氧化锆韧化的氧化铝esd安全陶瓷组合物、元件、及其制造方法

文档序号:3060265阅读:461来源:国知局
专利名称:氧化锆韧化的氧化铝esd安全陶瓷组合物、元件、及其制造方法
技术领域
本发明一般涉及静电放电(ESD)安全陶瓷(有时称为“ESD耗散陶瓷”或“ESD陶瓷”)组合物、元件、及其形成方法,具体涉及基于氧化锆韧化的氧化铝(ZTA)材料的ESD安全陶瓷元件。
背景技术
在静电放电(ESD)安全陶瓷领域中,已经开发出各种组合物,意在将对静电放电敏感的最终用途的材料重要的电、热和机械性能集合在一起。
最值得注意的是,已经研发出了用于对ESD敏感的环境中的氧化锆系材料。一般而言,氧化锆是转变韧化的,含有稳定剂以部分地稳定四方晶体结构形式的氧化锆。在各种韧化的氧化锆中,四方晶体部分稳定的氧化锆平衡了下述各种性能,包括高强度、断裂韧度、耐蚀性、以及极好的可机械加工性能。由于这些原因,已经将四方晶体部分稳定的氧化锆用于金属成形工具、刮刀/刀片、操作工具(例如,镊子)、以及光纤连接器(管接头),并且已经获得了替代工具钢、不锈钢、特种合金和胶接碳化钨(WC)的最新用途。
但是,由于韧化的氧化铝是个电绝缘体,其体积电阻率大于1012欧姆-厘米,故不是特别适合于ESD安全用途。在这方面,可通过参阅来自ESD协会的公开信息来找到有关改进的ESD材料所需的技术背景。例如,参见www.esda.org.
近来,本领域中对于不仅具有所需的ESD性能,还具有所需的热膨胀性能、挠曲强度、韧性、硬度、耐磨性以及其它性能的ESD耗散元件或ESD安全元件的需求不断增加。有一些要求严格的商业用途,例如用于微电子用途的粘合接点、用于磁-电阻头制造的操作工具、结合毛细管、以及类似的用途,对于ESD安全材料的有些需求正是由为这些用途寻求材料引起的。在这方面,已经发现氧化锆系陶瓷,包括氧化锆系ESD陶瓷缺乏某些要求严格的工具用途所需的足够的刚性、硬度、耐磨性和抗磨损性。另外,也已经发现,氧化锆系ESD陶瓷可能不具有合适的导热性和热膨胀性能。
因此,基于上述,本发明人已经认识到,本领域中需要可特别用于需要独特的机械、结构和电性能的要求严格的用途的改进的材料。

发明内容
根据本发明的一个方面,ESD安全陶瓷元件包括由基本材料和电阻率调节剂形成的烧结组合物。所述基本材料包含一主要成分和一次要成分,所述主要成分是Al2O3,所述次要成分是四方晶系ZrO2。
根据本发明的另一个特征,提供了一种形成ESD安全陶瓷元件的方法,其中,陶瓷生坯在较低的温度如低于约1400℃进行致密化。在这方面,所述陶瓷生坯由基本材料和电阻率调节剂形成,所述基本材料包含由Al2O3组成的主要成分,以及由四方晶系ZrO2组成的次要成分。
根据本发明的再一个特征,提供了一种形成ESD安全陶瓷元件的方法,其中,将基本材料和电阻率调节剂混合在一起,然后成形为陶瓷生坯,接着烧结所述陶瓷生坯。在这方面,所述基本材料,如前述,包含Al2O3和四方晶系ZrO2。重要的是,根据本发明的一个方面,四方晶系ZrO2含有一种稳定剂,所述稳定剂在与所述电阻率调节剂混合之前(当然是在形成所述陶瓷生坯之前)就存在并与四方晶系ZrO2形成了预合金。
根据本发明的另一个方面,提供了一种形成ESD安全陶瓷元件的方法,其中,对包含基本材料和电阻率调节剂的陶瓷生坯如前述进行烧结,随后通过退火操作调节电阻率。
根据本发明的另一个方面,ESD安全陶瓷结合工具由包含基本材料和电阻率调节剂的烧结的组合物形成。所述基本材料由氧化锆韧化的氧化铝形成,所述电阻率调节剂由过渡金属氧化物形成。所述工具的密度不小于其理论密度的约98%,体积电阻率在约106-109欧姆/厘米的范围内。
