光谱测量用的光学滤光片及其制造方法

文档序号:2767014阅读:302来源:国知局
专利名称:光谱测量用的光学滤光片及其制造方法
技术领域
本发明涉及光学滤光片,该滤光片可被用在将光谱测量用来确定如化学及其它物质性能的一些应用场合。
光学滤光片,在包括光谱测量在内的一些应用中是公知的。光谱测量则以样品的光学特性为依据,被用来确定该样品中各种物质的特性和化学成分。在具有代表性的光谱测量中,(可见和非可见光谱区域的光)被利用在多频带范围内照射该样品。不止一种光学频率(波长)被用来更精确地确定该样品的光学特性并且将干扰扣除。在某些应用中由样品反射的光被进行检测,而在另一些应用中则是检测经样本透射的光以便确定该样品的光学特性。此外,透过样品和由滤光片反射的结合,也可被应用。
被检测出来的光,通常被定量以提供该样品对于每一频谱的“频率响应”显示。如技术上公知的那样,每种物质都具有可由其反射和吸收某种频率的光来确定的光学性质。因此,给定物质的光学特性可被定量(例如作反射或者透射光强度-频率曲线绘出)以提供该物质光学特性的显示。由于不同的物质通常具有截然不同的光学特性,故对于包含若干物质的样品的光学性能进行定量测量,可以作为区别该样品中若干物质或相对其进行不同测量的基础。对于反射或透射光进行精确测量,可被用来确定样品中各种物质的精确浓度。
某些现有的光谱测量系统,使用的是许多发光二极管(LED)或者激光光源来提供所需要波长的光。然而,为了制造这种对于每种光源具有所需波长精度的系统,必须采用非常昂贵的波长精度高的光源。
产生出多种频率光的可供选择的方法之一,包括将光学滤光片在被测量的样品和宽带的光源之间旋转。如由发明人认定的用在本发明中的通用的光学光谱装置,经常需要使用定制的昂贵的滤光片来产生拟透过的光学信号图谱。一种通常称之为二向色滤光片的这类滤光片,由包括光学厚度变化区域的旋光镀膜圆盘构成。当此圆盘轮自转时,来自宽带光源的光将通过该圆盘轮的不同部分,从而使不同频率的光通过滤光片以照射样品。就是说二向色滤光片上的这些区域是按照一定的图案形成的,以致于光学圆盘的旋转可使被选定光波段透射。在包括精密光谱测量在内的许多先期应用中,光学滤光片均以非常高的公差进行设计。此外,制造这种滤光片的方法经常会将大批量生产这种滤光片的可能性排除在外。因此,即使这种光学滤光片制造起来可能也是价格很昂贵的。
本发明提供一种用于光谱测量的旋转二向色滤光片,其中该滤光片的成本大约比传统的旋转二向色滤光片低100倍。这是通过首先将滤光片的技术要求放宽,并且通过更为深入细致的信号处理步骤对这种放宽加以补偿来完成的。此外,该滤光片按一定方式构成,以更加便利于生产。根据本发明构成的滤光片,容许大到10至100倍的光通过,而通过信号处理仍保持所需要的精度。
本发明的一个方面,包括一种制造光学滤光片的方法。该方法包括许多步骤。提供一种带有上表面和下表面的光学基片,并且在其上表面上涂覆一些光学涂敷层,从而使这些涂层的厚度沿横跨该基片顶部的第一方向变化。在与第一方向基本上垂直的第二方向上,这些涂层的厚度基本上不变。在一实施例中,该方法进一步包括在基片中心产生出安装孔。此外,在一实施例中沿基片的至少一部分涂覆不透光的长条。
本发明的另一方面包括一光学滤光片。该光学滤光片拥有一带有上表面和下表面的基片。该滤光片还拥有在基片的上表面上涂覆的一些光学涂敷层,以致于这些涂层的厚度沿第一方向横跨上表面变化。在与第一方向基本上垂直的第二方向上,这些涂层跨过上表面的厚度基本上不变。
本发明的又一方面包括一光学滤光片,具有通常为圆形的基片。涂覆在该基片上的一些光学涂敷层能够提供一非成象的干涉仪,其中入射在该涂层上约一半的光将在基片的整个表面上通过该涂层。
本发明的再一方面包括一光学滤光片。带有上表面及下表面的基片,拥有许多其厚度沿跨过该基片的第一方向变化的光学涂敷层。该涂层可为此光学滤光片提供一些光学透射特性曲线,以提供一种跨过滤光片表面上全部位置可透过不止一种波长的光学滤光片。


图1表示如由传统方法构成的典型的二向色性滤光片;图2示意表示用来根据本发明制造旋转光学滤光片的通用方法;图3表示图2所示本发明的二向色滤光片在血糖检测方面的应用;
