中产生限定的均匀强度分布。通常,可以实施可以适应要求的非球面透镜。光束整形扩散器的定制也可以通过提供为特定实施例定制的反射自由表面来实现。

此外,工程光束整形扩散器可以引入非对称光束整形功能。例如,在光束整形扩散器的远场中产生的平顶型强度分布的形状可以是矩形的,即具有取决于所使用的显示装置的例如2:1或16:9的纵横比。因此,非圆形强度分布提供了光束整形扩散器的定向依赖性结构。

在图3中,示出了照明装置,该照明装置产生通过对入射光束lb-rgb进行整形来准直的设计的复值扩展光源dls。这指的是仅竖直视差编码,即使用一维子全息图。在各个光束r、g和b的组合之后提供线扩散器ld。线扩散器ld沿一个维度扩展入射光束。使用旋转散射板进行该过程也是可能的。提供准直系统cl以对入射光准直并且因此形成初始光束的线状强度分布lb-线。示出了1:33的线段的纵横比。准直系统cl在光束路径中跟随在此被设计为限定的光束整形扩散器bs的光束整形单元。准直单元未在图3中示出。光束整形扩散器bs在此处进一步形成为旋转散射板,并且被提供以产生动态相位项。使用作为光束整形单元的一部分的旋转电马达r-m以通过旋转光束整形扩散器bs来提供动态相位随机性。在此使用快速移动的散射箔或动态光束整形扩散器代替旋转散射板也是可能的。包含第一透镜lt1和第二透镜lt2的望远镜系统用于产生设计光源强度分布dls。该设计光源强度分布dls因此形成扩展光源,其中在以下部分中,附图标记dls也用于表示术语“扩展光源”。此外,提供孔径as。在光的传播方向上看,在扩展光源dls的平面中,在望远镜系统的后面设置孔径as。在扩展光源dls的该平面中,提供的是,通过孔径as阻挡干扰光。进一步优化的幅度分布(例如如图8所示)以及相应的相位分布(例如如图10所示)可以在这个平面中使用。

场透镜fl设置在扩展光源dls的平面中。该场透镜fl用于转换在全息显示装置内被照明的空间光调制器(slm)的平面中的互相干性的复杂程度的绝对值|μ12|的设计空间分布。在供选择的方法中,扩展光源的该平面的元件(即孔径光阑as和场透镜fl)可以在该平面中组合,如图2所示。这意味着孔径光阑as被放置在用于设计的扩展光源dls的平面中的场透镜fl处。

此外,在图3中,总体上示出了初始强度分布的光束整形过程。该光束整形过程提供用于照明扩展光源的平面的实用强度分布和针对在显示装置的光束路径中的照明装置之后的光学元件优化的数值孔径。因此,优化了光功率的传递。这意味着光能的损失被最小化。为了减少光能的损失,仅改造光并且改变初始光束的尺寸是不够的。光束的发散度也必须以如下方式改变,即可以沿着光束路径进一步存在的光能的损失被最小化。

可以在不必要的光束尺寸减小的情况下使用的一种选项是提供串联的线光束扩散器和工程光束整形扩散器。没有必要使用附加聚焦元件或其他光学元件。这在例如使用照明装置中的基于体积光栅的楔形背光单元的情况下就是这种情况,其在两个方向上提供10x或20x光束扩展。这意味着可以提供主光源的合理的大光束直径用于形成在该背光单元前面使用的一维(1d)扩展光源。详细地使用线光束扩散器将rgb白色光束形成为线。所产生的线照明产生平顶强度分布的光束整形扩散器。光束整形漫射器设置在准直单元的前面的焦平面中。准直单元可以设置例如在照明装置的基于体积光栅的变形楔型背光单元的前面。方形或矩形平顶强度分布(其可以具有例如2:1的纵横比)可以通过选择相应的工程光束整形扩散器来获得。

这种照明装置的设计将优选地不是那么紧凑,如图3中所示的那样。然而,可以是不提供用于光束扩展的体积光栅的根据本发明的照明装置的供选择的实施例。

下面示例性地详细描述根据本发明的照明装置的该实施例,其为1d编码全息图编码提供定制的相干性。

图3示出了如已经公开的图2中描述的实施例的修改。在图3中,示出了激光光源光束整形装置,其在场透镜fl的平面内产生具有例如竖直约150μm×水平5mm的尺寸的狭缝状强度分布(见图的右侧)。场透镜fl的焦距ffl类似于沿着光束路径进一步使用的准直单元的焦距。焦距ffl可以是例如用于照明slm的组合体积光栅场透镜的1m。

设置在扩展光源的平面中的场透镜fl是重要的细节以便为1d编码的slm定制相干性。

在图4中,示出了产生通过改造入射光束lb-rgb来准直的设计的复值扩展光源dls的进一步供选择的照明装置。这指的是仅竖直视差(vpo)编码,即使用一维子全息图。光束整形powell透镜pl设置在光束整形扩散器bs前面的光束路径中。powell透镜沿着一个维度扩展入射光束lb-rgb。这里同样地,提供准直系统cl以对光进行准直。因此,产生初始光束的线状强度分布lb-线。这里,示出了1:33的线段的纵横比。再次提供设计为旋转散射板的限定的光束整形扩散器bs以产生所需的动态随机相位项。旋转马达r-m通过旋转光束整形扩散器bs提供动态相位随机性。此外,使用快速移动的箔片代替旋转散射板是一种选项。

与图3不同,在该实施例中,场透镜fl设置在包含透镜lt1和lt2的望远镜系统的前面并且在光束整形扩散器bs的后面。该场透镜fl通过望远镜系统的透镜lt1和lt2成像到扩展光源dls的平面中。场透镜fl的图像是fl'。原则上,这相当于图3中所示的场透镜fl。

此外,图4中示出了孔径光阑as。可以提供该孔径光阑as以阻挡在扩展光源dls平面中的干扰光。这里,提供场透镜fl以最终将互相干性的复杂程度的绝对值|μ12|的设计空间分布转换到要在全息显示装置内照明的slm的平面中。

准直透镜cl在图3和4的左侧被示出。然而,必须设置在图3和4的右侧处用于对扩展光源(这里用dls表示)进行准直的准直单元未被示出。

通常,这里示出了初始光强度分布的光束整形,其提供用于照明成像光源的平面的实际强度分布。光强度分布的这种光束整形还提供数值孔径,该数值孔径针对沿着光束路径之后的光学元件优化。因此,优化光功率的传递以使能量损失被最小化。为了减少光能的损失,仅仅改造光并且改变初始光束的大小是不够的,如已经说明的那样,还必须以使损耗被最小化的方式改变发散度。

换句话说并且在某种程度上作为示例,图4示出了已经描述的图3的实施例的修改。在这个图中,示出了激光光源光束整形照明装置,其在设置在光束整形扩散器bs后面和靠近光束整形扩散器bs的场透镜fl的图像的平面内产生具有例如约150μm竖直×5mm水平的尺寸的光狭缝。场透镜fl的图像的焦距ffl类似于沿着光束路径使用的准直单元的焦距。焦距可以是用于照明rgb-slm的组合体积光栅场透镜的例如1m。可以通过在体积光栅内产生场透镜或通过体积光栅来形成组合体积光栅场透镜。

相比于图2和3中所示的实施例,在该实施例中,powell透镜用于产生一维光束扩展。这种powell透镜的优点在于,可以通过强度波动(即,小于10%的偏差)实现光的均匀的顶帽强度分布。这不需要在使用光束整形扩散器的情况下必须实施的快速移动。这种平顶线状强度分布产生也可以与例如由使用楔型体积光栅布置或串联变形棱镜对提供的进一步的光束扩展结合。

与扩展光源的平面相关的场透镜fl可以设置在如图3的右侧所示的照明装置的出射平面处,或者靠近光束整形扩散器bs的散射平面。其中场透镜fl必须成像到照明装置的出射平面中,如被示出用于在图4中心的较大狭缝状强度分布。

关于光程长度的一个困难可能是使用远心系统,该远心系统用于提供例如m=0.125的放大率,以便减小存在于照明装置的出射平面处的狭缝尺寸。

因此,可以优选的是,在二维平顶强度分布产生光束整形扩散器bs的平面中提供小的光束直径。较小的光线需要较小的缩小。因此,在照明装置中仅需要尺寸较小的光学望远镜系统。根据边界条件,光束整形扩散器bs必须适合于支持它。并且,所使用的表面起伏光束整形图案必须针对所使用的光束尺寸而定制。表面起伏光束整形图案可以例如由随机微透镜结构制成。因此,避免使用图4所示装置的右侧所示的所有三个透镜是可能的。换句话说,可能不需要缩小,并且如图3和4所示的形成缩小望远镜的两个透镜lt1和lt2可能是不必要的。

根据本发明的照明装置的紧凑实施例可以通过使用存在于powell透镜的入射平面中的光束直径来实现,该光束直径相当于用于一维编码全息显示装置的设计的狭缝状扩展光源的小尺寸。在该示例中,可以使用约150μm的光束直径。这需要定制的powell透镜。定制的powell透镜提供一维线光束整形。准直单元可以用于对入射光进行准直并且将波阵面法向矢量重定向回到与照明装置的光轴平行。例如,光束整形扩散器用150μm×5mm的线段照明。因此,在该光束整形扩散器后面,其提供产生的二维平顶强度分布以便适合进一步沿着光束路径设置的slm的纵横比,光束整形不需要另外的透镜元件。用于对在扩展光源的平面后面传播的光进行准直并且作为照明装置的一部分的准直单元仍然被使用。

通常,rgb光束的尺寸可以以这样的方式减小或适应(或改造),即线扩散器在显示装置中以相当于至少在一个维度上进一步沿着光束尺寸所需的光束尺寸的光束尺寸照明。在上面说明的示例中,这是150μm的光束尺寸。此外,通常,光束整形扩散器也可以接受非准直光,但必须针对用于照明它的特定参数进行设计。换句话说,存在另外的设计选项,其能够提供非常紧凑的光学实施例,其可以通过仅使用最少的光学元件来实现。

之前解释的示例可以与例如体积光栅型双组分组合rgb多路复用场透镜结合产生光源线,该体积光栅型双组分组合rgb多路复用场透镜对光源线进行准直。换句话说,基于布拉格衍射的体积光栅也可以用于准直和在slm前面所需的光束整形。以这种方式,可以以这种方式提供针对1d编码全息图的定制照明。然而,如果在照明装置中使用楔型体积光栅背光单元,则该事实会改变。这意味着必须根据由所使用的楔型几何结构的特定实施例引入的平面波的角谱的变化来改变扩展光源的形状。目的可能是产生例如具有水平定向的5mm的尺寸的最佳点,而竖直1d编码可以在全息显示装置内使用。在观察者到显示装置的例如1m的观察距离处,这对应于产生±0.1432度的值的最佳点的平面波的角谱的角度。最佳点的尺寸可能更大。但是该角度值可以用作存在的最小值。然而,观察者的眼瞳可能不会大于该值,并且眼睛跟踪确定的不确定性(其可以是沿x方向1mm和沿y方向1mm,即在横向方向上)是足够的。约±0.15度的角度范围的值是足够的以便产生全息图的1d编码所需的最佳点。由作为照明装置的背光单元提供的两倍10x变形光束扩展将平面波的角谱挤压约10x倍。因此,至少在一个方向,x-方向或y-方向上,需要约±1.5度的角度范围的值以便产生最佳点,其在观察者的眼睛前面对于1d编码最终是需要的。