根据本发明的另一个方面,提供了一种形成陶瓷元件的方法,它包括在热等静压(HIPing)环境中对陶瓷生坯进行热等静压,在一个局部环境中提供陶瓷元件,在该局部环境中操作气体物质的分压大于HIPing环境中操作气体物质的分压。即,与进行HIPing的整个HIPing环境相比,在局部环境中操作气体物质通常较浓。


图1是根据本发明一个实施方式的结合工具的透视图。
图2是所述结合工具的侧视图,包括用来进行结合操作的超声波波发生器。
图3示出了根据本发明一个实施方式进行HIPing的坩埚结构图。
图4是图3所示坩埚结构的分解截面图,还包含了吸气材料。
具体实施例方式
提交于2001年11月19日,共同转让给本受让人的待审美国专利申请09/988,894的主题内容参考结合于本文中。
根据本发明的一个方面,ESD安全陶瓷元件是由包括基本材料和电阻率调节剂的烧结的组合物形成的。在这方面,所述基本材料由氧化锆韧化的氧化铝(ZTA)形成。所述氧化锆韧化的氧化铝包含由氧化铝(Al2O3)组成的主要成分以及由氧化锆(ZrO2)组成的次要成分。通常,ZrO2包括至少三个相,包括单斜晶系、四方晶系和立方晶系。较佳地,根据本发明的一个实施方式,所述氧化锆含有四方晶系氧化锆,但是也可以存在单斜晶系和立方晶系的相。在这方面,在某些实施方式中,一定比例的单斜晶系的相可能是转变韧化性能所需要的。
通常,所述氧化锆含有至少75体积%的四方晶系氧化锆,例如至少85体积%四方晶系氧化锆。由于氧化锆的四方晶系形式在室温下通常被认为是不稳定的,所以一般要在氧化锆材料的晶体结构(即晶格)中存在稳定剂。所述稳定剂可选自许多材料中的一种,包括稀土氧化物,如氧化钇、二氧化铈和/或氧化钪。虽然稳定剂相对于氧化锆的含量取决于所使用的具体稳定剂,但是稳定剂的含量相对于氧化锆一般约为1-8mol%,更普遍的是约2-4.5mol%。根据一个实施方式,在加入电阻率调节剂之前,在形成ESD安全陶瓷元件之前,使氧化锆稳定。在早期加入稳定剂通常被称为对氧化锆材料“预合金化”。理想的是对氧化锆进行预合金化,以防止高温烧结过程中发生不良的化学反应。例如,这些不良的化学反应会导致所述元件的机械、热和电性能下降,例如由于形成不合适的相而不利地改变元件的电阻率。
现在讨论基本材料,根据本发明的一个实施方式,氧化铝的含量比氧化锆的含量高。氧化铝与氧化锆的比例可超过55∶45,以体积%计,例如不小于60∶40。其它实施方式包括氧化铝与氧化锆的比例更高的情况,例如不小于约70∶30和75∶25。
通常,作为基本材料的主要成分的氧化铝形成了主相,在本领域中有时称为基本材料的基质相。在一个实施方式中,次要成分氧化锆精细而均匀地分散在主相中。如上所述,次相是由四方晶系氧化锆形成的。但是,也可存在另外的相,例如氧化锆的单斜晶系和立方晶系相。
现在讨论电阻率调节剂,通常,使用电阻率调节剂是为了减小元件的体积电阻率和表面电阻率。最普遍地,电阻率调节剂的含量相对于基本材料计约为5-40体积%。根据使用的具体电阻率调节剂,也可使用较窄的含量范围,例如约5-30体积%,或者约10-30体积%。所述电阻率调节剂可增加或减小电阻率,但是一般用来减小元件的电阻率,包括体积电阻率和表面电阻率。在一种实施方式中,电阻率调节剂采用导电颗粒的形式。较佳地,所述调节剂不与氧化铝和/或氧化锆反应。例如,ZnO可能与氧化铝基本材料反应形成非导电性ZnAl2O4(铝酸锌),而这是不好的。下面是可考虑用于本发明实施方式中的电阻率调节剂的许多物质。