图4A至4C以曲线图的形式表示根据本发明的典型的二向色滤光片,其在不同旋转角度上的光学透射特性;图4D表示用来说明登记根据本发明的典型的二向色滤光片光学特性的矩阵;图5以曲线图的形式表示典型的传统性二向色滤光片,其根据本发明在不同旋转角度上的光学透射特性;图6表示用来补偿本发明滤光片较低的光学限差用的信号处理操作的通用流程图;图7表示陈述获得图4D中光学特性矩阵的总体步骤的流程图;图8表示利用本发明滤光片连同信号处理一起来调节不精确性的总体步骤的原理框图。
图1表示按传统方法制造的典型的二向色滤光片。被利用来制造这种光学滤光片的在先方法,通常包括配置一圆形的基片,然后随着该基片以均匀的速度旋转有选择性地增加其表面上涂敷层的厚度。
图1中表示的这种滤光片150,它所具有的涂敷层152,154,156等等的厚度随着该滤光片150的旋转而增加,以形成螺旋形结构。当然应当理解,图1表示的涂敷层厚度是夸大的,以便于说明问题。这种光学涂敷方法基本上是围绕圆形基片的整个圆周进行的,以致于当被涂敷的基片旋转时,光学涂层的厚度在整个回转过程中是增大的,然后从最厚的涂层突然下降回到一周终端的最薄涂层。
然而曾经发现,这种光学涂敷方法要求高精度且非常昂贵。此外,这些滤光片的制做通常要一个个地实现,因其生产方法无法考虑将若干圆盘配置在为批量生产目的用的单块板材上。
此外,图1所示类型的传统滤光片,通常具有很多层(例如100或者更多层是常见的)。传统滤光片中配备的许多层,是为了提供非常精确的通频带(对于带通滤光片而言)。图5表示作为传统的旋转二向色滤光片,它对于被选定波长的典型的透射旋转角度特性曲线。如图5所示,该滤光片对于选定波长的通频带是非常精确的,一般说来没有侧瓣,而且在通频带的外侧提供基本上为零的透光。之所以要求涂敷层数非常高,是为了获得这种接近理想精度的滤光片。应当理解对于不同波长,这种非常窄的通频带处在不同的旋转位置。换而言之,传统的二向色滤光片可被看作为在不同的旋转位置上透过不同的波长的单色光镜。
由于每一层都是从薄到厚连续性旋转变化的,所以每层的产生都是高代价的。因此,当产生出许多层(例如100层或者对好的精度还要更高)时,这种传统的滤光片是非常昂贵的。
根据本发明公开的二向色滤光片,它与传统性二向色滤光片显著地不同。图2表示在采取本发明工艺生产滤光片方法的步骤之后,所得到的滤光片120。
根据本发明的二向色滤光片是按新的方法制造的,其中的许多光学涂敷层是在一基片上产生的,以形成一楔形基片。对于旋转滤光片来说,随后将此基片切割以形成旋转圆盘形的滤光片。
此外,根据本发明的一个方面,此二向色滤光片比传统滤光片具有较少的涂敷层。这在滤光片的透射特性方面保证的是低的精度。图4A至4C表示根据本发明制做的仅有17个光学涂敷层的典型的旋转滤光片,它对于被选定波长的光学透射特性曲线。如图4A至4C所示,此透射特性并不象图5表示的滤光片的透射特性那样精确。如图4A至4C表示的那样,本发明的二向色滤光片,它对于每一种表示的波长具有若干个通频带。此外,在通带的外侧的透射,并不象传统的精密滤光片那样完全降落到零。在通频带方面的精度下降是由于滤光片中层数减少。应当理解,以上阐述的精度下降并不是对旋转二向色滤光片的限制,然而对于按常规包括高精度的任何其它光学滤光片来说,使用在通频带方面振动(例如通过振荡或诸如此类)的二向色滤光片可能还是有利的。如以下将进一步阐述的那样,本发明滤光片的通频带精度降低可通过信号处理加以调节,以获得所需要精度。按照这种方法,滤光片的成本可以降低。
当本发明滤光片的这两个方面(成层工艺和减少其层数)被采用时,所得到的滤光片其制造成本要比传统二向色滤光片低得多。然而应当指出地是,利用任一方面来降低成本就其本身而言都是有利的。举例来说,传统的旋转滤光片可以以极少的涂敷层制做,但使用的是传统性成层工艺,以致于该滤光片厚度是绕圆周整个一周增加的。换个办法,这里公开的制造方法,由于其制作方法改进,能够被用来以降低了的生产成本形成具有传统精度(例如许多涂层)的旋转滤光片。
在对光学滤光片分层的成本降低的生产方法中,在图2所示的平的基片110上面涂敷以光学涂敷层,其厚度逐渐增加以形成楔形的涂敷层111。应当注意,为清楚地说明本发明起见,光学涂敷层111的厚度是被夸大了的,而且在实际应用中光学涂敷层111的厚度一般说来约从1.66微米变化到3.33微米,其平均厚度约为2.35微米。还应当理解,这些厚度是大约的,且可根据涂层材料的折射率变化。因此,根据本发明的一个方面,限定滤光片的光学涂层是跨过一基片施加其上的,而不是沿圆周连续施加涂敷层,因而滤光片的成本将大大降低。在这提供的二向色滤光片,可被使用在振荡滤波器之类的应用中。
