3D打印方法和设备与流程

文档序号:11933596阅读:1045来源:国知局
3D打印方法和设备与流程

本发明涉及一种3D打印方法和设备。

更具体地说,本发明涉及一种用于从不同的源材料(例如不同的金属)制造整体3D部件的3D打印方法和设备。



背景技术:

三维(3D)打印部件使得通过铺设连续的薄材料层根据3D数字图像制造实体对象。

通常这些3D打印的部件可以通过各种方法来制作,例如选择性激光烧结、选择性激光熔化或选择性电子束熔炼,其使得光或热能量束投射到粉床上以熔融粉床的顶层使得其焊接到基板或底层。该熔融过程被重复以将另外的层添加到该底层以逐步构建部件直至完全制成。

许多现有的打印工艺受限于一次仅从一种合金或材料混合物制造打印部件的能力。它们不容易允许在熔融步骤的每一个步骤之间用不同材料进行打印,例如以交替顺序使用两种不同的金属或金属、塑料、陶瓷层。这是由于更换粉床所涉及的时间和难度。

这个问题的进一步的例子在激光工程化净成形中也会遇到,其操作是通过除去粉床并将粉末直接注入激光束和熔池。这个过程中的问题是,只有少量的材料被熔池捕获且难以顺序地将多于一种材料给送到熔池。由于在送粉器关闭和粉末停止流经送粉管之间有时间滞后,所以不可能在要被焊接的材料之间快速切换。同样,当送粉器打开时也存在类似的滞后。这是由于粉末通过管道的流动特性导致的。其结果是,由于重叠流动,材料之间的切换往往会导致交叉污染,这只能通过停止操作并增加给送不同粉末之间的延迟来避免。

此外,现有的打印工艺难以主动控制粉末沉积速率和能量束的焦点,使得由该装置递送的大量粉末未得到使用。

为了正确操作和消除打印部件中的杂质,熔化过程必须在无菌环境中进行。这在目前通过在惰性或无反应的气体环境(例如氩气)中进行打印过程来实现。然而,许多打印工艺是有限的,因为它们不能在腔室中没有明显重复吹扫气体的情况下充分提供气体屏蔽。而这是耗费时间且浪费氩气。

本发明的目的是提出一种3D打印方法和设备,这将有助于至少部分地克服这些问题。



技术实现要素:

根据本发明的一个方面,提供了一种用于打印三维组件的打印设备,包括:

操作表面;

用于将能量束发射到操作表面上的能量源;

至少一个供给管,用于将粉末分配到操作表面上,该粉末适于由能量束熔化;以及

充电装置,用于给粉末和操作表面进行静电充电,由此施加到粉末的电荷与施加到操作表面的电荷具有相反极性。

该设备可以包括多个供给管,用于将粉末分配到操作表面上,以及供给控制装置,用于独立地激活供给管的每一个以允许将粉末分配到操作表面上。

供给控制装置可以允许粉末同时从多个供给管分配,从而将粉末混合物沉积在操作表面上。

该设备可包括用于将惰性粉末分配到操作表面上以形成不会被能量束熔化的粉末床的供给管,所述粉末床适于支承所述部件。

该设备可包括静电控制装置,用于控制离开供给管的带静电的粉末的流动方向。

该打印设备可包括至少一个废料料斗,其中每个废料料斗与唯一的供给管相关联,用于从其相关联的供给管接收未分配到操作表面上的任意粉末。

该设备可以包括公共喷嘴,其中来自每个供给管的粉末通过公共喷嘴被分配到操作表面上。

公共喷嘴可以包括多个子喷嘴,其中每个子喷嘴包括与一个供给管相关联的供给入口,与废料管相关联的废料出口,以及分配出口。

每个子喷嘴可以包括快门阀(shutter valve),用于选择性地关闭或打开分配出口以及选择性地启用或禁用供给入口和废料出口之间的流通。

该打印设备可包括加热单元,用于加热所述打印部件、所述给送的粉末和所述操作表面周围的区域。

加热单元可将打印部件加热到操作表面的工作温度的10%至70%之间的温度。

该打印设备可包括耦合装置,用于提高粉末对来自能量束的能量的能量吸收。

所述耦合装置可以包括形成在所述操作表面上的等离子体,其中所述等离子体包括金属离子。

能量束可以被聚焦以在操作表面产生能量密度,该能量密度是至少10瓦特/mm3。

能量源可以选自激光束、准直光束、微等离子焊接电弧、电子束和粒子加速器中的任意一者。

激光束可以被聚焦到小于0.5平方毫米的光斑尺寸。

光束可以被聚焦到小于1平方毫米的光斑尺寸。

微等离子焊接电弧可以聚焦到小于1平方毫米的光斑尺寸。

根据本发明的进一步方面,提供了一种用于打印三维组件的方法,该方法包括:

提供用于将粉末分配到操作表面上的至少一个供给管;

使用充电装置给粉末和操作表面进行静电充电,由此施加到粉末的电荷与施加到操作表面的电荷具有相反极性;以及

使用能量源将能量束发射到操作表面上。

附图说明

现在将参照附图通过示例的方式描述本发明,在附图中:

图1是根据本发明的第一实施例的3D打印设备的示意性布局的侧视图;

图2是用于图1所示的打印设备中的进料喷嘴的示意图布局的放大视图;

图3是根据本发明的第二实施例的3D打印设备的示意图布局的立体图;以及

图4是图3中所示的3D打印设备的侧视图。

附图详细描述

现在参照图1和图2,示出了根据本发明的第一实施例的3D打印设备的示意性布局,总体是由参考数字10来表示。设备10包括具有操作表面14的基板12,在操作表面14上通过3D打印可以制作打印部件。可以理解的是,最初操作表面14将直接位于基板12上,但随着制造打印部件,操作表面14将位于打印部件的底层上。

该设备10包括多个供给料斗16,包含粉末,其从每一个供给料斗16通过其供给管18流到公共喷嘴20以通过其被分配到操作表面14,在该表面14上能量束22(由能量源发出的)加热并熔化粉末由此形成打印部件。最初粉末直接被沉积并熔化到基板12上,但是,随着通过添加后续层制造打印部件,粉末被沉积并熔化到打印部件的底层上。

可以设想,供给料斗16中的每一者将包含不同材料的粉末,例如一个供给料斗16可以包含不锈钢粉末,另一个供给料斗16可以包含黄铜粉,而还一个供给料斗16可以包含不反应惰性粉。

能量束22可以是激光束、准直光束、微等离子焊接电弧、电子束和粒子加速器中的任意一者。优选地,能量束22具有适用于合适地聚焦能量束22的聚焦装置(未示出),在操作表面14上产生至少10瓦特/mm3的能量密度。

当能量束22束是激光束时,激光束可以被聚焦到操作表面14上小于0.5平方毫米的光斑尺寸。类似地,如果能量束22是准直光束,该光束可以被聚焦在操作表面14上小于1平方毫米的光斑尺寸。当能量束22是微等离子焊接电弧时,微等离子焊接电弧可以被聚焦到操作表面14上小于1平方毫米的光斑尺寸。这种微等离子焊接电弧通常能够在大约20000℃的温度产生光斑尺寸大约0.2平方毫米的聚焦等离子气体束。

电子束和粒子加速器在操作上类似,不同在于电子束利用高速电子熔化金属而粒子加速器使用高速原子核。优选地选择使用电子束,因为使用粒子加速器产生的过高的速度会导致打印部件有辐射。

该设备10还包括多个废料料斗24,其中每个废料料斗24与供给料斗16中的一个配对,且其中废料管26从喷嘴20通到废料料斗24。

如图2中更详细示出,喷嘴20包括多个子喷嘴28,其中每个子喷嘴28与一对供给管18和废料管26相关联。子喷嘴28具有供给入口30、废料出口32以及分配出口34。快门阀36位于子喷嘴28内部的中枢,用于选择性地关闭或打开分配出口34。可以设想,任意的子喷嘴28可以同时打开。快门阀36在枢轴38连接到子喷嘴28。

图2显示了一个关闭的子喷嘴28.1和打开的子喷嘴28.2。在关闭的子喷嘴28.1中快门阀36转动以关闭分配出口34。在这个位置中供给入口30与废料出口32进行流通,从其供给管18流入子喷嘴28.1的任意粉末通过废料出口32重新导入其废料管26以返回到其废料料斗24。然而,在打开的子喷嘴28.2中,快门阀36转动以打开分配出口34,同时关闭废料出口32。在这个位置中供给入口30与分配出口34流通,且从其供给管18流入子喷嘴28.1的任意粉末被分配到操作表面14。

供给管18和废料管26中的粉末的流动可以通过气体供给或重力供给来实现。此外,供给料斗16的每一个具有流量泵40,用于将粉末从供给料斗16泵送到供给管18。

进一步设想,废料料斗24可以连接到其相关联的供给料斗16使粉末可以从废料料斗24返回到供给料斗16以重新利用。可替换地,废料管26可以直接返回到供给料斗16,即在这种情况下不需要废料料斗24。