碳化物(B4C、SiC、TiC、Cr4C、VC、ZrC、TaC、WC、石墨、碳);氮化物(TiN、ZrN、HfN);硼化物(TiB2、ZrB2、CaB6、LaB6、NbB2);硅化物(MoSi2);碳氮化物(Ti(C,N)、Si(CN));单一氧化物(NiO、FeO、MnO、Co2O3、Cr2O3、Fe2O3、Ga2O3、In2O3、GeO2、MnO2、TiO2-x、RuO2、Rh2O3、V2O3、Nb2O5、Ta2O5、WO3);掺杂氧化物(SnO2、CeO2、TiO2、ITO);钙钛矿(MgTiO3、CaTiO3、BaTiO3、SrTiO3、LaCrO3、LaFeO3、LaMnO3、YMnO3、MgTiO3F、FeTiO3、SrSnO3、CaSnO3、LiNbO3);尖晶石(Fe3O4、MgFe2O4、MnFe2O4、CoFe2O4、NiFe2O4、ZnFe2O4、CoFe2O4、FeAl2O4、MnAl2O4、ZnAl2O4、ZnLa2O4、FeAl2O4、MgIn2O4、MnIn2O4、FeCr2O4、NiCr2O4、ZnGa2O4、LaTaO4、NdTaO4);磁铁铅矿(BaFe12O19);石榴石(3Y2O3·5Fe2O3);以及其它氧化物(Bi2Ru2O7)。
通常,导电颗粒选自氧化物、碳化物、氮化物、氧碳化物、氧氮化物和氧碳氮化物。特别合适的导电颗粒有过渡金属氧化物(包括复合氧化物),例如TiO2、MnO2、Fe2O3、CoO、NiO、SiC、Cr2O3、SnO2、ZrC、LaMnO3、BaO6Fe2O3、LaCrO3和SrCrO3。过渡金属氧化物,例如Fe2O3、TiO2和MnO2,特别适用于本文中的实施方式。
通常,在形成陶瓷元件时,基本材料是氧化锆韧化的氧化铝的形式,或者是氧化铝和氧化锆两种粉末(它们一起能形成氧化锆韧化的氧化铝),与上述电阻率调节剂混合。混合可通过任何常规的手段进行,例如在一个装置如球磨罐中以水溶液或有机溶液混合形成浆液。如本领域中所理解的,可使用分散剂和其它添加剂,但是通常不用烧结助剂。在这种情况下,可通过固态扩散(利用材料的固溶性)来进行后一阶段的烧结。所述浆液可直接用来成形某些类型的陶瓷生坯,例如通过粉浆浇注等。或者,可将所述浆液干燥成为颗粒,用于后续处理,例如压制成所需的形状来成形。在这一阶段,成形体通常被称为生压坯或生陶瓷体形式的“生坯”。
根据本发明的一个实施方式的具体特征,在较低的温度下进行烧结以使陶瓷生坯致密化。低温烧结对于防止陶瓷生坯中发生不合适的化学反应以及不合适的相的形成是特别需要的。根据本发明的一个特征,在不大于约1400℃,例如不大于约1350℃的温度下对生坯进行烧结。
虽然烧结可在无压烧结操作条件下进行,例如在真空或环境空气或惰性气体存在的大气压力条件下进行,但是烧结也可通过热压或热等静压(HIP)进行。此外,可使用不同烧结操作的组合。根据本发明的一个实施方式,进行无压烧结以使陶瓷生坯致密化,其密度可达到理论密度(T.D.)的至少95%。如果元件的最终用途需要,还可例如在1100-约1400的温度下对该元件再进行HIP处理以进一步致密化。HIPing可如本领域中所了解的,使用流体如气体或液体来进行。在一个实施方式中,可使用惰性气体如氩气来达到超过100MPa的压力,例如约150-400MPa的压力。
