一种水平开合式电调镜装置

文档序号:33559824发布日期:2023-03-22 13:46阅读:108来源:国知局
一种水平开合式电调镜装置

1.本发明涉及光学仪器技术领域,特别是一种水平开合式电调镜装置。


背景技术:

2.在自适应光学系统中,存在工作光源与调试光源的切换任务,处于工作光源的工作模式时,工作光源耦合至h-s波前传感器,需要保证光学舱内环境超洁净且散热气流恒定,当切换至调试光源的工作模式时,需要将光学舱外的调试光源耦合至光学舱内的h-s波前传感器,目前耦合方式是打开光学舱壁,在光学舱内增加一块平面反射镜,进而完成调试光源的耦合作业。
3.现目前对于两种光源工作模式的切换,如图12所示,包括反射镜23,光学舱24和普通式镜架26,是采用人工放入普通式镜架的方式,并根据h-s波前传感器的ccd图像,进行调试光源耦合调试,该方式存在以下问题:第一,人工放置普通式镜架26,需要将光学舱侧壁板拆卸,会直接破坏光学舱内的超洁净环境,第二,光学舱内的底板设有置换气流孔,故普通式镜架26放置在底板上无法固定,只能静止放置,未固定的普通式镜架稳26定性差,极易造成光路偏移,调试时可能需人工反复调整普通式镜架26的位置和角度,耦合调试的效率低,第三,普通式镜架26直接放置于光学舱24内的底板,存在破坏底板上精密微小型抽气孔的风险,即使目前采用质量非常小的聚四氟乙烯作为镜架材料,仍难以避免对抽气孔造成一定程度的破坏,第四,切换至工作光源的工作模式时,人工取出普通式镜架26后,拆卸的光学舱侧壁板要重新装回,盖板质量较大,且操作空间较小,需要多人配合完成操作。


技术实现要素:

4.本发明的发明目的在于:在自适应光学系统中,针对现目前通过人工放置普通式镜架进行工作光源与调试光源的切换任务,存在易于破坏光学舱的底板以及超洁净环境的问题,提供一种水平开合式电调镜装置,取代了普通式镜架的使用,避免了对光学舱底板的破坏,通过电力驱动完成切换任务,提高了耦合调试的效率,且无需反复拆装光学舱侧壁板,降低了人力需求,极大地减少了对光学舱内超洁净环境的不利影响。
5.为了实现上述目的,本发明采用的技术方案为:
6.一种水平开合式电调镜装置,包括支撑框和翻转框,所述翻转框的一侧固定有竖向转轴,所述竖向转轴转动连接于所述支撑框的一侧,所述支撑框设有电机一和滑块,所述电机一能够驱动所述滑块沿所述支撑框的边侧滑动,所述滑块连接有连杆,所述连杆的另一端连接所述翻转框,所述翻转框用于固定光学镜。
7.所述竖向转轴将所述支撑框的一侧与所述翻转框的一侧转动连接,所述电机一带动所述滑块进行直线运动,并通过所述连杆推动所述翻转框,使得所述翻转框围绕所述竖向转轴转动,进而改变所述翻转框相对于所述支撑框的夹角。
8.使用时,将所述电调光学镜装置作为光学舱侧壁的一部分,当所述翻转框与所述支撑框重合,即对应的夹角为0度时,所述翻转框的背面与光学舱的侧壁齐平,光学舱内可
相应进行工作光源的工作模式,当需要切换至调试光源的工作模式时,所述支撑框固定不动,所述电机一推动所述滑块滑动,所述翻转框转动至光学舱内,进而将所述翻转框内固定的光学镜移动至光学舱内,使得光学舱外的调试光源能够从所述支撑框内通过,并经光学镜耦合至光学舱内的h-s波前传感器,通过控制所述滑块的滑动距离,进而调节所述翻转框的转动角度,相应能够调节光学镜在光学舱内的位置和角度。