这意味着在1d编码的情况下具有线段的形状的扩展光源必须在准直单元的前面具有在一个方向上至少±1/12度并且在另一个方向上±1.5度的角度扩展。为了实现增加的物体深度,照明slm的相干光方向的平面波的角谱(其必须至少为1/60度)可以进一步减小例如低至1/180度或低至±1/360度。这意味着,在提供背光单元的10x变形光束扩展的前面,存在所需的平面波的角谱,其仅跨越±1/36度。

因此,存在在准直单元后面的扩展光源,该扩展光源必须相当于平面波的角谱,该平面波的角谱优选在一个方向上为±1.5度并且在另一个方向上为±1/36度。准直单元可以包含例如消色差透镜系统或离轴抛物面镜元件。例如,500mm的焦距可以用于对扩展光源准直的折射或衍射光学系统。使用基于布拉格衍射的体积光栅元件以便对原色rgb分别准直也是可能的。

例如,如果准直单元具有fc=500mm的焦距,则±1.5度的平面波的角谱将导致约26mm的待准直的光源线段的横向扩展,并且±1/36度的平面波的角谱将导致仅约0.5mm的待准直的光源线段的另一个横向扩展。

在照明装置的背光单元内,扩展光源的线段可以竖直设置,并且因此具有例如0.5mm的宽度和26mm的高度。例如,如果使用沿着一个方向具有50mm的宽度的准直单元,例如,从圆形切出矩形,则考虑到场曲率,必须处理26mm的线宽。因此,优选可以执行这样的准直单元。因此,可以提供包含若干元件的准直单元以提供例如导致43.3mm的对角线的36mm的宽度和24mm的高度的平场。

对此的背景是slm的形状是矩形的。在光学中,经常存在圆形光束形状。因此,标准情况可以是使用准直单元,该准直单元在其出射平面处提供均匀的圆形强度分布。使用矩形形状的slm意味着从圆形强度分布切出矩形形状部分。这表示光能的损失,其可以通过实施定制的光束整形来避免。

作为该示例的结果,可以定义图4中所示的照明装置的修改。由值i=imax/e2定义的是例如主光束的1.2mm的光束直径必须通过使用反向2x光束扩展器来减小到例如0.6mm的光束直径,从而提供缩小的m=0.5的放大率。所提供的powell透镜pl可以被设计为接受0.6mm的光束直径。生成平顶强度分布的一维发散光将被准直,并且尺寸为0.6mm×26mm的光线段将照明放置在具有fc=500mm的焦距的准直单元的前方的二维设计的平顶生成动态光束整形扩散器。孔径光阑as或幅度滤光器可以用于将0.6mm的光线段的尺寸减小至0.5mm或甚至更小。平顶生成动态光束整形扩散器必须以接受所需的光束轮廓的方式设计,换句话说,从中生成合适的二维平顶强度分布。

例如,对于光到承载背光单元的体积光栅的基板上的空气侧入射角例如为84.26度,具有折射率为1.5的基板内的角度为41.55度。换句话说,如果楔形物在空气中以84.26度至0度工作,则这相当于在折射率n=1.5的基板材料内41.55度至0度的重建几何结构。

存在于基板内或体积光栅内的这种减小的衍射角导致仅1.36倍的光束扩展,而不是10倍的光束扩展。因此,在最佳点方向上照明slm的±0.15度的角度范围乘以1.36倍的光束扩展导致仅平面波的角谱为±0.2度。换句话说,需要±0.15度的角度范围以便跨越最佳点,其对应于±0.2度的角度范围,其必须在具有高衍射效率的体积光栅内衍射。因此,体积光栅接受该角度范围应该是足够的。这意味着体积光栅对于0.2°的平面波的这种照明角谱必须具有高衍射效率。该解释可以用于定义例如在背光单元内使用的基于布拉格衍射的体积光栅的参数范围。

在仿真中,计算对于532nm的波长提供41.55度/0度的衍射的例如16μm厚的体积光栅的角度选择性η(θr)在那里,对于具有±0.2度的平面波的角谱的照明,可以获得大于0.9的衍射效率。因此,16μm或例如20μm的体积光栅厚度足以衍射以高衍射效率所需的平面波的角谱。

这也意味着平面波的角谱的扩展(其仅为1.36x)是在照明装置的背光单元的完整实施例中引入的10x因子的次要部分。因此,在承载定制的抗反射涂层的表面处发生7.35x的波场扩展。这是折射波场的扩展。换句话说,实现10x波场扩展的空气楔型背光单元通过作为次要部分的衍射并且通过作为主要部分的折射来实现(10x=1.36x7.45)。在slm的前方需要±0.15度的平面波的角谱,并且在体积光栅前需要±0.2度的平面波的角谱,并且在准直单元的后方(即在抗反射涂层的前面)需要±0.15度的平面波的角谱。在例如以84.26度照明的空气楔型背光单元的基板表面上需要抗反射涂层。抗反射涂层必须接受具有低反射损失的例如(84.26±1.5)光的入射角。抗反射涂层的这种边界条件应用于两个体积光栅中的一个,其可以用在变形背光单元中。放置在背光单元下部并且水平定向的第一小体积光栅支承基板条纹必须接受具有低反射损失的(84.26±1.5)度的入射角。另一个正交方向以及因此大显示尺寸的体积光栅对于要传输的该角度范围不敏感。这是因为相干方向与平面波的更窄角谱一起工作的事实。最终跨越最佳点的方向需要最宽的角度接受。该方向被称为关于照明slm的波场的非相干方向。

在图5中,示出了被分成段s的光束整形扩散器bs。光束整形扩散器bs的各个段s内的箭头示出了在光束整形扩散器bs的段内的工程化表面起伏轮廓的定向,即相位轮廓。例如,如果光束整形扩散器在用光束照明的情况下产生具有2:1(水平:竖直扩展)的纵横比的矩形强度分布,则旋转大约90度将导致具有1:2的纵横比的旋转的强度分布。这就是为什么必须根据所使用的旋转板的角位置来改变光束整形扩散器的相位分布的定向的原因。这也可以以连续的方式(即没有可见分段)执行。

所描述的光束整形扩散器bs能够提供例如在其远场中的矩形平顶强度分布,该分布用于slm的适当照明,即使在使用旋转散射板作为光束整形扩散器的情况。即使提供旋转,光束整形扩散器bs的工程化表面起伏轮廓的相对定向也不会显著改变,如果有的话。

在使用快速一维移动箔的情况下,不需要矩形型平顶分布生成光束整形扩散器的这种类型的分段定向变化。

换句话说并且详细地,在此,图5示出了具有36个段s的光束整形扩散器bs的定向依赖结构。所示的箭头用于标记示例性段s的定向。过渡区域可以用黑色条纹掩盖。由于光束整形扩散器具有限定的相位分布,其可以通过使用光刻技术来实现,因此不难生成具有由应用定义的特定方向的连续或至少合理的连续强度分布。

使用工程光束整形扩散器结构(其具有在远场中要生成的强度图案的非旋转对称角扩展)产生额外的设计自由度。关于图2中所示的实施例,可以使用非对称角扩展来补偿其像散照明或产生依赖于方向的光束整形。例如,如图2中所示的光束整形扩散器的光束散射板可以在沿着光束路径进一步用于不同的强度分布的准直单元的入瞳中产生明确定义的2:1平顶强度分布,其可以在光束散射板上提供。并且它可以生成这种远场强度分布,其具有矩形轮廓,通常同时用于平面波或波场的不同角谱。这意味着存在通用工具,该通用工具可以提供例如全息图的1d或2d编码所需的照明特性和相干特性。

如果与光束整形扩散器的小段s组合,则压电致动器(pzt)或其他类型的致动器可以用于提供动态相位随机性。例如,pzt通过使用尖端放大结构以合理的高幅度提供快速移动。因此,例如,可以实施在100μm范围内的快速同步移动。使用脉冲和slm同步音圈操作也是可能的。这种操作可以在毫秒(ms)范围内提供光束整形扩散器段移动的合理幅度。因此,例如,具有杠杆结构的pzt(即弯曲致动器、可以提供达到几毫米的移动的双压电晶片弯曲机、或提供放大运动的圆盘双压电晶片致动器)可以用于在一毫秒内仅沿着≥100μm移动几平方毫米的段s。通过使用同步推拉方法,可以使用两个循环来进行操作,即,在一个方向上移动并且向后移动。因此,不需要旋转散射板。

图6示出了在优选的全息三维显示装置中准直和使用的设计的复值和扩展光源dls的通用实施例。提供强度分布i-dls以便照明最终要生成的扩展光源dls的平面。在扩展光源dls的平面中提供幅度掩模a-ls。幅度掩模a-ls提供扩展光源dls的所需幅度分布。此外,在扩展光源dls的平面中提供相位掩模p-ls。相位掩模p-ls设置在幅度掩模a-ls的后方。通过相位掩模p-ls产生扩展光源dls的所需相位分布。在其远场中提供矩形强度分布并且用作旋转散射板的光束整形平顶提供扩散器bs-flat-top提供了要被生成和准直的扩展光源dls的所需动态相位项。这种光束整形平顶提供扩散器bs-flat-top设置在例如相位掩模p-ls的后方。场透镜fl也设置在扩展光源的平面中。从光的传播方向看,优选将场透镜fl设置在相位掩模p-ls的后方。然而,也可以改变单个元件的纵向顺序。因此,光束整形扩散器也可以移动到图6所示的布置的左侧。场透镜fl将互相干性的复杂程度的设计绝对值|μ12的分布从远场傅里叶平面转移到全息显示装置内待照明的slm平面中。换句话说,场透镜fl将互相干性的复杂程度的绝对值|μ12|的正确分布转移到slm平面中。

图7示出了表示为a2的艾里分布强度的线扫描。此外,示出了表示为的相位分布。相位分布是跨越总共2π范围的阶梯型分布。因此,示出了复值分布,其可以在待准直的扩展光源的平面内使用。如果扩展光源的平面的像场是不合理平坦的,则该相位分布也可以扩展到略微弯曲的分布。