对于旋转滤光片来说,只要光学涂敷层11被施加在基片110之上,其圆柱形部分112便可由光学涂敷层111与基片110一起构成的楔形扁坯中切出。然后在圆柱形部分112的中心加工出圆孔,以形成安装孔。在某些应用中,需要在光学滤光片圆盘120某个部位加工出光学不透明的长条,例如黄铜制的长条122。此黄铜制的长条可为圆盘120提供一透射为零的参考部分,它在某些信号处理应用中对于消除噪音可能是有益的。
以上的描述对于理解本发明的一个方面提供说明上的方便。然而应该理解,实际上该方法可以包括首先将基片切成圆盘。然后将光学涂敷层似乎象圆盘仍为方形一样施加在该圆盘之上,以使超出的量落在真空室中支承该圆盘的平台(未表示)上。按照这种方法,圆盘120的表面上将形成楔形,如图2所示。
下面将会理解,圆盘120的厚度并非沿圆盘轮整个圆周自始至终连续增加的,但其厚度先是增加,随后减小。然后如以下进一步描述的那样,该圆周的两个半周可被利用。
上述滤光片除了生产成本被降低之外,根据本发明的另一方面,其上被涂覆少量的光学涂敷层数。在一最佳实施例中,为获得所希望的分辨率只需要有17层涂敷。
虽然涂敷层数的减少会造成滤光片精度降低,然而这种不足可以在数字信号处理步骤中给予补偿。例如,如上所述,传统的二向色滤光片通常一次通过单一频带(图5),而最佳实施例的滤光片可供许多频带通过,由于其可通过信号处理被计及并进行补偿。
这里应该注意,对于包括更昂贵的干涉仪或者单色仪在内的许多应用通常需要的分辨率,对于分析液体通常并不需要。然而可以以更大的间距增加一些附加的涂敷层,以提高滤光片的分辨率。
补偿数字信号处理如以上简短陈述地那样,根据本发明制做的具有最少数量光学涂敷层的滤光片,其精度不足可以通过信号处理予以补偿。
图6为详细列举用来补偿根据本发明制造的滤光片精度不足的方法的数据流程图。然而应该理解,在运行时间之前要进行预置。
运行时间前的预置在工厂或在使用前的其它时间,要进行预置。一般说来,滤光片的特性矩阵是象以下参照图7更加详细描述地那样来构成。滤光片的特性矩阵,所代表的是该二向色滤光片120的不同部分及对于各种波长光的透射特性。此滤光片特性矩阵的使用,是为了提取由探测器产生的电信号中完全归因于该滤光片120造成的光学衰减的那部分。换而言之,通过了解此滤光片特性,其精度不足可被计算。
该滤光片特性矩阵为一个二维矩阵。它的一纵行代表每一种特性光波长,一横列代表对于滤光片120实现其滤光片特征的每一种位置(在本发明中为旋转位置)。因此,在一实施例中,当特征波长数为16并且滤光片120被限定的位置为256时,此滤光片的特性矩阵便包括16个纵行和256个横列。在此应当理解,它并不需要使用16种不同的波长,然而使用附加的波长对于提高信噪比特别有利。由于在滤光片的每一位置上约有一半的入射光透过该滤先片,所以同样的波长被多次检测(虽然每次均与其它一些波长处在单值组合),以致于总的信号强度为任何单一波长强度的10到100倍,且比噪声最低额高得很多。这通常被称之为Felgate效益。按照这种方法,整个滤光片120对于预定测量波长的光谱响应被完全表征出来。被利用来构成滤光片特性矩阵的方法,将参照图7详细描述如下。
滤光片特性矩阵的导出图4A至4D与图7一起,更为详细地说明被利用来获得滤光片特性矩阵的方法。其推导程序在图7中说明,且从开始方框800起开始。
程序块830-845与图4A至4D一起,说明被用来根据本发明构成滤光片特性矩阵的方法。滤光片120以其圆盘120上的不同位置对于不同波长按照不同比例反射和透射光辐射。这被清楚地表示在图4A至4C中,其中图4A表示在850毫微米波长上给出的光的透射对于圆盘256种可能性转动位置(作为一种实施例)中每一位置的曲线。如图4A所示,当圆盘120处在起始位置(即φ=0,其中0代表滤光片120的旋转位置)时,在850毫微米波长上透过该滤光片120的光接近10%,而当该圆盘120旋转以致于φ=32时,在850毫微米波长上透过该滤光片120的光接近25%。此外,当圆盘旋转位置在φ=128和φ=160之间时,在850毫微米波长上透过该滤光片120的光接近75%。因此,对于波长λ=850nm的在该圆盘滤光片120的256种旋转位置上的光学透射特性被完全表征出来,如图4A所示。