9.本发明的一种水平开合式电调镜装置,通过所述支撑框和所述翻转框的组合取代了普通式镜架,无需放置于光学舱内,避免了对光学舱底板的破坏,全程通过电力驱动完成模式切换,提高了耦合调试的效率,整个装置替代了局部的光学舱侧壁板,进而无需反复拆装光学舱侧壁板,降低了人力需求,极大地减少了对光学舱内超洁净环境的不利影响。
10.优选的,所述支撑框的边侧固定有平移导轨底座,所述平移导轨底座设有滚珠丝杆,所述电机一连接所述滚珠丝杆,所述滑块安装于所述滚珠丝杆。
11.所述电机一带动所述滚珠丝杆转动,通过所述滚珠丝杆将旋转运动转化为所述滑块的直线运动,组合形成的驱动机构能够满足所述翻转框进行大幅度翻转所需的驱动行程,同时提高了所述翻转框转动角度的稳定性与可控性,进一步保证了耦合调试的效率,所述平移导轨底座能够提高所述滑块进行直线运动的稳定性。
12.优选的,所述竖向转轴包括上转轴和下转轴,所述翻转框内设有镜框和电机二,所述镜框固定有横向转轴,所述横向转轴转动安装于所述翻转框内,所述横向转轴和所述竖向转轴相互垂直,所述横向转轴包括相对设置的左转轴和右转轴,所述电机二连接所述左转轴,所述镜框用于固定光学镜。
13.所述竖向转轴分为上下两段,能够减少所述竖向转轴占用所述翻转框的内部空间,便于增设组件对光学镜进行俯仰调节,俯仰调节即所述镜框围绕所述横向转轴的偏转调节,所述电机二驱动所述左转轴旋转,进而能够带动所述镜框相对于所述翻转框偏转,且所述左转轴与所述竖向转轴相对于光学镜面相互垂直,从而实现对光学镜的俯仰调节,所述左转轴固定于所述镜框的一侧,所述右转轴则固定于所述镜框的相对侧,通过所述右转轴辅助所述镜框进行偏转,能够有效改善所述镜框的受力,提高所述镜框偏转的稳定性。
14.所述翻转框的转动是对光学镜横向翻转的调节,通过增设的俯仰调节和横向翻转相互配合形成二维的控制调节,能对光学镜进行多种角度的调节以适用于不同的应用场景,且横向翻转与俯仰调节互相独立,互不影响,进一步提高了所述电调光学镜装置的实用性。
15.优选的,所述左转轴和所述右转轴均水平位于所述镜框的中线处,所述左转轴与所述电机二之间还连接有蜗轮蜗杆组件和减速器。
16.所述电机二可依次连接所述蜗轮蜗杆组件和所述减速器,所述减速器再与所述左转轴连接,即使所述电机二处于断电状态,所述蜗轮蜗杆组件组合形成的驱动机构也能具有良好的自锁性能,提高了所述镜框转动角度的稳定性与可控性,且形成的驱动机构减速比大,大幅度提高了俯仰调节的定位精度和调节分辨率,所述减速器还能减小所述蜗轮蜗杆组件的齿轮间隙,有效削弱了齿轮间隙对俯仰调节的影响,在光学领域,尤其是长距离的光学传输场景中极有优势。
17.优选的,所述电机一和所述电机二均安装有联轴器。
18.区别于在光学领域中常用的顶拉机构调节方式,所诉电机二是将动力输入轴与旋
转轴连接,通过所述联轴器将电机的主动轴和从动轴牢固地联接起来一同旋转,实现主动轴和从动轴之间不对中性的安装;
19.区别于光学领域中常用的转台机构调节方式,所诉电机一通过所述滑块、所述平移导轨底座和所述滚珠丝杆的配合,将所述滑块的直线运动转换为所述翻转框的翻转运动,所述电机一对所述翻转框的驱动点与所述竖向转轴的距离远,所需力矩小,精度高,且电机上电状态具有自锁功能。
20.优选的,所述竖向转轴、所述横向转轴、所述连杆和所述滚珠丝杆均设有轴承,所述轴承用于形成转动连接。