对于全息图的1d编码,扩展光源的平面的优选复值分布是具有相移旁瓣的sinc函数类形分布。换句话说,已经公开的形成扩展光源的狭缝将另外获得幅度分布。该幅度分布相当于sinc函数的幅度分布。之前可能已经恒定的相位分布被改变为二元形相移掩模,其包含优化的相位轮廓。±第一旁瓣针对函数的中心区域/地区移动约π。可以扩展该二元π-移位函数以便使用另外的旁瓣,例如,具有与中心区域相同的相位的±第二旁瓣,或者甚至具有与针对中心区域/地区移动约π的±第一旁瓣相同的相位的±第三旁瓣。这里使用更多的旁瓣意味着获得矩形(rect)函数的更清晰的定义,该函数描述了在要以确定的空间相干性暴露的全息图的平面中进一步的相干性的复杂程度。

为简单起见,仅在一个方向上使用这种复值sinc函数方法是足够的。这种sinc函数方法也可以沿着具有较大扩展的正交方向使用。然而,这种方法是劳动密集型的,对于一维编码可以避免这种方法。然后,提供用作待准直的扩展光源的水平对准的狭缝。例如,在此,在slm平面内提供的空间相干性的水平方向中存在微小的旁瓣。但是,微小的旁瓣将只会对邻近的滤色器条纹产生影响,这些条纹仅传输不同的颜色并且因此彼此不相干。这意味着增加例如沿着狭缝状扩展光源的水平方向的部分高斯形幅度轮廓可以是足够的。

如果sinc类方法将在狭缝状扩展光源的长扩展中扩展,则扩展光将在该方向上进一步扩大。因此,可以增加平面波的角谱,该平面波例如通过形成背光单元或复用场透镜几何结构的基于布拉格衍射的体积光栅来传输。例如,针对使用待准直的简单的狭缝状光源的初始情况增加2或3倍的平面波的角谱显著地减小了体积光栅的参数空间并且因此不是优选的。可以沿着扩展光源区域的大轴使用简单结构或至少关于最佳理论实施例简化的结构。

如已经公开的,图7示出了幅度分布的平方(a2=i)和幅度+相位分布的相位分布,其可以在准直单元的前焦平面内使用。引入的相位的范围至少为π。二元相位轮廓可以用作近似值。多级和部分连续相位分布可以用于生成所需的幅度+相位分布的复值分布。

实现复值扩展光源可以是具有成本效益的,该复数值扩展光源在包含动态子全息图的slm平面内通过使用衰减相移掩模提供互相干性的复杂程度的绝对值|μ12|的所需分布。然而,在一些特定情况下,使用形成复值扩展光源的小型复值slm可以是有利的,例如,具有所需的全部功能或没有快速动态相位随机化部分,这仍然可以通过使用旋转散射体来实施。旋转散射体包含在其远场中生成平顶强度分布的定制光束整形表面起伏轮廓。

也可以通过提供两个不同的复值但固定的衰减相移掩模来实现从1d编码到2d编码的切换。

如果需要动态子全息图自适应,则可以提供用作扩展复值光源的动态复值slm。这可以用于进一步减少视网膜间物点串扰。换句话说,如果在生成全息三维场景或物体的slm中仅显示较小的子全息图,则互相干性的复杂程度的绝对值|μ12|的分布也可以减小尺寸。

详细地,图7中所示的复值函数的一维部分可以至少沿着在准直单元内待准直的狭缝状扩展光源的小扩展使用。它是bessel函数的一维部分。对于全息图的1d编码,可以使用一维sinc函数。sinc函数可以用于一维全息图或矩形二维子全息图。bessel函数可以用于圆形二维子全息图。图7中所示的复值函数可以是由全息显示装置的准直单元使用二维编码的圆形子全息图准直的二维旋转对称复值扩展光源的部分。可以将附加场曲率添加到所示的相位轮廓,例如,以便考虑整个光学系统及其像差和弯曲图像平面而优化功能性。所示的分布是待准直的扩展光源的静态复值部分的一部分。因此,对于全息图的2d和1d编码,可以在具有子全息图的slm平面中获得互相干性的复杂程度的绝对值的分布的限定的平顶特征。

可以将附加焦点项添加到扩展光源的平面,以便在设计平面处转移互相干性的复杂程度的绝对值|μ12|的分布的定制轮廓,例如用于1d编码的子全息图的条纹状平顶空间分布和用于2d编码的子全息图的圆形平顶分布。标准设计平面是复值slm的平面。这是包含子全息图的平面。因此,可以将真实或虚拟的凸透镜添加到待准直的扩展光源的平面。例如,可以添加静态相位项。然而,在最简单的情况下,可以添加透镜。透镜的焦距fls与准直单元的焦距fcol相同。

必须考虑几个边界条件。这里可以假定实施竖直编码的一维子全息图,即仅竖直视差(vpo)。水平相干性的横向扩展应该在水平像素间距的范围内,该范围是例如仅在(50-500)μm的范围内。确切的值取决于离散显示装置实施例。例如,slm的像素列的水平扩展应该至少小于1/60度,这是人眼的角分辨率。这适用于时序彩色显示模式和滤色器的使用。如果使用1d编码全息显示装置内的滤色器条纹,则应该在1/60度的该角度范围内提供若干滤色器条纹。这定义了上面给出的slm的水平像素间距的值。因此,水平压缩相干性分布好像是对该要求的实际近似,换句话说,水平地限制相干性。

在下面的公开内容中,考虑了互相干性的复杂程度的绝对值的竖直扩展。

另一个边界条件是以不超过用于编码三维场景的最大子全息图的尺寸的互相干性的复杂程度的绝对值|μ12|的竖直扩展照明slm。互相干性的复杂程度的绝对值|μ12|的横向扩展可以例如限制为2.9mm,即使子全息图具有例如4mm或5mm的扩展。

考虑根据本发明的照明装置的进一步改进:

·水平变迹

一种改进涉及提供互相干性的复杂程度的绝对值|μ12|的所需分布的傅里叶平面。slm不必设置在准直单元的傅里叶平面中。例如,slm可以设置为靠近或在不是其傅里叶平面的准直单元的出射平面中。准直单元的傅里叶平面是后焦平面,而待准直的扩展光源设置在准直单元的前焦平面中。可以将附加相位项添加到扩展光源的该平面,以便将互相干性的复杂程度的绝对值|μ12|的设计和所需的最佳分布放置在包含待准直的扩展光源的傅立叶平面的实际位置上独立地照明的slm的平面中。换句话说,可以在最佳分布中提供所需的空间相干性。并且可以在需要的地方提供互相干性的复杂程度的定制绝对值,换句话说,在那里设置slm。

可以实施进一步的改进。如果存在互相干性|μ12|的函数的分布的几个水平旁瓣,则可以例如通过沿着扩展光源的水平方向引入另外的变迹轮廓来抑制这些旁瓣。因此,可以使用另外包括二元相位分布的sinc类幅度分布,以便沿着水平方向形成复值扩展光源。因此,互相干性的复杂程度的绝对值|μ12|的分布的平顶轮廓也可以横向地实现。这种进一步改进的扩展光源的横向扩展可以超过例如由沿着光束路径进一步使用的布拉格衍射体积光栅提供的角透射率。即使5mm的待准直的扩展光源的横向扩展是实用的,但是例如沿着用于1d编码的非相干方向的15mm的横向扩展不再是实用的。可行性取决于所使用的全息显示装置的离散光学系统。这种竖直方向的方法也可以用于水平方向。

然而,也可以假定的是,互相干性的复杂程度的绝对值|μ12|的分布的竖直定向遵循所使用的rgb滤色器条纹的竖直定向。因此,每个滤色器条纹沿着每个方向具有两个横向相邻的滤色器条纹,即,总共四个与其他颜色相关的相邻滤色器条纹。因此,不需要完全消除例如正/负第一旁瓣、正/负第二旁瓣或甚至正/负第三旁瓣。这是由于这些旁瓣可以被其他相邻的滤色器条纹阻挡的事实。这指出可以沿着水平方向使用更简单的变迹轮廓。这种简单的变迹轮廓可以是例如相当于凯泽-贝塞尔(kaiser-bessel)窗、高斯函数或只是余弦函数的一部分的幅度分布。也可以使用简单的幅度轮廓以便在此减小空间频谱。

在图8中,示出了sinc型强度分布。可以在仅竖直视差型全息显示装置的光源平面中提供这种强度分布,即,用于全息图的1d编码。如图所示的狭缝状光源的幅度分布具有沿着水平x-方向的矩形(rect)函数类分布和沿竖直y-方向的sinc函数类分布。使用范围从零(0)到一(1)的值的随机性来获得二元分布。随机性在此使用约0.08的阈值,以便看见并且获得在例如使用0.5的阈值的情况下不存在的旁瓣。这意味着,约0.08的阈值用于透明部件。图8的该黑白图像(其是二元图像)示出了二元幅度分布也可以用在光源平面中。换句话说,用于提供互相干性的复杂程度的绝对值|μ12|的所需分布的复值扩展光源的幅度掩模可以被实现为二元幅度掩模,这可以是具有成本效益的实施。只要跟随扩展光源平面的光束路径内的数值孔径小到使得随机性的精细间距不被显示装置的光学系统解析,就可以最终获得扩展光源的有效灰度分布。例如,如果该二元随机强度分布将用作传统投影装置备内的图像幻灯片并且投影系统的数值孔径将不能解析用于二元随机性的精细间距,则在投影装置的屏幕处获得的图像是平滑的灰度图像。相比于在扩展光源的平面中使用真实灰度掩模,这里公开的随机二元图案生成的技术降低了制造成本。

回到sinc类光源狭缝,在图8中,示出了跨越从0至1的值的灰度分布的一个二元黑白版本。使用分布的随机性以便获得二元黑白图像。使用的例如0.5的阈值不会导致实际结果,因为没有旁瓣将是可识别的事实。例如0.15的阈值会导致两个旁瓣。降低例如到0.08的阈值将导致如图8所示的六个旁瓣。

此外,提供具有附加的水平定向的超高斯变迹轮廓的扩展光源的幅度分布是可能的。幅度的附加调制可以相当于纯rect状狭缝的附加调制。由乘法因子或公式exp(-nx22)描述并且乘以调制的该附加超高斯函数可以具有n为3和σ(西格玛)为4mm。这里,n是用作附加变迹轮廓的初始高斯函数的n次幂,其被实施为乘以主要非变迹sinc函数的二维分布。西格玛是初始高斯函数的半最大值的半宽度。示例性值在图9和11中被给出。

即使遵循超高斯函数的附加幅度调制将为矩形条纹工作,但它将不为已经具有竖直sinc型调制的扩展光源工作。另外的水平引入的变迹将是强烈的并且将因此显著降低互相干性的复杂程度的绝对值的分布的平台的均匀性。因此,这种分布不是最佳的。