此外,任选地,可通过后续处理对ESD安全陶瓷元件进行微调。例如,可通过后续处理如退火来改变ESD安全陶瓷元件的电阻率。例如,经无压烧结和HIPing的元件可以在约600-1200℃的空气中热处理约0.5-100小时,例如约1-5小时,以达到所需的电阻率,例如约105-1011欧姆-厘米。根据某些实施方式,ESD安全陶瓷元件的体积电阻率落入较窄的范围,例如在约106-109欧姆-厘米的范围之内。
根据本发明的实施方式,得到了所需的机械性能。例如,ESD安全陶瓷元件可具有较高的杨氏模量,例如大于约230GPa,甚至是大于约240GPa。所述元件的硬度也可以相当高,适合较高的耐磨性,这对于某些用途而言是需要的。例如,维氏硬度可大于约13GPa,例如大于约14GPa。
根据一个实施方式,所述元件具有相当细的晶体结构,即具有不超过约1μm的粒度。要注意的是,某些实施方式具有多相结构,例如包括三个主相氧化锆、氧化铝和电阻调节剂。前述粒度是试样有代表性的部分的平均粒度,包括试样的主相。
此外,根据本发明的某些实施方式,ESD安全陶瓷元件的热膨胀系数能较好地与其要使用的环境匹配。例如,对于某些用途,要求热膨胀系数与AlTiC基片的热膨胀系数极为匹配。另外,某些ESD安全陶瓷元件可具有与例如市售使用的工具钢和不锈钢很好匹配的热膨胀系数。这种热膨胀匹配可有效地防止由于操作过程中出现的热应力而导致的翘曲。如前述,在本发明的一个实施方式中,热膨胀系数小于约10.0×10-6K-1。此外,热膨胀系数可小于约9.5×10-6K-1。根据一个实施方式,热膨胀系数大于约8.0×10-6K-1。
此外,根据另一个特征,所述ESD安全陶瓷元件可具有较高的密度,例如至少约为理论密度的98%。在其它实施方式中,密度甚至更大,密度至少为理论密度的99%,甚至是99.5%。
除了具有所需的密度、热膨胀和机械性能以外,这些实施方式还显示了所需的磁性能,以及颜色,这对于某些依赖工艺流程用的光学成像元件的工作来说特别重要。例如,某些实施方式已经显示,矫顽磁力Hc不大于约5E4 A/m,并且所述元件的剩余磁感应Mr不大于10高斯。至于光学性能,所述实施方式测得L*不小于约35。
所述ESD安全陶瓷元件的最终几何结构可根据元件所需的用途来改变。例如,所述元件可采用金属线结合尖端、金属线结合毛细管、磁-电阻操作工具、基片、载体、切片工具、切割工具、脱胶载体工具、拾放工具、半导体器件封装工具、一步及两步探头、以及测试插座的形式。本发明的实施方式还要求在所需的环境中,例如进行金属线结合操作、处理MR头、封装IC器件等时,使用这些工具。
实施例1在球磨罐中混合AZ67粉末(具有20体积%的Y-TZP和80体积%的Al2O3的ZTA(氧化锆韧化的氧化铝)粉末,购自Saint-Gobain Ceramics & Plastics inColorado Springs公司)和亚微米Fe2O3。用Y-TZP研磨介质、去离子水和分散剂装入该球磨罐。研磨进行10小时以确保均匀混合。使用Roto-Vap或喷雾干燥器干燥研磨得到的混合浆液。发现必须避免使用磁力搅拌器以消除微磁性颗粒如Fe2O3的偏析。使用钢模将经干燥的细粒压制成圆盘形或方形瓦片,接着在207MPa(30,000psi)的压力下进行CIPing(冷等静压)。使用具有二硅化钼(MoSi2)发热部件的炉子,在1200-1400℃烧结约55%相对密度的这些压制的部件(即“压坯”),以达到大于95% T.D.(理论密度)的烧结密度,如表1中所归纳的。假定其各个相之间的反应可以忽略,使用混合物规则估计各个组合物的T.D.。通过排水法来测定烧结部件的密度。使用HIPing(热等静压)在1200-1350℃,在207MPa的氩气压力下对一些烧结部件进一步致密化45分钟,以达到基本上无孔隙的部件。使用同轴探针按ESD S11.11测量烧结的或热等静压的部件的表面电阻。一些热等静压的部件在700-950℃的空气中热处理1-5小时以得到所需的ESD表面电阻,105-1011欧姆。