在使用中,当需要从特定供给料斗16供给粉末时,流量泵40被激活,而其快门阀36保持关闭,导致一个稳定且充分流动的粉末通过子喷嘴28。当这已达到时,快门阀36被打开,使粉末被分配使用。在不再需要粉末后,通过关闭快门阀36来停止分配粉末。仍然包含在供给管18内的任何粉通过子喷嘴28和废料管26被冲入废料料斗24,之后停止流量泵40。然后,任何未使用的和未被污染的粉末则可以从废料料斗24回收再利用。

因此很明显,喷嘴20可操作连接到多个供给管18,每个适合于从相关供给料斗16提供唯一的材料。特定材料粉末的互换可以通过简单打开或关闭相关阀36快速进行。可替换地,可以通过同时打开两个或更多子喷嘴28的阀36并同时调整流量泵40施加的相关粉末流速来按特定比率混合各种粉末。

因此,本发明允许多种金属同时沉积到操作表面14,彼此相邻沉积以同时形成产品的不同各个部件,或混合一起沉积以在能量束22下熔化时形成金属合金。例如,期望具有黄铜内衬的不锈钢外壳的组件可以首先沉积不锈钢粉末之后沉积黄铜粉末。最后,如果在打印过程中需要支持支撑组件的目的,任意进一步的区域可以被填入任意粉末,例如不锈钢或黄铜或惰性粉末,以形成粉末床,其不会被熔化且在该粉末床内会形成该组件。惰性粉末材料可以是商业上便宜的粉末,例如二氧化硅,因为它不会是被熔化区域的一部分。所有粉末沉积后,能量束22扫描操作表面14以连续熔化或烧结多种材料。通常,剩余在粉末床的惰性粉,例如惰性粉,不被能量束扫描并将保持未熔化。该顺序在层中重复以构成包含不同材料的组件。一旦打印完成,组件可以从松散的粉床中取出。

由于粉末颗粒的性质,它们往往倾向于在沉积在操作表面14上时在操作表面14上滚动。通常这是由于粉末颗粒的形状,如大致圆状的粉末颗粒,在操作表面上弹滚并与已经位于操作表面上的其他粉末颗粒碰撞,或由于通过供给管18携带粉末颗粒的气体供给力导致滚动,或如果太多粉末颗粒沉积在相同位置滚离“粉堆”的粉末颗粒的重力导致滚动。

通过静电充电粉末颗粒与操作表面14具有相反极性来克服这个滚动问题。例如,一个正电荷可以施加到操作表面14和离开喷嘴20的粉末颗粒可以带负电荷。因此,当粉末颗粒离开喷嘴20时,它们被拉到操作表面14上,并且一旦与之接触,粉末颗粒就会粘附在操作表面上。这种粘附的优点是,首先,它改善了最终组件的分辨力,因为粉末颗粒可以准确地放置,其次,打印设备内的工作环境被改善,因为在喷嘴20和操作表面14之间的粉末颗粒粉尘更少。此外,还可以使用其他静电装置控制静电粉末颗粒的流动方向。

可以通过在能量束22的期望路径上在固定幅度内振荡与能量束22相关联的透镜反射镜来进一步提高分辨力,这与在整个操作表面14振荡反射镜的常规方式相反。透镜反射镜也可以在操作表面14上的多个正交平面被振荡。

在制造具有薄壁结构的一些组件中,可能会经历的是在制造组件时由于更靠近基板12的冷却组件与经受到能量束22的操作表面14之间的温度差导致壁结构变形。可以设想,这种变形发生的可能性可以通过将打印组件的周围环境(例如粉末床)加热到在打印设备10中使用的粉末的熔点的30%至70%之间而大幅降低。

而且可以预加热沉积的粉末。

当激光用作能量束22时,经常会发现大部分能量被偏转或反射离开粉末粒子,从而导致设备10的工作效率较低。可能经历的是粉末颗粒吸收少到5~40%的能量,因此打印过程被延长以适当的熔化粉末颗粒。因此,本发明还提供了一种通过在操作表面14上创建等离子体将激光能量“耦合”到粉末的方法。这种耦合大大提高了激光能量吸收,例如从约40%至100%。这有利于金属离子在等离子体中的耦合方法。这些金属离子可以通过利用能量束22对合适的金属进行蒸发或通过将合适的有机金属化合物添加到气体环境而被引入(例如用于提供铁离子的铁羰基)。