图4B表示在1150nm波长上对于圆盘120同样的256个转动位置的光学透射特性。同样,图4C表示在1350nm波长上在圆盘120的256个转动位置每一位置上的光透射曲线。在本发明的一个实际实施例中,对滤光片120在位于850nm和1400nm之间的16种波长的每一波长上对于256个旋转位置的光学透射特性进行了描述。
因此这些测量结果可以构成一滤光片特性矩阵,如由图4D所示。此滤光片特性矩阵在图4D中被称之为F(φ,λ),它包括256横列和16纵行。其中每一纵行包括为其选定的波长在圆盘120的256个旋转位置的每一位置上的光谱透射特性。
为了构成图4D所示的滤光片特性矩阵,在第一个位置上用16个波长中的每一波长照射滤光片120,以取得对于16种波长中每一波长的光谱透射系数,如程序块830中表示的那样。只要针对第一旋转位置的光谱透射系数被确定,如程序块830所示,便在第二个位置上(即φ=1)遍及16种选定波长照射该滤光片,以对于第二个旋转位置取得一些光谱透射系数,如程序块835所示。此方法针对圆盘120的每一可能旋转位置继续进行,直到如程序块840所示,在盘形滤光片120的第m个或最后一个旋转位置上(即位置256)遍及16种选定的波长对滤光片照射,以针对此最后旋转位置取得一些光谱透射系数。在一使用了步进电机的最佳实施例中,这些旋转位置从圆盘120一转到一转都是精确的。当然,使用凸磁极并以固定速度运转的计算机圆盘式电机也可以使用,只要其高频相位脉动被减小到小于256分之一。
只要针对圆盘120所有256个旋转位置的所有16种波长的光谱透射系数被确定,便可构成如程序块845所示的滤光片特性矩阵。该矩阵由纵行和横列来限定,其中纵行表示透射系数,横列表示赋予该透射系数的波长。一旦滤光片特性矩阵被构成,该系统便有了进行处理所需要的条件。
应当理解,滤光片特性矩阵的推导对于旋转型滤光片120来说已被描述。然而振荡型滤光片或在其上面带有被限定位置(如法布里-珀罗型滤光片)的任何滤光片,甚至象用在电荷耦合器件应用中的固定滤光片,也可根据以上的论述来表征。
运行时的处理根据本发明论述总的处理过程以便通过使用滤光片特性矩阵计及该滤光片的精度不足,是参照图3,7和8作出的。
图3表示将该滤光片120用在检验血液成分的系统中。图6用来说明作为计及滤光片精度不足,以获得受检验媒质特性的步骤的总的流程图。图8则表示通过信号处理计及滤光片精度不足过程的总工作原理图。如图6所示,处理过程的起动以开始程序块300表示。首先进行辅助工作和自检处理,如程序块305所示。简单地说,辅助工作和自检包括引导操作和常规预置自检。例如,该系统首先确定是否存在足够的信号强度以取得准确的读数。在辅助工作和自检完成之后将光源110(图3及8)触发以将光115透过滤光片120,如程序块310所示。一开始,光源110被触发而检验的媒质131并未插在滤光片120和探测器140之间。因此,探测器140检测到的光(图3)代表基线光强度(Io),可被用作检验标准以保证太暗或者太亮的灯泡不会插入例如作为替换灯泡。在一实施例中,在光源和滤光片120之间可以配备透镜117(图8),以在该滤光片120上提供被聚焦的光115。
只有一开始的基线光强度确定不变,便可将被检验的媒质131插入,如程序块312所示。
如程序块315所示,入射在探测器140上的光被转换成电信号,且此电信号在前置放大器(未表示)中被放大,利用带通滤波器(未表示)被滤波,并且由模/数转换器142进行采样。由于该滤光片120旋转(其在一实际实施例中的转速约为每秒钟78,125转,虽然其它旋转速率按其具体应用可能是有利的),故由探测器140输出的电信号采样,乃是滤光片120在各种旋转位置上被检测的光强度的表征。在一便利的实施例中,滤光片120一整周旋转(即360°)对应于512上数字采样。这就是说在对应于滤光片120旋转一周的时间内,进行512次采样。因此,如果滤光片120例如以每秒钟78.125转的速度旋转,那么512次采样将在约1/78秒内进行,以致于模/数转换器142的采样速率约为每秒钟40000次采样。