21.所述轴承用于各个转动组件的转动连接,降低各转动组件运动过程中的摩擦系数,保证各组件的回转精度,能够有效降低各组件转动的摩擦力以及运动所需的最大力矩,进而提高整个装置的结构强度,能够满足对更大尺寸和高密度材料的光学镜进行安装调节的需求,同时也提高了电力驱动调节的稳定性。
22.优选的,所述支撑框连接所述竖向转轴的顶部为可拆卸式端盖,所述翻转框固定所述竖向转轴的相对侧边为可拆卸式侧板。
23.所述可拆卸式端盖便于所述翻转框与所述支撑框进行装配,所述可拆卸式侧板便于所述镜框转动安装至所述翻转框内,通过可拆卸式的结构设计,不仅利于生产组装,便于针对各个组件进行维修替换,提高装置的实用性,而且能够消除所述轴承带来的轴承游隙,即在组装时便于调节,保证所述翻转框的水平端面与所述支撑框的水平端面相互平行,以及所述镜框的水平端面与所述翻转框的水平端面也相互平行。
24.优选的,所述上转轴连接有圆柱滚子轴承,所述圆柱滚子轴承固定于所述可拆卸式端盖,所述下转轴的顶部连接有圆锥滚子轴承,所述下转轴的底部连接有双列深沟球轴承,所述双列深沟球轴承和所述圆锥滚子轴承均固定于所述支撑框内。
25.所述圆锥滚子轴承用于承受所述翻转框的全部轴向力以及部分径向力,所述圆柱滚子轴承和所述双列深沟球轴承用于承受所述翻转框的大部分径向力,所述上转轴和所述下转轴的轴承设计有效提高了所述翻转框进行横向翻转的稳定性,增加了装置的使用寿命,尤其适用于对较大尺寸的光学镜进行调节。
26.优选的,所述支撑框设有机械限位模块一,所述翻转框设有机械限位模块二,所述平移导轨底座设有光电传感器。
27.所述机械限位模块一用于限制所述翻转框进行横向调节的角度范围,所述机械限位模块二用于限制所述镜框进行俯仰调节的偏转范围,所述光电传感器用于检测所述滑块的初始位置,即对应所述翻转框和所述支撑框的重合状态,通过机械限位模块和所述光电传感器的配合,能够有效控制调节范围,提高装置应用的安全性和可靠性。
28.优选的,所述镜框四周设有多个镜面预紧模块,且所述镜框的侧边设有压紧螺钉。
29.所述压紧螺钉和所述镜面预紧模块的固定件均可选用尼龙材质,通过所述镜面预紧模块和所述压紧螺钉进行多方位地紧固配合,能够在不影响光学镜面形的条件下,将光学镜稳定地固定于所述镜框内。
30.优选的,所述镜框和所述翻转框之间连接有多个拉簧,所述翻转框的背面固定有盖板。
31.由于对调试光源进行耦合作业时,光学镜主要选用反射镜实现耦合调试,且反射
镜的俯仰调节通常仅需进行小角度微调,故所述翻转框的内表面与所述镜框保持一定的间隙即可满足俯仰调节的需求,所述拉簧使得所述镜框与所述翻转框的背面形成弹性连接,提高了镜框的稳定性,所述盖板大小可与光学舱侧壁的开口大小相当,具体则是所述盖板与所述光学舱侧壁齐平,使所述盖板相当于光学舱侧壁的局部部分,从而能够进一步提高所述光学舱的密闭性,利于维持光学舱的超洁净环境。
32.综上所述,由于采用了上述技术方案,本发明的有益效果是:
33.(1)本发明的一种水平开合式电调镜装置,通过支撑框和翻转框的组合取代了普通式镜架,无需放置于光学舱内,避免了对光学舱底板的破坏,全程通过电力驱动完成模式切换,提高了耦合调试的效率,整个装置替代了局部的光学舱侧壁板,进而无需反复拆装光学舱侧壁板,降低了人力需求,极大地减少了对光学舱内超洁净环境的不利影响;