使用脉冲回波法测得热等静压的部件的杨氏模量(E)约为270GPa,与Y-TZP系ESD安全陶瓷的约200GPa差不多。
使用1-5Kgf的压陷负荷,用维氏硬度法测量致密材料的硬度,结果是13-15GPa,与Y-TZP系ESD安全陶瓷的10-12GPa差不多。
令人吃惊的是,发现可在明显低于常规烧结温度的温度(例如,低于1400℃,如约1250℃)下进行所需混合物的烧结。例如,氧化铝、氧化锆或ZTA的烧结温度通常约为1500℃,甚至更高。低温烧结是减少不同相之间的反应、减少晶粒的生长、以及降低致密化成本所需的。此外,发现在1400℃或更高的温度烧结会导致烧结密度小于在1250℃烧结的密度。
电阻率测定的结果表明,可通过将氧化铝混入ESD安全Y-TZP组合物中来制备所需的ESD安全ZTA系陶瓷。
实施例2
在球磨罐中混合AZ93粉末(具有40体积%的Y-TZP和60体积%的Al2O3的ZTA(氧化锆韧化的氧化铝),购自Saint-Gobain Ceramics & Plastics in ColoradoSprings公司)和亚微米Fe2O3。操作方法的其余步骤与实施例1中的相同。结果表明,也可用AZ93粉末制备ESD安全ZTA系陶瓷。
表1热处理前后ZTA系ESD耗散陶瓷的致密化和电阻率

*开口孔隙率1.按ESD S11.112.用产生氧气的粉末床进行HIP根据本发明的另一方面,形成陶瓷元件的一种方法包括在热等静压(HIPing)环境中对陶瓷生坯进行热等静压,在一个局部环境中提供陶瓷元件,在该局部环境中操作气体物质的分压大于HIPing环境中操作气体物质的分压。虽然本文中的描述涉及ESD安全元件,更具体地说,涉及ZTA-系ESD安全陶瓷,但是前述方法还特别适用于其它陶瓷,特别是在HIPing过程中受益于该局部环境的那些。
根据一个具体的特征,可通过使用局部环境有利地进行某些陶瓷元件的HIPing。在ZTA-系ESD安全陶瓷的描述中,发现某些几何形状会在HIPing过程中导致不合适的化学反应,甚至是在使用惰性气体如氩气的情况下。具体地说,在接近网状的元件(通常是细小尺寸的,例如微电子制造工业中要求的那些)上进行超出较大尺寸工作试样如瓦片的形成的附加试验。其一个例子是著名的包括金属线结合尖端和结合毛细管的所谓结合工具。
所述结合尖端可有利地由具有大致细微结构,通常是具有约2mm(标称1.6mm)的直径的圆柱形棒形成。所述棒可具有通常较大的高宽比,例如大于约3∶1、5∶1或者甚至大于约10∶1。所述高宽比定义为元件的长度与其次的最大尺寸的比例,而在圆柱形棒的情况下,其次的最大尺寸是直径。所述棒或棒料可通过挤压方法或者注射成型形成为生坯状态。发现在氩气中进行HIPing以后,所述棒的性能发生了不好的变化。具体地说,由HIPing形成的棒具有较暗的颜色和较低的电阻率,通常是大约5×104欧姆/厘米(与5×106欧姆/厘米形成对比),说明Fe2O3(赤铁矿)热化学还原成为Fe2O4(磁铁矿)和FeO,随后与Al2O3发生反应。即,在HIPing过程中,减少了Fe2O3电阻率调节剂。这些试样还显示了HIPing之后维氏硬度明显较低(说明有残余孔隙),铁磁性能也较低。