如上所述,根据本发明构成的滤光片在一整周之内包括重复的部分。具体说来,滤光片120是对称性成层的,以致于该滤光片的第一个半周提供的是其第二个半周信号的反映。这就是说如图2所示,该滤光片被加工成楔形形状,以致于其在一个方向上的厚度不变,且在垂直方向上的厚度是成线性增加的。因此,滤光片120的第二个半周是重复的。为了这个理由,对于滤光片120一个半周的数字采样可以被放弃,以致于在其每转一周中有256次采样以便进行信号处理,而不是上述实施例中的512次采样。另一方面,所有的512次采样也可通过对相应值取平均值来处理。在又一个实施例中,滤光片重复的一半可被用来滤波和光源校正。256次采样(如果仅利用一半)中的每一采样,代表的是滤光片120具有不同的光透射特性的不同部分。
比较有利地是,滤光片120被专门设计成包括有不透光的长条(即黄铜制的长条122)。数字信号处理器145,是通过检测探测器140的输出光强来检测滤光片120的不透光长条122何时插在光115和探测器140之间的。当光被不透光的长条122屏蔽时,此强度实际上为零。由于不透光的长条122基本上能屏蔽住所有来自光源110的光学辐射,故当光(例如来自周围的光和热效应等)被屏蔽时,来自光学探测器140的任何信号输出将理解为电噪声,既不是由于被检验媒质131的光谱吸收特性,也不是由于滤光片120的光谱透射特性。因此,当黄铜制的长条122被插在光源110和光学探测器140之间时,数字信号处理器145将光学探测器140输出端存在的信号看作随机噪声,随后从来自光学探测器140的所有输出信号中扣除。在一实施例中,这是简单地通过从对应于被检测的信号采样(其在程序块315中获得)的每一数值中,扣除对应于被检测的噪声电平的数值完成的。另一方面,还可将光闸机构插在光路中,或者将光源灯110瞬时关闭以提供同样效果。按照这种方法,该系统中固有的电噪声可被去除,以致于由于滤光片120(以及被检验的媒质130)的光透射特性产生的这些电信号,在进一步的处理步骤中便可被考虑。
一旦该系统中固有的随机噪声被抽出,控制便从程序块315转到程序块323。在程序块323中,将该信号除以Io以使信号归一化。归一化了的信号随后在程序块325中被进行处理,以从程序块315中得到的采样值(将扣除电噪声考虑进去,并且在程序块323中完成了信号归一化)构成信号强度矩阵或者向量。图8表示信号强度矩阵Iφm。
信号强度矩阵1000(图8)为一纵行的矩阵(有时称其为向量),它包括256个信号强度值(例如在本实施例中对于滤光片120每一被采样的旋转位置为一个值)。因此,信号强度向量1000,是靠直接测量既通过滤光片120又通过被检验媒质131且被光学探测器140检测的光信号来获得的。当然,用来构成信号强度向量1000的强度值,是从每一采样中扣除噪声之后,由来自探测器140的输出信号的振幅中获取的。指定被模/数转换器170采样的滤光片120的每一旋转位置为符号φ,于是φ1将对应于滤光片120的第一旋转位置,φ2将对应于滤光片120的第二旋转位置,与φ256对应的是φ1被再获取之前滤光片120的最后旋转位置。利用这些符号,Iφ1对应滤光片120处在第一旋转位置φ1时光学探测器140检测的光强度,Iφ2对应于于滤光片120处在第二旋转位置φ2时探测器140检测的光强度,如此等等。因此,信号强度矩阵包括单行的矩阵,具有与滤光片120每一旋转位置上检测的光强度对应的从Iφ1到Iφ256的256个数值。在一实施例中,对于若干周的强度值取平均以形成信号强度矩阵。
一旦信号强度向量在程序块325(图6)中获得,此后指定为I(φ),而且此后被指定为F(φ,λ)的滤光片特性矩阵已如前所述获得,且在程序333中被表示为数据输入,那么信号强度矩阵和滤光片特性矩阵一起,可被用来获得只表示被检验媒质131的光吸收特性的矩阵,如程序块330和331所示。这就是说,由于总的光学吸收就是在信号强度矩阵中测得的I(φ),滤光片120的光学透射特性就是由滤光片特性矩阵表示的F(φ,λ),故由于被检验媒质131造成的被检测光的光学吸收,可以通过由总的强度向量组合I(φ)除去由滤光片造成的光透射特性来确定。这是通过首先对滤光片特性矩阵取逆变换(如程序块331所示),然后将信号强度向量I(φ)乘以滤光片逆矩阵(如程序块330所示)来完成的。