关于水平变迹,可以使用n=1的合理的宽高斯函数。对于水平狭缝,σ≥50mm的西格玛值足以提供互相干性的复杂程度的绝对值|μ12|的分布的水平旁瓣的合理抑制。

·竖直变迹

虽然互相干性的复杂程度的绝对值|μ12|的平台的分布通过使用待准直的扩展光源的复杂幅度的复值的sinc类分布来充分地整形,限制sinc函数的竖直扩展导致在平台边缘处的显示略微增加的值的两个峰值。换句话说,在平台边缘处的这两个峰值的值为1,而平台的中心被降低到在|μ12|=0.85至0.9之间的值。

子全息衍射的非相干量在三维空间中不会产生虚拟或真实物点。因此,这种量在衍射效率方面会丢失。光的非衍射部分被聚焦到观察窗的平面中并且分布在所使用的slm的不同衍射级中。在显示装置中使用的场透镜避免了非衍射光击中观察者的眼睛。因此,略微小于1的互相干性的复杂程度的绝对值|μ12|也是实用的和适用的。

图9示出了可以在仅竖直视差型全息显示装置的扩展光源的平面中使用的sinc型强度分布的三维等高线图。沿着两个方向将高斯型变迹添加到扩展光源。乘以初始sinc函数的变迹轮廓不是对称的。已使用了两种不同的高斯函数,一种用于x-方向并且另一种用于y-方向。两个高斯函数已被取为n的幂。沿着扩展光源平面的y-方向,n为2,并且沿着扩展光源平面的x-方向,n为1。西格玛值σ沿着y-方向是1mm和沿着光源平面的x-方向是50mm。

换句话说,图9中所示的扩展光源平面的幅度分布沿着竖直y-轴具有sinc类变迹或sinc类幅度分布,其乘以沿着竖直y-方向存在的高斯类调制。该竖直高斯型变迹函数由乘法因子exp(-nx22)描述,并且具有n为2和σ为1mm。此外,另外的水平幅度调制被应用为乘法因子。是水平x-方向的函数的该幅度调制遵循由乘法因子exp(-nx22)描述的并且具有n为2和σ为50mm的超高斯函数。这里有三个变迹函数,乘以高斯函数的sinc函数;都仅是y-方向的两个函数和仅是水平定向的x-方向的函数的高斯函数。虽然可以使用x-轴和y-轴的函数,但对于优化的并且用于1d编码的扩展光源来说,这不是绝对必要的。

图10示出了关于图8和9的扩展光源的二元相位轮廓或分布。二元相位轮廓的范围是-π/2至+π/2,即总共2π。所示的黑白条纹或区域表征-π/2和+π/2的相位平台。这里所示的并且由相位掩模生成的透明相位分布的提供在图6中被示出。水平定向的狭缝状扩展光源对于竖直实施的全息图的1d编码是优选的,即,仅竖直视差(vpo)。狭缝的水平扩展(即狭缝的宽度)可以是例如约5mm。水平方向的包络线(其平行于光源平面的x-轴或x-方向)是rect函数。这意味着rect函数示出了矩形平台,其中在平台上的值为1并且在区域外值为0(零)。平行于光源平面的y-轴或x-方向的竖直方向被调制。调制相当于sinc函数,更明确的它是sinc函数的绝对值。

图11示出了在全息显示装置内待照明的空间光调制器(slm)的平面中(换句话说,在准直的扩展光源的傅里叶平面中)的互相干性的复杂程度的绝对值|μ12|的分布的俯视等高线图。可以通过使用图9的强度分布和图10中所示的二元相位分布来获得等高线图。可以看出,获得所提出的和所需的平台。这样的平台可以用于例如一维编码全息显示装置。

关于图9的实施例对于为使用子全息图的1d编码的全息显示装置准备或生成互相干性的复杂程度的绝对值|μ12|的分布是实用的。在该实施例中,例如,假定仅竖直视差编码,换句话说,子全息图透镜条纹段的竖直取向,并且例如假定滤色器条纹的竖直定向。全息图的时序rgb重建不需要实施滤色器。互相干性的复杂程度的绝对值|μ12|平顶分布足以在使用子全息图的1d编码的全息显示装置中使用。

对于使用仅竖直视差的1d编码,存在用相应的水平高斯函数变迹的水平rect函数和用另一竖直高斯函数变迹的竖直复值sinc函数。附加相位项可以将互相干性的复杂程度的绝对值|μ12|的定制分布的平面从远场转移到slm平面中。此外,可以将相位项添加到扩展光源的平面,以便例如补偿像差。

除了诸如图19中所示的分布的静态项或者为了形成复值扩展光源而对其进行求和的像差补偿静态相位项之外,可以将随机的动态相位分布添加到扩展光源的平面中。

照明装置内的简单方法可以是使用或多或少的标准动态扩散器。但这不会导致显示装置的均匀强度分布。另外,这种方法不够节能。为了提供准直单元的均匀照明,可以使用衍射光束整形元件,其提供存在于准直单元的平面中的平顶强度分布。准直单元可以包含例如基于衍射的布拉格衍射的透镜、离轴抛物面镜(oapm)、折射消色差透镜或工程扩散器。可以定制这些工程扩散器,以便在例如如图2所示的准直单元的入射平面中提供所要求的强度分布,同时利用例如如图8所示的待准直的扩展光源的限定强度分布照明。

必须存在于扩展光源平面内的动态空间随机相位调制必须快速合理。在单个时间帧内,作为光源的波长稳定的激光二极管被切换为“on”,即例如2ms,应该生成多个随机相位。

图12示出了已经在图11中示出的并且必须存在于显示1d编码的子全息图的slm的入射平面中的互相干性的复杂程度的绝对值|μ12|的分布的三维等高线图。slm的入射平面不是扩展光源的傅里叶平面,即不是在实现紧凑的直观式显示器实施例的情况下。这是为什么应该在例如如图3所示的扩展光源的平面中或例如如图4所示的将互相干性的复杂程度的绝对值|μ12|的所需分布转移到slm的平面中的相关平面中使用场透镜的原因。可以看出,空间分布具有一维子全息图的形状。可以进一步看出,沿着水平方向和沿着竖直方向充分消除了旁瓣。在生成全息三维场景或物体的头戴式显示器(hmd)的情况下,在形成互相干性的复杂程度的绝对值|μ12|的所需分布的扩展复值光源的傅里叶平面中提供包含子全息图的小slm可以是更实用的。

图13示出了已经在图11和12中示出的互相干性的复杂程度的绝对值|μ12|的分布的图像。这种分布应该存在于照明的slm的入射平面上。可以使用设置在例如扩展光源的平面中的场透镜以便将包含该分布的平面从扩展光源的傅里叶平面转移到照明的slm的入射平面中。例外情况是将slm直接设置在扩展复值光源的傅里叶平面内。

可以看出,在slm平面中获得的互相干性的复杂程度的绝对值的平台型分布具有一维子全息图的形状。消除了水平旁瓣和竖直旁瓣。

以下描述的实施例和解释涉及二维(2d)编码子全息图,或者换句话说,涉及全息图的2d编码。

在图14中,示出了可以在扩展光源的平面中使用的sinc型幅度分布的三维等高线图。与矩形子全息图的2d编码相关的该图14引用与线段类子全息图的1d编码相关的图9。然而,这里所示的互相干性的复杂程度的绝对值|μ12|的分布是针对全息图的2d编码和例如矩形子全息图进行优化。这里,用于沿着y-方向和沿着扩展光源平面的x-方向的修改的高斯变迹的数n为2。

换句话说,示出了扩展光源的幅度分布als,其被设计用于2d编码的矩形型(更具体的方形型)子全息图。幅度分布相当于矩形sinc(x,y)函数乘以用于沿着两个正交方向(即x-方向和y-方向)存在的两个高斯变迹函数的附加变迹因子exp(-nx22)乘exp(-ny22),其中使用n为2,σ为1mm。

图15示出了涉及关于图10所示的幅度分布als的二维sinc函数的二元相位轮廓φls或相位分布。换句话说,用于矩形子全息图的2d编码的光源的扩展复值分布是sinc函数,其包含附加高斯型幅度变迹。该复值sinc函数具有在图14中示出的幅度分布als和在图15中示出的相位分布φls。

然而,这里所示的互相干性的复杂程度的绝对值|μ12|的分布针对全息图的2d编码和例如矩形子全息图进行优化。

对于二维编码圆形子全息图,重要的是提供例如不应该超过例如5mm互相干性的圆形区域状平顶分布。这意味着提供具有例如5mm的直径的优选的圆形平顶状形相干区域。如已经指出的,假定子全息图的二维(2d)编码,其是优选的圆形。

换句话说,2d编码子全息图的方法是提供互相干性的复杂程度的绝对值|μ12|的平顶状形分布,优选圆形分布,其不应超过例如5mm的扩展。这种直径或扩展可以减小例如至低于人眼入瞳的直径。优选地,这里假定从slm平面到观察者距离的50%的最大编码物点距离。例如,如果观察者被放置在生成全息三维场景或物体的桌面型三维显示装置的前方的z=600mm处,则最大编码距离可以是例如300mm。子全息图的最大直径可以减小例如至仅低于3mm。这节省了计算负荷并且显著提高了计算和优化速度例如3x倍。

类似于所描述的在1d编码全息显示装置中使用的扩展光源的复值整形,复值sinc函数可以是用于2d编码全息显示装置的扩展光源的优选函数。例如,可以在扩展光源的平面内使用方形或矩形sinc函数。如果子全息图也被整形为方形或矩形,则优选这种函数。子全息图具有不同的形状(例如圆形或六边形)也是可能的。sinc函数的形状应该相应地适应于子全息图的形状。换句话说,sinc函数的形状可适应于子全息图的形状。并且,如已经公开的用于子全息图的1d编码,例如,附加高斯型变迹轮廓可以用乘法加到初始二维sinc(x,y)函数,例如矩形二维sinc(x,y)函数。

由于在图14中所示的分布的角落中不存在显著的幅度值的事实,因此可以将图15中所示的复值扩展光源的相应相位分布在这些角落区域中设置为例如恒定值。

图16示出了互相干性的复杂程度的绝对值|μ12|的分布的等高线图。这样的互相干性的复杂程度的绝对值|μ12|的分布应该存在于slm平面中,其中通过对光源进行准直来生成该分布,该光源在如图14和5所示的幅度分布和相位分布中被调制。此外,这种复值扩展光源设置有适合的场透镜。适合的场透镜确保互相干性的复杂程度的绝对值|μ12|的所需分布存在于所需平面中,该所需平面是slm的入射平面。

然而,如果没有使用适合的场透镜和扩展光源的标准准直,则类似于图16中所示的分布的分布存在于光源的傅里叶平面中。傅里叶平面设置在所使用的准直单元的后方并且具有距准直单元的主平面的距离,该距离相当于准直单元的焦距fcl。

图16可以与示出了针对1d子全息图优化的互相干性的复杂程度的绝对值|μ12|的分布的图11进行比较。然而,图16所示的互相干性的复杂程度的绝对值|μ12|的分布针对2d编码和矩形子全息图进行优化。