34.(2)本发明将电机的主动轴直接与从动轴进行转动连接,并采用四杆机构的方式,驱动翻转框、镜框进行俯仰调节和横向翻转调节,与市面上进行角度和位置调节通常采用的位移台和转动台装置不同,无需在装置中拼装多个模块完成运动调节,提高了装置的系统性,避免了对光学舱底板的破坏,且采用蜗轮蜗杆组件和连杆的驱动方式,上电状态的自锁力矩较大,即使断电俯仰部件也具备良好的自锁性能,具有较高的结构强度,同时大幅提高了调节的稳定性;
35.(3)本发明通过控制连杆的长度或连杆连接翻转框的位置,能够满足翻转框多角度范围的开合式切换需求,且驱动点相对于竖向转轴的距离长,对旋转力矩要求小,能够有效提高横向翻转的驱动性能;
36.(4)本发明通过电机、滑块和连杆的驱动组件对翻转框进行横向翻转调节,形成带有一个移动副的四杆机构,相较于常规转台方式的驱动,在电机、驱动器等组件相同的情况下,本装置形成的四杆机构具有更高的调节精度,有效提高了横向翻转调节的精确性;
37.(5)本发明通过增设俯仰调节的结构设计,俯仰调节和横向翻转相互配合形成二维的控制调节,能对光学镜进行多种角度的调节组合以适用于不同的应用场景,采用电控进行工作模式的切换以及电动校正,避免了人工操作带来的风险以及技术难度,自动化程度高,降低了人力成本,减少了系统间的切换工作量,提高了工作稳定性,且横向翻转与俯仰调节互相独立,互不影响,进一步提高了电调光学镜装置的实用性;
38.(6)本发明通过蜗轮蜗杆组件和减速器的配合,形成的驱动机构具有良好的自锁性能,提高了俯仰调节的稳定性与可控性,而且减速比大,大幅度提高了俯仰调节的定位精度和调节分辨率,在光学领域,尤其是长距离的光学传输场景中极有优势;
39.(7)本发明通过使用轴承用于各个转动组件的转动连接,能够有效降低各组件转动的摩擦力以及运动所需的最大力矩,进而提高整个装置的结构强度,能够满足对更大尺寸和高密度材料的光学镜进行安装调节的需求,同时也提高了电力驱动调节的稳定性;
40.(8)本发明的一种水平开合式电调镜装置,通过能够满足自适应光学系统中对调试精度的高要求,同时满足了光学舱内的洁净环境要求和热管理系统工作条件,提高了系统的集成度,且结构简单,加工工艺成熟,各组件的装配过程简易,所需工时较短,具有良好的加工和装配工艺性,兼具经济性与实用性。
附图说明
41.图1是实施例所述一种水平开合式电调镜装置的结构示意图一;
42.图2是实施例所述一种水平开合式电调镜装置的结构示意图二;
43.图3是实施例所述支撑框的局部剖视图;
44.图4是实施例所述平移导轨底座相关组件的爆炸示意图;
45.图5是实施例所述翻转框安装所述镜框前的局部剖视图;
46.图6是实施例所述翻转框隐藏部分外壳的内部结构示意图;
47.图7是实施例所述翻转框背面隐藏所述盖板的结构示意图;
48.图8是实施例所述镜框的爆炸示意图;
49.图9是实施例所述一种水平开合式电调镜装置安装反射镜后的结构示意图;
50.图10是实施例所述一种水平开合式电调镜装置的使用示意图一;
51.图11是实施例所述一种水平开合式电调镜装置的使用示意图二;
52.图12是普通式镜架的使用示意图;
53.图中标记:1-支撑框,1a-可拆卸式端盖,2-翻转框,2a-可拆卸式侧板,3-竖向转轴,3a-上转轴,3b-下转轴,4-电机一,5-滑块,6-连杆,7-平移导轨底座,8-滚珠丝杆,9-镜框,10-电机二,11-横向转轴,11a-左转轴,11b-右转轴,12-蜗轮蜗杆组件,13-减速器,14-联轴器,15-轴承,16-机械限位模块一,17-机械限位模块二,18-光电传感器,19-镜面预紧模块,20-压紧螺钉,21-拉簧,22-盖板,23-反射镜,24-光学舱,25-增高台,26-普通式镜架。