例如通过被检验媒质131的透射被指定为T(λ),其中通过该媒质的光透射被定义为波长的函数,而且通过滤光片120被选定的旋转位置(例如当φ=0时,对应于0°)的光透射被作为波长的函数保持,并且由函数F(φ,λ)表示,那么由于被检验媒质131和滤光片120光学吸收的组合或者卷积,对于同样的波长由函数I(φ)表示。为了由强度向量I(φ)和滤光片特性向量F(φ,λ)中得到T(λ),强度向量I(φ)和逆F-1(φ,λ)相乘。
函数I(φ)和F(φ,λ)可以分别由信号强度和滤光片特性矩阵来表示。因此,由于I(φ)=F(φ,λ)×T(λ) (1)而且I(φ)表示对于每一旋转位置值中包含一强度值的一纵行矩阵(向量),而F(φ,λ)表示对于每一φ值和每一λ值(图4D)包含一滤光片透射系数的二维矩阵,那么代表通过被检验媒质131的光学透射的函数T(λ),可被表示为对于各种波长值中每一波长λ具有一定值的一纵行矩阵。
根据本发明的一个实施例,为表征被检验的媒质131以及滤光片120的光谱特性起见,在850nm到1400nm的范围内选择了16种波长。
上述等式(1)的矩阵形式被表示如下
如等式(2)所示,信号强度矩阵I(φ)等于二维的滤光片特性矩阵F(φ,λ)和单行的被检验媒质矩阵T(λ)的乘积。在此等式中,有两个矩阵(即I(φ)和F(φ,λ))是给出的。因此,表示被检验媒质131对于850nm和140nm之间被选定的16种波长的光学透射特性的第三个矩阵T(λ),可以利用普通的矩阵逆变和乘法,简单地通过将被表示为F-1(φ,λ)的滤光片特性逆矩阵乘以信号强度矩阵I(φ)来获得,如下所示
因此,如程序块331所示,对滤光片特性矩阵取逆变换F-1(φ,λ),随后此逆矩阵在程序块330中被乘以信号强度矩阵I(φ),以得到被检验媒质131的频率响应,如由被检验媒质的特性矩阵或透射向量T(λ)表示的那样。
图8以图示的形式说明这种操作。如图8所示,光源110发出的光通过透镜117和滤光片120以提供被滤光的光辐射125。该光辐射125随后通过被检验的媒质131,以提供被用来产生信号强度矩阵1000的光信号。
此信号强度矩阵1000被乘以滤光片特性矩阵1010的逆矩阵,如方框1005所示。如图所示,滤光片特性矩阵1010,如上所述是从分析滤光片120推导出来的。将滤光片特性矩阵1010的逆变换乘以信号强度向量1000,便可得到光学频率响应矩阵或透射向量1015。
进一步的处理取决于被检验的媒质的期望分析结果。
本滤光片的应用本发明的光学滤光片被用在各种应用中。实际上,此光学滤光片可以与光学辐射被分类成许多频谱的任何应用一同使用。例如,本发明的特有益处可以表现为在线的、连续的化学过程分析,或者在需要快速的小型低成本仪器场合下的工业应用。应当指出地是,随同旋转二向色滤光片一起使用的圆扫描技术,能够提供显著的机械效益,为提高对线性正弦波振荡或锯齿形扫描的扫描速度创造条件。因此,多色仪滤光盘120在需要采用快速、实时频谱进行在线处理控制的处理控制工业中有许多应用。具体的应用包括石油蒸馏过程(其中要确定碳氢化合物的不同组份)、体内血液化验药物和酒精等。
包括血糖检测的应用本发明滤光片的一种特殊有益的应用,包括检测病人(例如糖尿病患者)的血糖水平而不需要抽血。此应用简要描述如下。
图3示意表示在血糖检测仪中滤光片120作为光学滤光片如何进行工作。由光源110发出的光辐射115经过透镜组件117(它可以包括纤维光学或诸如此类)被聚焦,并且通过滤光片120。二向色滤光片120包括一光学透射的可旋转圆盘形基片,被成层为具有不同厚度的光学涂敷层,以便对于遍及近红外(NIR)(例如700nm)到红外(例如1400nm)频谱的宽带光辐射115进行调制。滤光片120进一步包括有光学不透明的长条122,例如可以由从滤光片圆盘120中心径向朝外涂覆的黄铜或其它金属构成。此不透光的长条可以提供“0”位置指示和零光学强度,或者电偏置。在一最佳实施例中,滤光片圆盘120是由平稳的盘驱动电机按圆周运动驱动的,然而也可以使用步进电机,因为其已知的相位条件比较有利。来自滤光片120的被滤光的辐射125则通过充满血液的肉质媒质,例如手指头130。在某些应用中,在滤光片120和手指130之间提供聚光透镜或其它光学导管,可能是需要的。通过手指130的光被探测器140检测。一般说来,所检测的信号是经过调节的,并且在模/数转换电路142中被转换成数字形式。数字信号处理器145则接收此数字信号,对于二向色滤光片的精度不足予以调节。