在图17中,示出了根据图16的互相干性的复杂程度的绝对值的相同分布的三维等高线图。

从图16和17中可以进一步看出,可以获得互相干性的复杂程度的绝对值的非常平滑的平顶型分布。这种互相干性的复杂程度的绝对值的非常平滑的平顶分布对于二维编码矩形子全息图是有利的。

例如,附加的球面相位项或例如通过附加场透镜实现的透镜函数可以被添加到存在于扩展光源的平面中的定制的复值分布中。这可以被执行以便将互相干性的复杂程度的绝对值|μ12|的分布准确地转移到slm的平面中,即转移到需要这种分布的平面中。可以执行附加校正以便例如补偿可以存在于光束路径内的其他像差。因此,也可以实施非球面相位项。

并且,例如由旋转或合理的快速横向偏移的工程扩散器提供的动态随机光束整形相位分布可以添加到存在于扩展光源的平面中的定制的复值分布。这可以被执行以便提供在每个重建的全息帧的时间段内(即在1ms至4ms的时间段内)所需的动态随机相位波动。使用定制的复值扩展光源的过程需要存在于该光源的平面中的动态和随机相位波动。前面的公开内容没有涉及有利的以便在slm的入射平面中提供均匀的强度分布的光束整形。然而,两个函数可以彼此组合。或者,两种功能也可以通过使用分离的光学元件来实现。

对于圆形子全息图,可以优选地使用互相干性的复杂程度的绝对值|μ12|的旋转对称平顶分布。

还可以优选地使用旋转对称子全息图,相比于方形或矩形子全息图,在假定适合用于该比较的方形的最大圆的情况下,旋转对称子全息图包含仅约0.785倍像素数量。这确保了编码功率和电功率。在考虑有效入瞳尺寸的情况下,该0.785倍可以进一步减小到例如0.1。

尽管所需的计算能力降低,但是优选将互相干性的复杂程度的绝对值的分布减小到所需的最小值以便使视网膜间物点串扰最小化。

用于圆形子全息图的扩展光源的优选分布是复值贝塞尔型分布。这与在这种情况下不是优选的旋转对称sinc(r)函数不同。这是由于贝塞尔分布提供了比使用sinc(r)函数的情况更好的互相干性的复杂程度的绝对值|μ12|的平稳型分布的事实。

图18示出了针对圆形子全息图优化的扩展光源的艾里型幅度分布。艾里强度分布与幅度分布的平方成比例。

图19示出了必须与图18中所示的幅度分布组合的相应的二元相位分布。这里获得的互相干性的复杂程度的绝对值|μ12|的分布针对2d编码和圆形子全息图进行优化。

换句话说,图18示出了乘以使用n为2和σ为1mm的附加变迹因子exp(-nr22)的贝塞尔型复值扩展光源的幅度分布,其中r是扩展光源平面内的半径。半径是r=(x2+y2)0.5,其中x和y是光源平面平面中的笛卡尔坐标。跨越0和1之间范围的水平步的数目是五十(50)。图19中示出了对应于待准直的二维贝塞尔型光源的这种幅度分布的二元相位分布φls(r)。扩展光源的复值函数由cls=als*exp(iφls)来定义。例如,贝塞尔型幅度分布的第一最小的直径为d1=300μm。

在图20和21中,示出了存在于具有如图18和19中所示的复值调制的准直光源的傅里叶平面中的互相干性的复杂程度的绝对值|μ12|的圆形平顶型分布的不同等高线图。这里所示的互相干性的复杂程度的绝对值|μ12|的分布针对2d编码和圆形子全息图进行优化。应该在光源平面中实施的场透镜函数将这种分布转移到slm的平面中,在那里需要它以便适合所使用的最大子全息图的形状。

因此,可以在扩展光源的平面中使用复值贝塞尔函数,以便提供照明slm所用的互相干性的复杂程度的绝对值的圆形平顶平台型分布。幅度变迹窗函数的若干附加分布可以用作初始贝塞尔函数乘以的因子。

图22示出了在如图18和19所示的调制的准直光源的傅里叶平面中的互相干性的复杂程度的绝对值的圆形平顶型分布的灰度图。图22也可以与图13进行比较,图13表示1d编码的子全息图的情况。这里所示的互相干性的复杂程度的绝对值|μ12|的分布针对2d编码和圆形子全息图进行优化。从这里可以看出,互相干性的复杂程度的绝对值|μ12|的分布根据需要被形成用于二维(2d)编码的圆形子全息图。在扩展光源的平面中需要透镜函数,以便将互相干性的复杂程度的绝对值的所需分布转移到slm的平面中。因此,图22所示的分布表示在slm的入射平面中的互相干性的复杂程度的绝对值|μ12|的分布。

在以下部分中,将描述待准直的光源平面的复杂幅度的分布的进一步修改。

如已经公开的,例如与高斯函数组合的静态和复值sinc(y)函数、sinc(x,y)函数或贝塞尔函数可以用于获得互相干性的复杂程度的绝对值|μ12|的预期的平顶分布。在扩展光源的平面中的透镜型相位项可以用于将所述分布转移到slm平面。并且附加幅度项(例如gauss或gauss(x,y)n,n=1,2,...(正整数,例如))可以用于在空间非相干方向上的扩展光源的平面,以便抑制由扩展光源生成的衍射图案中的旁瓣,即抑制互相干性的复杂程度的绝对值|μ12|的分布的旁瓣。此外,已经提供例如sinc类幅度轮廓或分布沿着相干方向存在于扩展光源的平面中的复值的幅度可以与如例如n≥2的gaussn轮廓(也被称为超高斯)的附加幅度轮廓或分布叠加。

本发明的教导还包括获得互相干性的复杂程度的绝对值|μ12|的所需目标分布的另外方法。据此,使用互相干性的复杂程度的绝对值的目标分布作为起点并且通过例如使用反傅里叶变换来计算待准直的扩展光源平面的复杂幅度的分布也是可能的。这也可以以迭代的方式完成。因此,使用迭代傅里叶变换算法(ifta)以便获得扩展光源平面的复杂幅度的分布也是可能的。尽管傅里叶变换可以用作优化的起点,但是必须最终考虑在扩展光源的平面中所需的附加透镜项。然而,直接在slm平面中开始并且向后使用波传播方法,以便获得离散显示实施例中所需的扩展光源的复值分布也是可能的。

主过程可以是使用最少数量的可能光学元件。因此,如果可能且适当的话,可以组合不同光学元件的功能。

通常,优选将互相干性的复杂程度的绝对值的分布整形为平顶分布。然而,供选择地形状分布,(例如高斯形分布或凯泽-贝塞尔-窗(kaiser-bessel-window)形空间相干分布)也是用于互相干性的复杂程度的绝对值|μ12|的分布可能候选者。此外,如果在编码操作期间考虑,则可以使用具有相移旁瓣的sinc函数类形相干分布。

下面详细描述为1d和2d编码的全息图提供定制相干性的另外的示例性实施例。考虑到的距光源平面的传播距离对于slm平面内的不同位置可以不同。例如,在使用楔型背光单元的情况下就是这种情况。设置有互相干性的复杂程度的绝对值|μ12|的所需目标分布的平面是slm的平面。因此,从准直单元到slm的传播距离对于slm平面的不同段可以不同。准备和生成互相干性的复杂程度的绝对值|μ12|的分布应该考虑这种不同的传播距离。

1)利用互相干性的复杂程度的绝对值|μ12|的固定分布工作:

可以使用若干方法。一种方法可以是利用例如对slm区域的中心是最佳的但在slm的其他区域中有点小或大的互相干性的复杂程度的绝对值|μ12|的分布工作。这意味着应该使用合理接近于最佳值的实际折衷方案。

利用在slm区域的中心内可以是最佳的互相干性的复杂程度的绝对值|μ12|的固定分布的工作应该需要较少的技术努力。然而,必须注意的是,改变的传播距离将改变互相干性的复杂程度的绝对值的分布。可以以实现固定实施例的方式选择光学设计,其提供在待照明的slm的平面内可以是最佳平均值的互相干性的复杂程度的绝对值|μ12|的分布。

2)低数值孔径设置:

使用低数值孔径使实现大的焦深成为可能,这可以应用于在全息显示装置的光学系统内互相干性的复杂程度的绝对值|μ12(x,y,z)|的分布的传播。这意味着可以使用对光源准直的准直单元的长焦距fcl。例如,对于显示装置,fcl=250mm的准直单元的焦距可以改变为fcl=500mm或者甚至改变为更大值的焦距,其可以是例如fcl=750mm。

举例来说,如果假定dcl的准直单元的固定直径,则准直单元的数值孔径是nacl=sin(arctandcl/(2*fcl))。对于dcl=50mm的直径和fcl=500mm的焦距,数值孔径为nacl=0.05。并且如果焦距从fcl=500mm改变为fcl=250mm,则数值孔径为nacl=0.1。在仅使用小孔径角的情况下,准直单元的焦距加倍意味着数值孔径减半。数值孔径是na=sin(u/2)。如果准直单元的焦距fcl除以其直径dcl,则获得fcl数。如果fcl=10改变为fcl=5,则数值孔径nacl=0.05改变为nacl=0.1。

因此,焦深(dof)与数值孔径的平方成比例,即dof~na2。在该示例中,数值孔径减半意味着焦深增加四倍。

项1)利用互相干性的复杂程度的绝对值|μ12|的固定分布工作——可以与项2)低数值孔径设置组合——以便提供具有可以沿着实际传播长度z保持的合理恒定复值分布的波场。

3)通过使用焦点采样方法来增加焦深:

用于为1d和2d编码全息图提供定制相干性的另一选项是通过使用焦点采样方法增加准直单元的焦深(dof)或更详细地增加准直单元的后方的焦深。例如,可以提供相位采样设置作为准直单元的相位校正轮廓,以便增加焦深。

这意味着相位校正轮廓被添加到准直单元的函数中。为了这样的目的和作为示例,相位校正轮廓包含具有恒定相位分布的三个段。这意味着这些段不会改变初始准直单元的焦点。三个附加段进一步增加正焦距并且三个段进一步增加了负焦距。因此,另外实现了九个段(3×3=9)。因此,可以增加支承附加相位校正轮廓的准直单元的焦深。作为分段相位校正轮廓的负面效应,存在于用于准直和所提到的相位校正的组合透镜的焦点区域内的点扩散函数的一些峰值是存在的。可以改变分段的轮廓以便获得校正轮廓的连续分布。使用立方体表面或立方相位轮廓作为提供增加的场深度的校正轮廓也是可能的。

可以以考虑所使用的离散焦点采样方法的方式来执行待准直的扩展光源的复值分布的优化。因此,可以优化关于准直单元的平面的光源平面,以便在slm的平面内提供互相干性的复杂程度的绝对值|μ12|的最优分布。用于补偿从扩展光源的平面到slm的光程差的校正轮廓可以优选地添加在准直单元的平面中。但是,此外,可以靠近扩展光源的平面添加进一步的微小相位校正。