通常,标准HIPing过程发生在具有低的氧气分压,例如大约10-12巴的环境中,而HIPing环境原则上由非反应性气体,例如惰性气体组成。常用的气体是氩气。解决与减少电阻率调节剂如过渡金属氧化物(Fe2O3的减少就证实了这一点)有关的问题的一种可能的方法是对陶瓷元件进行氧气-HIP。但是,氧气-HIP成本上并不是很经济的,通常需要在空气或含氧气氛中使用铂衬的热屏蔽。
根据一个实施方式,操作是使用局部操作气体(通常是氧)来进行,所述操作气体通常限制在HIPing环境中一个特定空间中,此特定空间通常包围着正经受处理的陶瓷元件。该方法有效地减弱了过渡金属氧化物,包括Fe2O3、TiO2和MnO2的还原,而这些过渡金属氧化物会在与传统HIPing过程有关的极低氧气分压条件下还原。减弱这些氧化物的还原通常就能使残余孔隙以及损害,如鼓胀、空穴形成和裂纹等现象减轻。另外,热等静压之前元件的电阻率性质通常会在热等静压之后保留下来。
关于所述局部环境的形成,可使用各种方法。一种方法是,在坩埚(一种耐火材料容器)中提供经受HIPing的元件。所述坩埚可含有操作气体源,并构成了所述局部环境。所述操作气体源通常能释放所需的气态物质,形成富含该气体物质的局部区域。在需防止电阻率调节剂如过渡金属氧化物还原的情况下,提供的是氧气源。所述氧气源较佳地可以是粉末形式,它具有较大的表面积,能进一步促进所需操作气态物质即氧气的释放。在这方面,可将要经受HIPing的元件置于一粉末床上或者嵌入由所述气体源形成的粉末床中。
就氧气释放源而言,较佳的是,在陶瓷元件发生明显的还原之前,所述操作气体即氧气发生还原,在局部环境中建立所需的很低氧气分压。所述操作气体即氧气通常比电阻率调节剂更易还原。这一容易还原的性能取决于作为温度函数的热化学还原和氧化的自由能改变,可以通过来自Ellingham图表(例如R.A.Swalin所提供的,“固体的热力学”,第二版,Wiley-Interscience出版社,第114页(1972年),参考结合于本文中)的热力学数据来确定。在某种程度上,在陶瓷元件发生明显的还原之前,所述粉末起着经受还原的牺牲HIPing剂的作用,由此形成了所需的局部环境从而保护了陶瓷元件。通常,此局部氧气分压大于在系统的给定的温度和压力下HIPing环境中的平衡氧气分压。理想的是,在局部环境中所述氧气分压不小于约0.1atm,并且在某些实施方式中,不小于0.5atm。相反地,HIPing环境的氧气分压较小,例如10-10的数量级乃至更低。
就提供稳定的局部环境而言,申请人采用了各种坩埚结构,能在HIPing过程中将通过该坩埚的气流减至最小,以便其中稳定地包含局部富含氧气的环境,从而防止操作气体物质明显逸出坩埚而进入HIPing环境。具体地说,通常理想的是提供一个坩埚,它仅有一个开口,以减弱通过坩埚的气流的对流。另外,可在开口中或者邻近开口的位置提供吸气物质,以吸收会溢入HIPing环境中的操作气体物质。例如,在使用氧气操作气体的情况下,吸气剂可以是在与来自气体源的氧气接触时在高温HIPing环境中氧化的金属。
以下一些实施例示出了各种元件的不同加工方式,尤其包括通过具有局部环境的HIPing来形成陶瓷元件。
实施例3用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。使用钢模将喷雾干燥的粉末压制成矩形瓦片,然后在207MPa下通过CIPing形成约55% T.D.的生坯密度。