可以设想,设备10能扩大操作范围,例如通过提供多个喷嘴20和多个能量束22,或通过提供更大的喷嘴 20用于沉积更大量的粉末和更大功率的能量束22以熔化粉末。因此,该设备10可以同时制造许多分立组件。可替换地,该设备10可以制造尺寸增大的单个组件,由此多个喷嘴20和多个能量束22中的每一个制造单个组件的不同部分或部件。多个喷嘴20和多个能量束22可以被布置成彼此按顺序或并行地操作。

现在参照图3和图4,示出了根据本发明的第二实施例的3D打印设备10的示意性布局。设备10包括具有操作表面14的基板12,在操作表面14上通过3D打印可以制作打印部件16。最初操作表面14直接位于基板12上,但随着制造打印部件16,操作表面14将位于打印部件16的底层上。

该设备10进一步包括多个供给料斗16,包含粉末,该粉末从供给料斗16流过其供给管18以被沉积在能量源42下面的操作表面14上。能量束22由能量源42发射到操作表面14上以加热和熔化粉末从而形成打印部件16。最初粉末直接被沉积并熔化到基板12上,但是,随着通过添加后续层制造打印部件16,粉末被沉积到打印部件16的底层上。

供给料斗16与基板12旋转地相关联,使得一次仅一个供给料斗16.1能够将粉末沉积在操作表面14上,而剩余的供给料斗16.2保持空闲并不操作。供给料斗16的旋转由电机单元完成,该电机单元在附图中未示出。在示出的实施例中,该装置10包括五个供给料斗16,各个供给料斗16通过支撑环44互链。供给料斗16的每一个可以包含与每一个其他供给料斗16中包含的相同或不同的粉末。在供给料斗16包含不同的粉末的情况中,工作的供给料斗16.1的旋转替换允许快速互换不同粉末沉积到操作表面14。此外,有多个供给料斗16还允许空闲的供给料斗16.2在它们变空的情况下被重新装填。

该设备10还包括多个废料料斗24,其中每个废料料斗24与供给料斗16中的一个配对。废料料斗24还与基板12旋转关联并与供给料斗16一起旋转。废料料斗24可操作位于供给管18下方,由此从空闲料斗16.2的供给管18流出的任意粉末被废料料斗24.2接收。当操作供给料斗16.1将其粉末沉积在操作表面上时,其相关联的废料料斗24.1位于基板12的下面。

能量源22可以是激光束、准直光束、微等离子焊接电弧、电子束和粒子加速器中的任意一者。优选地,能量源42具有聚焦装置(未示出),适用于使得能量束22被合适聚焦由此在操作表面14上产生能量密度,其中该能量密度至少为10瓦特/mm3

当能量束22束是激光束时,激光束可以被聚焦到操作表面14上小于0.5平方毫米的光斑尺寸。类似地,如果能量束22是准直光束,该光束可以聚焦在操作表面14上小于1平方毫米的光斑尺寸。进一步地,当能量束22是微等离子焊接电弧时,微等离子焊接电弧可以聚焦到操作表面14上小于1平方毫米的光斑尺寸。

优选地,该设备10还包括加热单元,用于加热打印部件16、包含在供给料斗16内的粉末以及基板12。加热单元可以直接附着到基板12上。加热单元适用于将打印部件加热到操作表面的工作温度的30%至66%之间的温度。

根据本发明的另一方面,基板12周围的大气环境被密封和控制以确保在操作过程中存在纯粹的和非反应性环境,使得不会由于粉末与该环境内的杂质元素反应而导致在打印部件16内形成杂质。为了得到无反应环境,设备10在操作之前用惰性或不反应性气体冲洗。优选地惰性气体是例如氩气的惰性气体,但也可以使用其它非反应性气体。

通常情况下,一次冲洗不能完全清除设备10中的所有空气,因此有少量的杂质,即一些氧气和氮气,仍然会留在设备10内。因此,为了避免使用氩气进行重复冲洗的必要性,打印设备10被设置有活性金属基体46,例如钛、铌或钽。在所示的实施例中,金属基体46被显示位于基板12的一侧上但有偏移。然而,也可以设想,金属基体62可以位于远离基板12。

金属基体46位于其可以可选择性经受到能量束22的合适的位置。因此,能量源42或能量束22可以是可移动的,由此它可以在金属基体46上移动,或基板12可以是可移动的,由此使金属基体46可以在能量源42下面移入。当金属基体46经受到能量束22时,气体环境内的任何空气污染与金属基体46反应以形成固体金属氧化物和金属氮化物,从而从气体环境中提出空气杂质并产生基本纯净的氩气气体环境。

本领域技术人员清楚的修改和变化应被视为在本发明的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1