存在多个进一步的相位采样实施例。例如,另一个选项可以是在准直单元中使用相位校正轮廓的二维巴克码类采样,优选地使用相位校正轮廓的二维旋转巴克码类采样或相位校正轮廓的二维x-y对称巴克码类采样。这种二维巴克相位值分配图案可以是两个嵌套相位分布的二元图案。二维巴克相位值分配图案还可以具有更高的位深度,例如,其允许例如三个或五个不同的相位校正轮廓的空间采样。

代替使用相位校正轮廓的扇形状空间采样或者添加到主准直单元的相位函数的相位校正轮廓的二维巴克码类空间采样,使用voronoi图也是可能的。这样的voronoi图具有随机化的二维段。可以将这些段分配给不同的相位校正轮廓。

例如,更简单的采样分配轮廓是使用条带交错相位校正功能或使用棋盘格类分配轮廓。

根据所使用的离散空间采样方法,可以生成应该被考虑关于存在于slm平面中的互相干性的复杂程度的绝对值|μ12|的设计分布的影响的伪象。因此,离散实施例可以限定在特定和个别情况下使用的最佳采样方法。

通常,减少采样区域的横向扩展将生成向衍射主导体制的过渡。这适用于所有空间采样方法。所有采样设置或采样分配轮廓可以用于解决折射或衍射相位校正轮廓的采样。

4)通过使用衍射焦点采样方法来增加焦深:

可以添加到准直单元的相位函数以便沿着增加的光传播长度提供互相干性的复杂程度的绝对值|μ12|的设计分布的相位校正轮廓也可以通过使用衍射结构来实现。这意味着,例如,可以将衍射透镜函数添加到准直单元的主函数中。

尽管可以对衍射函数进行空间采样,但这并非绝对必要的。衍射函数也可以用作若干衍射结构的叠加,其覆盖例如准直单元的整个出射孔径。例如,使用准直单元的入射平面并且将两个衍射校正透镜函数的叠加放置在该平面内是可能的。这可以在一个平面内完成,而无需使用衍射相位校正轮廓的空间分离采样。这意味着可以以模2π方案添加两个相位校正轮廓。

举例来说,假定准直单元将承载关于被称为准直的波阵面整形的主负载。描述简单的设置,假定包含三个原色的光束路径的三个分开的通道。该准直单元生成准直波场,该准直波场可以通过平面波的角谱来描述。现在,可以将简单的菲涅耳型表面起伏衍射透镜函数添加到准直单元的函数中。该菲涅耳型表面起伏衍射透镜函数可以具有例如fc1=1m的焦距。如果局部纵横比接近于换句话说,凹槽和边缘或“线和空间”具有相同的横向扩展,并且二元相位结构的蚀刻深度为:

detch=λ/(2×(n-1)),(1)

其中λ是波长并且n是材料的折射率,其中可以是例如菲涅耳透镜的衍射结构被在这个波长蚀刻,衍射效率达到最大值。可以优选地实现例如仅η=0.3的衍射效率。因此,可以减小菲涅耳型表面起伏衍射透镜函数的蚀刻深度。或者必须改变衍射二元型菲涅耳透镜的纵横比,该衍射二元型菲涅耳透镜被正确地称为菲涅耳波带片,该菲涅耳波带片不同于菲涅耳透镜,该菲涅耳透镜也具有径向区域状结构但是梯度轮廓而不是二元轮廓。

可以将第二菲涅耳波带片型二元表面起伏衍射透镜函数添加到准直单元。这种衍射透镜函数可以具有例如fc2=-1m的焦距。可以使用减小的蚀刻深度以便实现例如仅η=0.3的衍射效率。或者可以使用π-移实现蚀刻深度,见方程式(1),并且将纵横比从改变为不同的值。该第二衍射相位分布可以以模2π方案添加到第一衍射相位分布。

使用标准的消色差准直单元并且在准直单元的入射表面处添加第一衍射结构并且在准直单元的出射表面处添加第二衍射相位分布也是可能的。这导致增加的设计自由度和复杂性。

此外,可以优选地在所使用的不同原色rgb的分离光束路径内使用衍射校正。因此,仅在不同原色rgb的分离光束路径内使用衍射校正也是可能的。例如,消色差准直单元可以用于包含所有原色rgb的颜色组合光束路径。因此,消色差准直单元或者例如用于所有原色rgb的准直的离轴抛物面镜(oapm)可以具有准直功能的主要负载,而校正可以在光击中准直单元的主准直光学元件(其可以是例如透镜元件或镜型元件)之前对各个颜色分别执行。

5)通过使用偏振采样方法增加焦深:

可以添加到准直单元的相位函数以便沿着增加的光传播长度提供互相干性的复杂程度的绝对值|μ12|的设计分布的相位校正轮廓也可以通过使用光的不同偏振状态来实施。光可以分成两个正交的偏振状态。可以在两个分离的光束路径内应用两个相位校正轮廓或函数。两个分离的光束路径可以重新组合,并且例如以与两个正交偏振成45度定向的出射偏振滤光器可以确保光的单个偏振状态。这种具有单一偏振状态的光在其到待照明的slm的途径中进一步传播。

6)连续相位校正轮廓:

通常,可以使用非球面光学元件或自由曲面,以便提供互相干性的复杂程度的绝对值|μ12|的设计分布的增加的焦深。直接方法可以是提供包含至少一个准直透镜的准直单元,该准直透镜在其内部区域中具有第一焦距并且在其外部径向区域中具有第二焦距。对于>0.2的数值孔径na,甚至球面透镜可以是合适的,并且可以将其与传统球面像差进行比较。因此,准直透镜也可以具有实现不同焦距的三个径向区域。连续转换可以应用于由准直透镜或单独添加的相位校正元件实现的相位轮廓。可以通过使用光学仿真软件的众所周知的优化例程来计算相位校正轮廓。为此,应该限定边界条件,换句话说,应该限定一组可接受的最大误差值以使可以开始自动优化过程。

相位校正功能(其增加光学系统的点扩散函数(psf)相对于焦平面的变化的不变性,例如回顾从准直单元的出瞳到slm平面的非等效路径长度的情况)可以具有径向对称功能或者甚至非径向对称功能。

合理的小立方相位校正项也可以被加到准直单元的函数中。或者,可以增加例如三倍、四倍和更多倍的相位分布,其被称为花瓣状相位校正轮廓。立方相位校正由下式给出:

可以将显著不对称形状加到点扩散函数。这可能不是有目的的,以便沿着焦深的合理的长z-范围(z-方向)生成互相干性的复杂程度的绝对值|μ12|的设计分布。在方程式(2)中,值α(alpha(阿尔法))是用于调整散焦不变性的比例因子。增加的α的值将不仅导致关于散焦的增加的不变性,即较大的焦深,而且会导致由修改的点扩散函数提供的减小的空间分辨率。

尽管可以根据此通过设计待准直的扩展光源平面的复值分布来考虑非对称形状点扩展函数,换句话说,通过将其考虑用于光源设计,单个主立方相位项(见例如方程式(2))可以由相互旋转的立方项的叠加代替,该相互旋转的立方项生成较小的不对称点扩散函数。如果编码的子全息图具有矩形形状,则可以优选地使用两倍或四倍的立方相位校正轮廓。对于圆形子全息图,相位校正轮廓的三倍或五倍对称性可以是优选的。通常,可以使用多个校正轮廓,其可以被称为扩展景深校正轮廓或波阵面编码孔径。

7)相位项校正与扫描的组合:

另一种方法是在整个slm平面内提供互相干性的复杂程度的绝对值|μ12|的设计分布可以将互相干性的复杂程度的绝对值的分布的生成与动态时序自适应组合。在使用扫描提供照明装置的情况下,焦点变化(其纵向地(即沿着照明slm的光的传播距离)转移互相干性的复杂程度的绝对值|μ12|的分布)可以实施与扫描照明同步。因此,可以将最佳散焦校正相位轮廓加到被照明的slm段。这在准直单元中或在准直单元的前方,即例如在扩展光源的平面中执行。相比于非扫描照明方法,应该跨越短但固定时间的焦深减小。该方法在图25中被示出。这里,实施波场曲率的动态变化。如果合理的快速扫描照明用于slm,则可以实现波场曲率的动态变化,其与扫描装置同步。因此,不管不同的光程长度,互相干性的复杂程度的绝对值|μ12|的所需分布在slm平面内。

可以通过使用快速可变焦距透镜或可变形镜元件来提供焦点变化的简单实施。可变焦距透镜或可变形镜提供时间相位校正,其可以是球形散焦项。该时间相位校正应该在slm照明的一个帧内执行,换句话说,例如仅在几毫秒内(例如在10ms内)执行。

两个交叉或若干相互旋转的有源型液晶(lc)光栅或lc偏振光栅也可以用于提供合理的快速散焦项,其沿着z方向随着时间转移互相干性的复杂程度的绝对值|μ12|的设计分布的平面。

与互相干性的复杂程度的绝对值|μ12|的分布的纵向移位同步的扫描照明也可以以并行方式实施,即,一次使用若干空间分离的照明区域。照明区域可以明显大于所使用的最大子全息图的扩展。此外,优选地使用在状态“无照明”和状态“具有最大强度值的照明”之间的平滑过渡。具有最大强度值的照明路径可以具有优选大于3mm的扩展。

图23示出了准直单元cl和在楔型照明单元bu的前方的扫描照明的实施。准直单元cl和楔型照明单元bu都是照明装置的部件。

因此,图23示出了这里通过使用背光照明单元的slm平面的扫描照明的实施,该slm平面必须利用互相干性的复杂程度的绝对值|μ12|的设计分布照明以实现高重建质量。对于通过互相干性的复杂程度的绝对值|μ12|的设计分布照明slm,提供沿着待照明的slm的入射平面按时间顺序扫描的照明段isn,这里是两个照明段is1和is2。照明单元bu包含两个体积光栅vg1和vg2,例如两个基于布拉格衍射的体积光栅。在光的传播方向上看,体积光栅vg1和vg2提供存在于准直单元cl的后方的波场的2倍10x变形光束扩展。最初由被准直且未示出的扩展光源发射的两个光束或波场b1和b2通过扫描单元sm反射并且在准直单元cl的方向上指引。扫描单元sm可以被设计为扫描镜元件sm,优选地是二维扫描镜元件。两个波场b1和b2是传播到这里被设计为二维扫描镜的扫描单元sm上的两个示例性波场。当然,提供进一步的照明段isn是可能的。这意味着根据照明段isn的数量,提供相同数量的波场bn以生成照明段isn。对于每个波段,这里例如对于b1和b2,可以增加动态球形相位项。波场b1和b2被扩展和重定向,以便形成照明段isn,该照明段isn进一步沿着光束路径存在于slm的入射平面中。