在1250℃的空气中烧结经冷等静压的瓦片1小时,达到约98% T.D.的烧结密度。烧结瓦片的颜色为红色。该瓦片并不吸引在永磁铁上。通过DC电阻率测定,测得材料的电阻率约为5×107欧姆-厘米,这有利于ESD耗散。
在充填了氧化锆(Y-TZP)细泡材料和在底部充填了产生氧气的氧化物粉末(Pr6O11、MnO2或CoO)层的巢状的氧化铝坩埚中,对经烧结的试样进行热等静压。一些试样不用产生氧气的粉末进行热等静压。用石墨发热部件在207MPa的氩气压力下,于1200℃进行热等静压。
使用了一些产生氧气的粉末,发现它们是有效的。例如,Pr6O11、MnO2和CoO粉末与Fe2O3相比,更容易热化学还原,因此能有效地防止或减弱Fe2O3还原成Fe3O4。一般来说,产生氧气的粉末选自那些在操作过程中在电阻率调节剂还原之前就发生还原的粉末。
大多数采用产生氧气的粉末进行热等静压的试样,在热等静压后显示相同的颜色,其密度大多大于99.8%并且显示与烧结后试样类似的电阻率,5×106-108欧姆-厘米。另一方面,不用产生氧气的粉末床进行热等静压的试样的颜色要暗许多,通常接近黑色,显示小于99.8% T.D.的低密度,并且明显小于烧结值电阻率的值,例如约5×102-104欧姆-厘米。
所述热等静压的试样显示270GPa的高杨氏模量以及在1kgf维氏压陷负荷下15.3GPa的高硬度。所述材料与Y-TZP系ESD安全陶瓷的值相比明显更韧、更硬其韧度和硬度分别为200GPa和10GPa。因此,这种材料的耐磨强度应明显好于Y-TZP系ESD安全陶瓷。
实施例4通过热蜡挤压将与实施例3相同的材料制成直径为2mm的细棒。首先,在高温下将AZ93和Fe2O3粉末的混合物与蜡进一步混合。在1275℃的空气中将挤压棒烧结至约97% T.D.。在1250℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的棒进行热等静压。经热等静压的棒呈红色,非磁性,具有大于99.8% T.D.的高密度。经热等静压的棒的电阻率保持与原来烧结的棒大致相同,为5×107欧姆-厘米。
实施例5将实施例4的经热等静压的棒机械加工成为金属线结合尖端。该材料具有与Y-TZP系ESD安全陶瓷相比,具有高得多的杨氏模量(270GPa)和在1kgf的压陷负荷下高得多的维氏硬度(15.3GPa)。该材料有利于进行有效的超声波结合并有较大的耐磨性。
实施例6在HIPing过程中使产生氧气的粉末还原。具体地说,使用的Pr6O11在氧气除去后显示较浅的颜色。可在800-1000℃的空气中热处理使用过的粉末5小时,以将其再氧化成Pr6O11。因此,产生氧气的粉末可容易地再生,以重复用于处理其它ESD安全元件。
实施例7碳化硅(SiC)坩埚具有良好的热强度和导热性,通常在工业用途中更耐用。用与实施例1相同的方法将购自MA州Worcester的Saint-Gobain Industrial Ceramics公司的SiC坩埚用于HIPing中。在HIPing后,发现经热等静压的试样呈暗色,具有相当大的磁性,并显示较低的电阻率。通过在1000℃的空气中加热5小时使坩埚表面上形成氧化物层而钝化。用钝化的坩埚重复同一循环。发现来自钝化的SiC坩埚的经热等静压的试样具有与使用氧化铝坩埚处理的试样相同的性能。猜测氧气可在HIPing过程中在原始SiC坩埚中耗散掉,形成还原环境。