具体实施方式
54.下面结合附图,对本发明作详细的说明。
55.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
56.实施例
57.如图1和图2所示,本发明的一种水平开合式电调镜装置,包括支撑框1和翻转框2,翻转框2的一侧固定有竖向转轴3,竖向转轴3转动连接于支撑框1的一侧,支撑框1设有电机一4和滑块5,电机一4能够驱动滑块5沿支撑框1的边侧滑动,滑块5连接有连杆6,连杆6的另一端连接翻转框2,翻转框2用于固定光学镜。
58.在本实施例中,是将电调光学镜装置应用于自适应光学系统中,完成工作光源与调试光源的切换任务,所需调节的光学镜选用的是平面反射镜23,翻转框2和支撑框1均是矩形的框结构,根据装置进行安装的基准面,将横向翻转的角度范围初步设置为0~45度。
59.进一步的,竖向转轴3分为上转轴3a和下转轴3b,分别固定于翻转框2左侧边的顶部和底部,如图1所示,支撑框1左侧的顶部设计为可拆卸式端盖1a,便于将翻转框2从支撑框1左侧的顶部放入进行装配,支撑框1左侧的底部和可拆卸式端盖1a均设有轴承套,且轴承套的安装孔留有较大的调节余量,便于实现上转轴3a和下转轴3b的对中性安装,可拆卸式端盖1a还能消除轴承的径向游隙,下转轴3b的顶部固定有一个圆锥滚子轴承,下转轴3b的底部固定有一个双列深沟球轴承,上转轴3a的顶部固定有一个圆柱滚子轴承,安装时,圆锥滚子轴承直接装配至支撑框1的框架上,双列深沟球轴承则装配至支撑框1左侧底部的轴
承套内,圆锥滚子轴承则最后装配至可拆卸式端盖1a的轴承套内,通过三个轴承15将竖向转轴3转动安装在支撑框1左侧的框内,进而形成支撑框1和翻转框2的转动连接,使得翻转框2能够围绕竖向转轴3并相对于支撑框1进行转动,圆锥滚子轴承能够承受翻转框2全部轴向力以及部分径向力,圆柱滚子轴承和双列深沟球轴承则承受翻转框2大部分径向力,提高装置的运动稳定性,增加装置的使用寿命,三个轴承15均采用过盈和预紧的装配方式,降低装配的难度和加工的精度要求。
60.如图3所示,支撑框1底部侧边的上端面通过螺栓固定有平移导轨底座7,如图4所示,平移导轨底座7的左右两侧均安装有轴承座,滚珠丝杆8的两端均固定有一个深沟球轴承,通过轴承15与轴承座配合,将滚珠丝杆8转动安装至平移导轨底座7上,滚珠丝杆8包括螺母和螺杆,螺母沿螺杆上做直线运动,滑块5安装在滚珠丝杆8的螺母上,并通过平移导轨底座7对滑块5进行辅助支撑和导向,电机一4选用步进电机固定在平移导轨底座7的左侧,并通过联轴器14与滚珠丝杆8连接,平移导轨底座7左右两侧的极限位置还安装有机械限位模块,用于限制滑块5的运动行程。
61.连杆6的两端均固定有一套旋转轴,翻转框2的右侧底部相应安装有深沟球轴承、轴承座和轴承压块组件,用于与连杆6一端的旋转轴形成转动连接,滑块5的顶部也设有深沟球轴承,用于与连杆6另一端的旋转轴形成转动连接,连杆6两端的旋转轴与对应轴承15均通过过盈配合连接,连杆6的结构设计能够减小翻转框2运动的静摩擦力以及动摩擦力,降低运动所需的最大力矩,电机一4驱动滑块5进行直线往复运动,并通过连杆6推动翻转框2,使得翻转框2以竖向转轴3为中心转动,进而控制翻转框2开合的角度,实现对光学镜的横向翻转调节,尤其适用于较大尺寸和高密度材料的光学镜调节。