动态球形相位项提供取决于准直单元cl与待照明的slm的入射平面的位置之间的距离的互相干性的复杂程的绝对值|μ12|的分布。这意味着可以将可变焦点光学器件加到照明装置中。这种可变焦点光学器件可以设置在所示的光束或波场b1和b2的前方,即例如在对未示出的扩展光源进行准直的未示出的准直单元处。

在图24中,光程长度的局部差异存在于设置在如图23所示的楔型照明单元bu的入射平面中的准直单元cl和待照明的slm之间。换句话说,图24示出了通过使用楔型照明单元bu增大进入照明单元bu的初始波场而引入的光程长度的差异。光程长度的差异存在于进入楔型照明单元bu的波场与存在于照明单元bu的出射平面中的合成增大波场之间。可以看出,出射波场swf的左下角具有最短的传播长度,并且出射波场swf的右上角具有最长的传播长度,因为光在包含体积光栅vg1和vg2的楔形物内的传播时间。在光进入楔形物之后,第一光输出位于楔形物的左下角,如图24所示。因此,从楔形物上的该位置发射的该光波具有最短的传播长度。光在楔形物内部进一步传播,以使最后的光输出位于楔形物的右上角。因此,从楔形物上的该位置发射的该光波具有最长的传播长度。因此,由照明单元bu生成的总波场swf具有含有不同光程长度的光波。这是由图25解决的问题,即图23或24中所示的设置与图25中所示的实施例结合。

图25示出了能够提供波阵面的曲率的快速动态变化的装置。这种装置可以用于扫描照明单元,例如,如图23和24所示,以便补偿传播到slm的光程长度的局部差异。可以优选地在楔型照明单元中使用这种装置。因此,示出了通过使用小镜元件m的时间相关纵向移动δz(t)来按需提供充当时间相位校正轮廓的时间散焦或波阵面曲率的装置的示例性实施例。小镜元件m可以设置为靠近聚焦元件fe(这里是聚焦透镜)的焦平面。小镜元件m的平移由平移单元来引导。平移单元可以是例如压电陶瓷平移(pzt)元件或音圈(vc)。在光源ls和镜元件m之间的光路中提供偏振分束器pbs。在偏振分束器pbs和镜元件m之间设置四分之一波片λ/4(或者也被称为qwp)。偏振分束器pbs和四分之一波片λ/4以这样的方式组合,即可以提供所需的光束路径的分离。在操作中,由光源ls发射的光被te(横向电)-偏振并且被入射在准直元件ce上并且然后被入射在偏振分束器pbs上。偏振分束器在四分之一波片λ/4的方向上反射和指引光。在通过四分之一波片λ/4之后,光通过聚焦元件fe并被入射到镜元件m上。光被镜元件m反射并且再次通过聚焦元件fe、四分之一波片λ/4和偏振分束器。离开偏振分束器pbs的光被tm(横向磁)-偏振并且在slm的方向上传播。优选的是在背光单元的前方,即在具有小光束直径的光束路径的部分处提供这种动态散焦单元。

可以在khz范围内提供球面波阵面校正或散焦。例如安装在音圈中心的小镜元件m可以在大于20khz的频率下略微振动。图25中所示的装置是示出了可以按需并且以快速方式生成波阵面曲率(在图25中被指定为波阵面:w(t))的示例。

存在可以使用以便充分地考虑从准直单元到slm的光的传播距离内的差异以便在被照明的slm的入射平面中提供互相干性的复杂程度的绝对值|μ12|的最优分布的多个可选实施例。

所公开的所有通用方法和实施例可以彼此组合,以便获得针对特定实施例的定制解决方案,而与例如是否使用扫描照明的事实无关。

对本发明的进一步说明:

如已经公开的,一种用于定制照明复值slm的光的互相干性的复杂程度的绝对值|μ12|的分布的解决方案是基于slm的两个相位像素的横向光束组合。为此目的,结合待准直的扩展光源平面的优化幅度分布的使用并且结合待准直的扩展光源平面的优化相位分布的使用来提供动态相位随机化平面的使用。因此,只有必须彼此组合以便生成复值像素的波场段具有互相干性的高程度并因此具有高可见度。这样的实施例可以用于基于例如两个相邻的相位像素的横向波束组合的复值slm。这是一个非常特别的实施例。可以在应该在远场中生成复值像素的两个相邻相位像素的组合和包含必须连贯地叠加的复值像素的大全息图的整个区域之间区分。

例如,如果存在vpo型1d编码并且组合两个相邻的相位像素列以便形成列状复值像素,则互相干性的复杂程度的绝对值|μ12|的分布的水平宽度必须与待组合的两相位列一样大,而竖直扩展与最大一维子全息图一样大。

以下描述涉及相干区域的优选扩展。

人眼的入瞳限定将空间中的物点成像到人眼的视网膜上的光学系统的数值孔径。并且如已经描述的那样,通过入瞳通过物点到slm上的投影来限定待编码的子全息图的尺寸可以是有利的。应该指出的是,子全息图可以具有任何尺寸和任何形状。换句话说,子全息图的尺寸和形状不依赖于眼睛的入瞳的尺寸和形状。通过在靠近简单几何投影区域的slm上使用附加的动态变量和可寻址空间以便描述子全息图,可以改变收集待聚焦到物点上的光的区域。应该进一步指出的是,子全息图的几何形状的这种附加变化可以在空间中重建的物点的显著增加的位深度中转移。这也意味着可以使用增加的子全息图以增加物点的亮度。如已经说明的那样,边界条件是互相干性的复杂程度的绝对值|μ12|的分布必须适应所使用的最大子全息图的尺寸和形状。

除了显著增加在空间中重建的点的位深度(bitdepth)的选项之外,校正所使用的观察窗到slm上的几何投影将导致显著更低的计算负荷。换句话说,不需要通过使用观察窗到slm上的几何投影来定义子全息图尺寸,并且可以使用比必要的更多复值slm像素。

例如,在100cd/m2的亮度下,人眼的入瞳的平均直径约为2.9mm。作为例如桌面监视器或电视显示装置的2d显示装置的时间允许生成(300至500)cd/m2的亮度。人眼的入瞳使用6.6mm2的面积。观察者平面中的观察窗(观察者通过其可以观察到重建的优选三维场景或物体,具有10mm×10mm的尺寸)使用100mm2的面积,相比于以100cd/m2的亮度的入瞳,这是15倍。

将子全息图尺寸限制为几何投影的入瞳而不是观察窗将使为子全息图提供的面积减少15倍。这是关于所需的计算能力和获得的图像更新速度的本质区别。

重要的是考虑眼球运动、通过应用于摄像机数据(图片)的三角测量算法提供的眼睛的跟踪期间的几何跟踪精度和时间不确定性,即跟踪单元的更新时间,其还包括在提供精细跟踪的显示装置内使用的有源型平面内lc偏振光栅的响应。因此,如果需要的话,可以将一毫米加到2.9mm的值以进行补偿。换句话说并且例如,约3.9mm的直径可以在观察窗的中心用作为投影到slm上的圆形参考区域。因此,定义了圆形子全息图。这导致观察窗中心的面积为11.9mm2。这再次导致观察窗内的足够大的区域和与观察窗的整个区域相比的大因子,以便毫无困难地观察重建场景。可以用于实现子全息图的2d编码实时计算的这个大因子是重要的。小附加区域被加到由入瞳到slm上的投射定义的子全息图区域。为简单起见,如果人眼入瞳的直径例如假定为2.9mm并且在显示装置的前方在从显示装置到观察者的距离的50%处形成真实物点,则从入瞳到slm的几何投影是圆形区域,该圆形区域具有2.9mm的直径。增加附加区域意味着这个直径可以增加到例如3.5mm。这对应于将小附加区域加到子全息图区域,其可以通过入瞳到slm上的几何投影来定义。换句话说,子全息图的面积必须不对应于入瞳的尺寸和面积。这根据眼睛跟踪(也被称为入瞳跟踪)的不确定性来执行。

进一步的改进是实施子全息图尺寸的动态变化的能力。这可以通过使用几种方法来执行。

一种方法可以是使用所显示的平均亮度或观察者眼睛所暴露的平均亮度。由于相关性,可以使用现有的查找表数据。因此,在提供具有高亮度的内容的情况下进一步减小子全息图尺寸是可能的。例如,在300cd/m2的亮度下,入瞳的平均直径约为2.5mm。可以将一毫米加到该平均直径以补偿入瞳跟踪公差。这导致直径约为3.5mm并且因此面积为9.6mm2

另一种方法可以是使用已经通过入瞳跟踪获得的摄像机数据。入瞳的直径可以通过入瞳图像来获得。这种方法简单且快速。这也可以与使用眼睛暴露的亮度的方法组合。

子全息图的编码的增强的方法基本上与互相干性的复杂程度的绝对值|μ12|的定制生成的方法关联:

·编码1)

最简单的情况可以是具有互相干性的复杂程度的绝对值|μ12|的平台型分布,该平台型分布具有合理的恒定值并且至少与用于编码的最大子全息图一样大,如可以在例如图20至22看到。例如,平台的值为即具有平均值和该平均值仅略微变化,该变化可以在±5%的范围内。在这种情况下,子全息图的编码可以将用于全息三维场景的编码的子全息图的所有复杂像素视为相等。换句话说,所有复值slm像素具有1的相关权重,并且因此被视为全部相同。换句话说,如果子全息图的像素例如在全息显示装置的前方1米处形成真实物点,则可以假定所有像素都有助于生成具有相同的量或相同的权重的物点。所有像素具有相同的互相干性的复杂程度的绝对值,其可以是例如0.9。因此,相比于1.0的理想情况,该值足够高。

如之前部分中所述,可以使用迭代优化过程以便获得待准直的扩展光源的优化复值分布。这种优化复值分布精确地生成所需的互相干性的复杂程度的绝对值|μ12|的平顶平台型分布。

·编码2)

另一种情况可以是生成具有合理恒定平台的部分的互相干性的复杂程度的绝对值|μ12|的分布。如果最大子全息图适应这个互相干性的复杂程度的绝对值|μ12|的分布的平台型部分,即所有子全息图都适应这种分布并且最大子全息图用于编码,编码可以将用于全息三维场景的编码的子全息图的所有复杂像素视为相等。平台部分可以具有例如应该是足够的0.9的值。

略微挤压例如竖直定向的sinc型强度分布以便将该强度分布的两个最大峰值移出所使用的最大子全息图的横向扩展也是可能的。在被放置在子全息图尺寸之外的两个最大峰值的这种情况下,在互相干性的复杂程度的绝对值|μ12|的分布的边缘处的两个最大峰值不会影响恒定的加权编码。

·编码3)