在使用中,当光115是在约700nm至1400nm的波长范围内(在另一实施例中为850-1700nm,其中最高与最低波长之比约为2∶1)以宽带光源110中发出时,此宽带光115透过旋转的二向色滤光片120。应当指出,此光115借助于纤维光学、透镜组件(例如透镜117)之类被聚焦在滤光片120的局部。当二向色滤光片120旋转时,通过二向色滤光片120局部的宽带光115被滤光而产生出被滤光的光辐射125。如上指出的那样,二向色滤光片120被涂敷可变厚度的光学膜层,以致于其不同部分通过不同波长的光。因此,当滤光片120旋转时,来自该滤光片的光辐射125输出包括各种波长的光辐射。在一实施例中,纤维光学被用来将由滤光片120局部发出的光辐射125耦合到病人的手指130上。这里应该注意,由于滤光片120的光学特性可被仔细地测量,且其转速是已知的,故由滤光片120发出的照射手指130的光辐射125随时间变化的图案是明确规定的,因而在信号处理过程中可以用来确定由光学滤光片120造成的衰减量。
用来照明手指130的光辐射125将通过手指130,以产生可探测的光135。如技术上公知的那样,某些光辐射125无阻碍地通过手指130,某些光辐射125则在手指130中被反射以产生散射。透过手指130的被散射辐射与无阻碍通过它的光一起,构成光135。某些光辐射125在手指130中由其组分吸收。
手指130据知包括指甲、皮、骨、肉和血液。血液本身主要由水、氧合血红蛋白、血红蛋白、脂质、蛋白质和葡萄糖组成。手指中这些成分中的每一种(例如神经、肌肉组织等)均对通过手指130的光辐射125的吸收和散射作出贡献。通过非均匀媒质的光辐射的吸收,通常遵循与分别获取的每一组分的光学特性有关的明确规律。这些规律的被近似表示为拜耳-郎伯特定律的方程式,其中低散射应用最严格遵守拜耳-郎伯特方程。通过手指130的光135入射在光学探测器140上。光学探测器140则产生出与光135的总强度成比例的电信号。
尽管光135在不同的波长上通常具有不同的强度,然而光学探测器140产生的电信号,与其所检测的光学频带中处于光135的光谱响应曲线之下的面积成比例。这就是说,光学探测器140在不同的波长上接收具有不同强度的光。被检测的波长在约850nm至1700nm的频带范围内是受到探测器140的特性限制的,以致于如果强度被绘成波长的函数以获得光谱响应曲线,那么处在此光谱响应曲线下面的面积将表示入射在探测器140上的平均光辐射强度。因此,探测器140产生的电信号与光135的总的(即平均)强度成比例。
根据本发明构制的滤光片120,在整个一周内包括一些重复的区域。具体说来,滤光片120是按对称成层的,以致于该滤光片的第一个半周基本上与第二个半周的信号是对称的。这就是说,如图3所示,该滤光片被加工成楔形形状,以致于其在一个方向上的厚度不变,且在其垂直方向上成线性地增加。因此,滤光片120的第二个半周是重复的。由于这个原因,对滤光片120半周的数字采样可被放弃,以致于在一实施例中,滤光片120在其每周内为数字信号处理目的利用的是128次采样,而不是256次采样。当然,将会理解,某些采样是由于不透光的长条失去的。另外,所有256个采样均可通过对相应值取平均被用来处理。在又一实施例中,该滤光片重复的一半可被用于滤光片和光源的校准。128个采样中(如果只有一半被利用)的每一采样,所代表的是滤光片120中具有不同光透射特性的不同部分。
光学滤光片的生产技术条件在为血糖测量用的一有利的实施例中,作为滤光片120的生产技术条件如下规格20mm宽×20mm波长间距,线性多层涂敷;基片25mm外径玻璃圆盘,中心带有7.5mm轴孔;通过波长700-1400nm;1/2带宽50到200nm,频带可重复;屏蔽无;环境经得住冷凝湿度0-70C。
通频带边缘制出以便区分出20nm的通频带边缘。
通频带可以按小到400cm-1的间距在窗中重复,或在窗中重复17-18个循环。通频带中心的透射应接近100%,而且通频带之间的区域应为接近100%的反射。
窗外部的屏蔽要求并非关键性的。它可能受通频带边缘的材料(例如RG660,RG700或半导体)或者通常在7100cm-1以下的玻璃中发现的O-H带的限制。
只有使用一或多个通频带边缘解决接近2000cm-1波数带的能力会减少成本。