62.支撑框1底部的左右两侧均固定有一个机械限位模块一16,左侧的机械限位模块一16位于翻转框2和支撑框1的转动连接处,右侧的机械限位模块一16位于翻转框2与支撑框1重合时的抵接处,进而更加有效地限制翻转框2进行横向调节的角度范围,在平移导轨底座7的左侧还安装有光电传感器18,对应滑块5的初始位置,用于检测翻转框2与支撑框1是否运动至平行的0度位置。
63.如图5-图8所示,为了增加对反射镜23的俯仰调节,进一步的,在翻转框2内设有镜框9和电机二10,电机二10也选用步进电机,镜框9的外框尺寸略小于翻转框2的内空尺寸,镜框9的内空尺寸与反射镜23的尺寸相当,镜框9的内侧面均固定贴有尼龙材质的垫块,镜框9顶部设有两个压紧螺钉20,用于配合垫块对反射镜23的侧边进行压紧固定,镜框9正面的四个边角处均设有一个镜面预紧模块19,用于将反射镜23前后端面紧固在镜框9的安装槽内,进而完成反射镜23的多维度固定,镜面预紧模块19的固定螺栓与压紧螺钉20均选用尼龙材质,使反射镜23的镜面形变量最小。
64.镜框9的水平中线上水平固定有横向转轴11,横向转轴11分为左转轴11a和右转轴11b,分别对应固定在镜框9的左右侧边上,翻转框2的左侧侧边固定有一组长型轴承套,长型轴承套内固定有两个深沟球轴承用于装配左转轴11a,翻转框2的右侧侧边固定有一组短型轴承套,短型轴承套内固定有一个深沟球轴承用于装配右转轴11b,且翻转框2右侧的侧边设计为可拆卸式侧板2a,便于将镜框9从翻转框2的右侧放入进行装配,同时也便于消除轴承的径向游隙,左转轴11a安装至长型轴承套内,右转轴11b安装至短型轴承套内,轴承15采用过盈和预紧的装配方式,降低装配的难度和加工的精度要求,轴承套的安装孔留有较
大的调节余量,便于实现左转轴11a和右转轴11b的对中性安装,形成镜框9和翻转框2的转动连接后,横向转轴11与竖向转轴3相互垂直。
65.电机二10固定在翻转框2的左侧侧边,在翻转框2左侧的侧边内,电机二10通过联轴器14还连接有蜗轮蜗杆组件12,蜗轮蜗杆组件12另一端则连接有一个减速器13,减速器13再与左转轴11a连接形成组合的驱动机构,减速器13选择谐波减速器,电机二10带动左转轴11a转动,使得镜框9以横向转轴11为中心转动,进而控制镜框9的偏转角度,实现对反射镜23的俯仰调节。
66.实际应用中,俯仰调节通常是进行微调,本实施例将俯仰调节的角度范围设置为
±
3度,镜框9的厚度设计小于翻转框2的安装槽深,即在横向方向上,镜框9装入翻转框2后,镜框9的前后端面与翻转框2的安装槽具有一定的间隙,使得镜框9在翻转框2内能完成小幅度的俯仰调节,而无需与翻转框2的正面和背面产生干涉,翻转框2远离支撑框1的一面为翻转框2的背面,翻转框2背面的开口用于人工进行反射镜23装配,提高了翻转框2的结构强度,镜框9四个边角处均安装有一个拉簧21,每个拉簧21的另一端与翻转框2的背面连接固定,使得镜框9与翻转框2之间形成弹性连接,镜框9左侧与翻转框2之间竖向间隔安装有两个机械限位模块二17,用于更加有效地限制镜框9进行俯仰调节的偏转范围,机械限位模块二17包括限位开关连接板和机械限位开关,翻转框2的背面还固定有一块盖板22,盖板22的尺寸略大于翻转框2的外框尺寸,翻转框2与支撑框1重合时,盖板22用于进一步提高装置的密闭性。