增强的全息编码的另一种情况可以是考虑互相干性的复杂程度的绝对值|μ12|的现有分布。这可以通过存在于slm的平面中的互相干性的复杂程度的绝对值|μ12|的任何分布来执行。作为该方法的起点,应该提供已经合理接近于互相干性的复杂程度的绝对值的最优分布的互相干性的复杂程度的绝对值|μ12|的分布。因此,必须仅实现和执行子全息图的复数值的权重的小校正。换句话说,互相干性的复杂程度的绝对值|μ12|的理想分布可以被假定并且被用于全息图的编码。然而,互相干性的复杂程度的绝对值|μ12|的实际分布可能与此不同,其例如可以是由于使用的光学装置和存在的像差。这种互相干性的复杂程度的绝对值|μ12|的实际分布可以被描述为理想分布,其通过附加像差来修改并且可以在被照明的slm的入射平面中不同。在这种情况下,考虑互相干性的复杂程度的绝对值|μ12|的实际的局部略微变化分布是有利的。以这种方式,局部变化校正可以用于编码。例如,互相干性的复杂程度的绝对值|μ12|的圆形平顶分布在slm的中心具有3mm的直径并且在slm的边缘处具有例如3.5mm的直径。因此,编码和视网膜间物点串扰的相关优化减少在slm的中心使用3mm相干区域和在slm边缘处使用3.5mm相干区域。

这意味着,例如,对于用于具有适合于内部平台区域的扩展的所有子全息图的互相干性的复杂程度的绝对值|μ12|的分布,不需要进行任何改变。这进一步意味着子全息图的所有这些像素的互相干性是相同的。对于子全息图的所有这些像素,可以应用互相干性的复杂程度的绝对值|μ12|,例如0.9的值。对于1d编码的形成单个物点的一维子全息图的一维衍射透镜段,或者对于2d编码的形成单个物点的二维子全息图的优选的圆形衍射透镜段,针对空间中的物点和子全息图的计算内的所有复值像素可以具有相同的权重,其可以例如设置为一(1)。在单个例如形成子全息图(其在三维全息显示装置的观察体积中生成真实或虚拟物点)的复值像素的后方传播的波段或透镜段在子全息图的远场中被加在一起。这可以通过方程式来描述。该方程式包含像素与远场中的物点之间存在的相互相位差,其中电磁波场段被求和。此外,该方程式包含每个像素的幅度值和相位值。并且该方程式包含求和的电磁波场段的互相干性的复杂程度的绝对值|μ12|(相互可见度)。这意味着互相干性的复杂程度的绝对值|μ12|充当权重因子,或更详细地,充当作为相互可见度的值的相互权重因子的分布,其可以用于计算视网膜物点和用于计算视网膜间物点串扰。换句话说,互相干性的复杂程度的绝对值|μ12|是用于优化视网膜图像质量的基本元素。

具有比内部平台区域更大的扩展的子全息图应该针对数学权重(用于计算最终获得的视网膜图像的相互可见度的数学值)改变,该数学权重是指在子全息图的编码期间的每个复值像素。子全息图的编码是子全息图的计算的过程以及在该过程内使用的相应方法。在这种情况下,形成大子全息图的像素的互相干性不相同。与互相干性的复杂程度的绝对值|μ12|的分布的外边缘相关的像素具有约1的互相干性的绝对值,而子全息图的内部像素具有相似但是不相同的例如约0.9的互相干性的复杂程度的绝对值|μ12|。

互相干性的复杂程度的绝对值|μ12|的非恒定分布的基本物理效应是在3d空间中形成物点的衍射透镜结构内局部应用的关于衍射效应的子全息图的不同部分的非恒定分布。例如,可以用恒定的强度分布照明形成透镜函数的圆形区域。因此,该区域可以生成充当真实物点的焦点。如果所有贡献像素具有相同的互相干性,则它们具有关于焦点形成的相同数学权重。如果互相干性不相同,则会产生若干效应,这些效应取决于互相干性的复杂程度的绝对值|μ12|的离散分布。可以扩大物点,同时减小旁瓣的高度。然而,形成的焦点的内部区域的尺寸减小,同时旁瓣的高度增加也是可能的。除了形成的焦点分布的变化之外,还生成强度偏移,即所谓的dc值,其对于以这种方式减小的图像对比度是不利的。这是适用于至少部分相干的所有类型的图像或波场形成实施例和过程的基本效应。因此,互相干性的复杂程度的绝对值|μ12|的分布的效应通常也可以被考虑用于使用例如在光束整形或测量应用中使用的计算机生成的全息图(cgh)。

更详细地,互相干性的复杂程度的绝对值|μ12|的分布利用在三维空间中形成物点的更高空间频率。这可以在研究完全相干调制传递函数(mtf)、部分相干mtf和不相干mtf之间的差异的情况下被理解。相比于产生具有例如约0.9的互相干性的绝对值的衍射重建物点的子全息图的内部区域或地区,与互相干性的复杂程度的绝对值|μ12|的分布的外边缘相关的slm的子全息图的复值像素产生具有例如接近于1的互相干性的绝对值的衍射重建物点。换句话说,增加了子全息图边缘的数学权重。这导致形成的焦点的略微减小的中心峰值和旁瓣的峰值略微增加的峰值。

等效模型(其可以用于描述互相干性的复杂程度的绝对值|μ12|的非恒定平顶型分布的所产生的效应)可以使用衍射菲涅耳透镜或菲涅耳波带片。这种衍射菲涅耳透镜或菲涅耳波带片可以在边缘处具有高衍射效率并且在内部区域内具有降低的衍射效率。可以用平面波照明该衍射菲涅耳透镜或菲涅耳波带片。由该衍射元件引入的衍射的结果是具有略微减小直径的生成的焦点,其中相比于在衍射菲涅耳透镜或菲涅耳波带片的整个区域内恒定的衍射效率,通过该衍射仅生成略微增加的旁瓣。

因此,子全息图的计算可以考虑互相干性的复杂程度的绝对值|μ12|的当前分布并且假定在超过内部平台区域的大子全息图的边缘处的略微较高的衍射效率。放置在大子全息图的外边缘处的子全息图的这些复值像素的幅度值可以略微减小,以便补偿边缘区域或地区的略微较高的衍射效率。虽然看起来这些是小效应,但它们都有助于降低伪像的整体图像质量。因此,应该补偿效应以便提供尽可能高的图像质量。所描述的补偿可以通过与子全息图的边缘区域相关的slm的复值像素的附加幅度因子来执行。更确切地说,编码通过使用例如子全息图的幅度校正来执行。定义整个三维场景的全息图被转换为复值slm及其像素。

通常,这可以用于互相干性的复杂程度的绝对值|μ12|的不同分布。如已经公开的,子全息图尺寸可以显著减小,以便仅略微大于到人眼的入瞳上的几何投影。该过程降低了全息图的2d编码所需的计算能力,例如,降低了10倍。

关于在待准直的扩展光源的平面中实现强度分布,可以指出的是,待准直的扩展光源的强度分布可以以不同方式实现。光源的尺寸是重要特征。这意味着光源的尺寸应该尽可能小。因此,例如sinc型孔径轮廓或分布的旁瓣明显更小。

使用偏振也是可能的。为此目的,使用图案化延迟器和偏振滤光器或用例如线性偏振光照明的简单图案化偏振滤光器的组合以便即使在小尺寸下也能生成强度轮廓也是可能的。

此外,使用二元图案是可能的。如图8中可以看出,灰度分布可以转换为二元图案。如果该二元图案的临界尺寸(cd)太小以致于从光的传播方向上看在扩展光源的后方提供的光学系统不能解析二元图案,则可以使用这种类型的结构来生成有效的灰度分布。光学系统的数值孔径越小,则由其传递的空间频率越低。这通过调制传递函数(mtf)来描述,该调制传递函数(mtf)是描述如何通过所使用的光学系统对单个物点进行成像的点扩散函数(psf)的傅里叶变换的绝对值。例如,使用1μm的临界尺寸的二元幅度掩模可以用于生成待准直的扩展光源的幅度分布。边界条件是光源平面的1μm宽像素在观察窗的平面中将不可见。统计随机图案的使用可以是一种优选的选项。但使用所谓的二元图案的波尔卡点分布也可以是可能的。使用固定地址光栅的波尔卡点分布也可以通过使用例如在一个或两个方向上的各个单个点的统计随机和正常分布的横向移位来随机化。因此,可以减少由于限定的拖影或明确定义的空间频率的模糊而导致的衍射伪像。

将表面起伏轮廓面向下浸入到有色粘合剂中也是可能的。还可以被引入的附加相移可以在任何使用的附加相位掩模内考虑和校正。

此外,用于生成衰减相移掩模的技术也可以用于提供所需的幅度分布和相位分布。这意味着,例如,可以使用根据所应用的高能电子束辐射的剂量永久地改变透射率的高能光束敏感基板(hebs)的电子束写入。

下面描述主波长或颜色rgb的组合。

与用于照明全息显示装置的slm的不同原色rgb相关的复值幅度分布可以单独地生成并且通过使用衍射或折射波长选择光束组合器进行组合。作为光束组合器,例如,可以使用基于布拉格衍射的体积光栅或飞利浦型彩色棱镜来组合rgb光束路径。

例如,在操作中,直接方式可以用于分别生成三种不同原色rgb的复值扩展光源。在此之后,使用飞利浦型棱镜来组合关于不同原色rgb的三个光束路径。可以使用相当于微距透镜的透镜或透镜组来将不同的光源成像到旋转工程扩散器上,该扩散器以提供所使用的所有原色的slm的均匀照明的方式优化。

如果相关像差可以存在,则可以例如通过使用在成像光学系统内定制的非球面自由形曲面来执行特定校正。

不同颜色的光源平面的复值幅度分布的静态部分也可以通过使用基于cgh或布拉格衍射的体积光栅来生成。可以提供体积光栅以使用主光束(例如激光束)并且将它们转换成所需的复值分布。这也可以以这样的方式执行,即体积光栅在一个单个元件内复用。

此外,可以以这样的方式提供衍射光束整形,即所生成的光源分布在包含旋转工程扩散器的平面中叠加。这节省了将光源成像到动态工程扩散器平面上的附加成像光学器件。

例如,可以以紧凑的方式实现基于快速音圈平移或压电陶瓷平移(pzt)的小型工程扩散器箔的横向移动。相比于例如紧凑的基于pzt的实施例,基于mems(微机电系统)或可变形镜的动态扩散器成本高、不够快并且具有增加的故障率。这种扩散器不是优选的。音圈或pzt可以以脉冲模式或共振模式使用,以便提供结合例如至少100μm的横向移动的合理伸长的合理快速移动。扩散器的所需横向移动的离散值取决于所使用的离散光学实施例。因此,需要高达1mm的工程扩散器的最大动态横向移动也是可能的。例如,1mm的行程可以通过在khz范围内操作的pzt元件来提供。

虽然已经示出和描述了本发明的特定元件、实施例和应用,但是应当理解的是,本发明不限于此,因为在不脱离本发明的精神和范围的情况下,特别是鉴于前述教导,本领域技术人员可以做出修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1