作为本实施例的特征本滤光片最好没有比8000到11000cm-1(约为910至1250nm)窄的窗。较好的是带宽比200cm-1宽,而且带的边缘比200cm-1窄比较有利。如果主带的透射最大值大于80%,而且透射最小值小于20%,则比较有利。其它任何带应当是单元至单元可重复的,但是如果它们并不如此,那么可以使用一校准只读存储器(ROM)根据数字信号处理器进行各个滤光片的初始校准。
作为本实施例的机械限度和特征比较有利的做法是,作为自然条件下便携应用的线性滤光片,能够以低于每分钟4800转的速度绕其中心旋转(虽然在某些工业应用中接近每分钟48000转的速度可能是适合的);处于中心的孔径半径最小9mm,最大45mm;通光孔径1~3mm;数值孔径为.12至.40。光路通过沿此旋转滤光片的环形区域运行经过小圆部分而引起波长的正弦波扫描,尽管它们是按线性涂覆的。
为了动态平衡和低扰动,此线性滤光片是涂覆在圆形基片上的。由于其中心是未被光学利用的,故最好为一标准直径的轴安装孔;本发明中大多数现有的金属零件,不是使用0.5000-0.000,+0.0005″的直径,就是7.5-0.0+0.1mm。对于例如20mm直径的小滤光片来说,可以考虑粘接在无涂覆层的面上。注意到滤光片的安装没有辐条或其它对光路的结构性遮断。
涂敷层在玻璃上面的初始的光学-机械对准并非关键性的要超出0.5mm,而且将由电子学方法确立。在边缘或中心的某些涂覆对准标志是需要的。
尽管本发明的最佳实施例已被描述及说明如上,然而本领域的技术熟练人员将会理解,本发明的各种变化和改进并不离开本发明的精神。因此,本发明的范围仅受以下所附权利要求范围的限制。
权利要求
1.一种制造旋转光学滤光片的方法,所述制造方法包括如下步骤提供一具有上表面和下表面的光学基片,以及在所述上表面上涂覆以光学涂敷层,从而使上述涂敷层跨过上述基片的上述顶面沿第一方向具有变化的厚度,并使这些涂敷层的厚度在与上述第一方向基本垂直的第二方向上基本上不变。
2.如权利要求1所述的方法,进一步包括的步骤是在该基片中心产生安装孔。
3.如权利要求2所述的方法,进一步包括的步骤是沿上述基片的至少一部分涂覆以不透光的长条。
4.一种光学滤光片,包括一具有上表面和下表面的基片,以及涂覆在上述基片的上述上表面上的许多光学涂敷层,从而使上述涂敷层在跨过上述上表面的第一方向上的厚度变化。上述涂敷层在与上述第一方向基本垂直的第二方向上,跨过上述上表面的厚度基本上保持不变。
5.一种光学滤光片,包括通常为圆形的基片,以及涂覆在上述基片上的一些光学涂敷层,上述这些涂层提供一非成象的干涉仪,其中入射在上述涂层上约一半的光将在该基片的整个表面上通过上述涂层。
6.一种光学滤光片,包括一具有上表面和下表面的基片,以及沿上述基片在第一方向上具有厚度变化的许多光学涂敷层;上述涂层为上述光学滤光片提供一些光学透射特性曲线,以提供一种跨过上述滤光片表面上全部位置可透过不止一种波长的光学滤光片。
7.一种光学系统,包括一光学滤光片,其将输入信号相乘,以致于输出信号包括在跨过滤光片在过半位置上不止一种波长的和;一探测器,其接收入射在其上的并由上述光学滤光片滤过的光,上述探测器响应于被接收光(即在该探测器响应范围内所有入射光之和)提供一输出信号,以及一与上述探测器耦合的信号处理器,该信号处理器响应上述输出信号以将总信号解码成一些组成部分,其中一部分代表入射在该探测器上的光的消除了该滤光片特性的光学特性。
全文摘要
一种被用在包括光谱测量之类应用中的光学滤光片(120),是通过将一些光学涂敷层(111)涂覆在基片(110)上制成的。涂敷层(111)被涂覆,以便在沿基片(110)表面的第一方向上具有基本上不变的厚度,而且沿与第一方向垂直的方向具有逐渐增加的厚度。光学滤光片(120)的这种结构允许大规模生产该滤光片,以致于其生产成本可以大大降低。该滤光片(120)可以用在各种应用中,其中包括但不局限于化学分析、血糖检测,以及诸如此类。
文档编号G02B5/20GK1192808SQ96196114
公开日1998年9月9日 申请日期1996年6月4日 优先权日1995年6月7日
发明者小J·M·O·勒佩尔, M·K·迪尔布 申请人:马西默有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1