67.电调光学镜装置固定好反射镜23后的初始状态如图9所示,具体使用时,如图10所示,在光学舱24的侧壁上开设一个窗口,窗口大小与盖板22的大小相当,可通过一个增高台25将支撑框1固定在光学平台上,使得闭合状态下的翻转框2刚好可放入窗口,且翻转框2背面的盖板22与光学舱24的内壁齐平,从而保证了光学舱24在安装电调光学镜装置后,具有良好的密闭性维持超洁净的环境,安装过程中,反射镜23的中心水平面与光学舱24内工作光源的中心水平面重合,翻转框2在45度左右的位置时,反射镜23前表面的中心点还与工作光源的中心铅垂面重合,工作光源的中心铅垂面和中心水平面是电调光学镜装置的安装基准面;
68.如图11所示,当需要从工作光源切换至调试光源的工作模式时,启动电机一4,推动滑块5向右进行平移,带动翻转框2转动进行横向翻转调节,从而将反射镜23伸入光学舱24内,根据本次安装基准面的确定,翻转框2与支撑框1的夹角大约在45度时,即反射镜23处于45度左右的开合状态时,再根据实际情况进行微调,就能够将光学舱24外的调试光源反射至光学舱24内的h-s波前传感器上,再根据实际情况启动电机二10进行俯仰调节,转动镜框9进而适应性调节反射镜23的俯仰角度,配合完成调试光源的耦合工作,当需要切换回工作光源的工作模式时,启动电机一4将翻转框2转动回初始状态即可。
69.自适应光学系统中对调试精度要求极高,如图12所示,往常采用手动安装和调试的普通式镜架26,不仅需要具备一定光学装调能力的人员,而且面临调试时间长的问题,本实施例采用电驱自动进行工作模式的切换,同时进行电动校正,完成切换的时间仅需一分钟左右,滑块5右移,翻转框2与支撑框1的夹角变大,滑块5左移,翻转框2与支撑框1的夹角变小,电机一4和电机二10按控制脉冲数旋转,实现俯仰与横向翻转运动的定量调节,在俯仰方向耦合中,装置完成首次标定后,通过蜗轮蜗杆组件12的自锁功能,可反复工作使用,
在横向翻转耦合中,通过机械限位模块一16的作用,先横向翻转运动至45度夹角,按控制脉冲数旋转,完成首次标定后,记录脉冲数,将记录的脉冲数设为翻转耦合值,可满足0度到45度翻转的自动切换。在回到0度翻转方向时,通过光电传感器18的信号,控制翻转框2从45度到0度的自动切换;
70.此外,选用的蜗轮蜗杆组件12减速比为1:30,谐波减速器的减速比为1:100,选用64细分控制器,电机二10选用分辨率为1.8度的步进电机,使得俯仰调节精度达到了0.03375

,电机一4、滚珠丝杆8、滑块5和连杆6的共同配合来控制翻转框2翻转,形成了带有一个移动副的四杆机构,连杆6的两端转轴和竖向转轴3分别构成三个转动副,滑块5作为移动副,配合64细分控制器,以及电机一4选用分辨率为1.8度的步进电机,滚珠丝杆8的导程为5mm,则一个脉冲的条件下,滑块5平移的距离为0.00039mm,通过连杆机构的图解法计算,翻转框2位于45度位置附近时,横向翻转调节的精度可达到0.07236

,满足了自适应光学系统对调节精度的高要求,且操作简单方便,极大的提高了系统的工作效率与稳定性,避免了人工直接安装与调试普通式镜架26带来的操作风险和技术难度。
71.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1