实施例8用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自Alpha Aesar公司),接着进行喷雾干燥。使用钢模将喷雾干燥的粉末压制成矩形瓦片,然后在207MPa下通过CIPing形成约55%T.D.的生坯密度。
在1250℃的空气中烧结经经冷等静压的瓦片1小时至约98% T.D.的烧结密度。烧结瓦片的颜色为红色。该瓦片不吸引在永磁铁上。通过DC电阻率测定测得材料的电阻率约为5×107欧姆-厘米,这有利于ESD耗散。
在充填了氧化锆细泡材料的氧化铝坩埚中对烧结的试样进行热等静压。用石墨发热部件在207MPa的氩气压力下,于1200℃进行热等静压。
将经热等静压的瓦片机械加工成用于根据ASTM C1161-02b的4点弯曲测试的MOR条,测出平均强度为877MPa,最大强度为1023MPa。通过压痕强度法测得断裂韧度大于氧化铝的断裂韧度。测得的强度明显高于仅烧结(不加压)的材料。因此,可以预期,经热等静压的材料适合于研磨复杂的形状,并在长期使用中颗粒产生很少。
该实施例的结果,特别是与实施例3-7的结果结合表明,含有可热化学还原组分的陶瓷可在具有富含氧气的环境,例如产生氧气的结构如粉末床的坩埚中的还原气氛中进行热等静压。使用本发明的HIPing工艺并不限于含有作为电阻率调节剂的过渡金属氧化物的ESD安全陶瓷。例如,许多陶瓷如铁氧体、变阻器(包括金属氧化物变阻器(MOV))、CeO2、TiO2、Ce-TZP、PZT(PbO-ZrO2-TiO3)、PMN(PbO-MnO-NbO3)、PLZT、BaTiO3和SrTiO3等都可安全地进行热等静压,以得到所需的电磁性能以及改善的机械可靠性。
此外,一些陶瓷由于在非氧化气氛中具有高蒸汽压,从而难以烧结。用前述HIPing方法可将这些陶瓷热等静压到接近理论密度。
实施例9通过用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。然后,将喷雾干燥的粉末用热蜡挤压工艺制成直径为2mm的细棒。
接着,在热循环中使蜡烧尽,并在1325℃的空气中将棒烧结1小时至约97%T.D.。在1200℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的棒进行热等静压。经热等静压的棒呈红色,非磁性,并且具有大于99.8% T.D.的高密度,其电阻率保持与原来烧结的棒大致相同,为5×107欧姆-厘米。
用小于100ppm的氧气分压,在600℃的氧化铝管式炉中热处理直径为1.6mm、长度为25mm的棒1小时,得到最终电阻率为2E5欧姆-厘米。
已经显示,除了控制保温温度外,PO2还可用来控制电阻率。在约900PPM的PO2压力下,于1000℃热处理60分钟得到电阻率为1.5E5欧姆-厘米。
实施例10利用从高温热处理中冻结的载荷子的数量,可以调节所述材料的电阻率。这一点通过保温时间和冷却速率来控制。例如,可以将从烧结温度1250℃冷却至室温的速率从0.5℃/分钟改变为10℃/分钟,来改变在空气中烧结的ZTA/Fe2O3组合物的表面电阻。
作为另一种变化,可在PO2低于需要高电导率的用途(例如用于空气电离器系统的电离器尖端)的100ppm,于1000℃热处理同一材料1小时,获得的电阻率低至7E3欧姆-厘米。温度更高且PO2更少,可将Fe2O3相转变为Fe3O4相,从而导致大于5E3欧姆-厘米的更低电阻率,但是会有残余磁性,并且部件会变黑。
实施例11用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。然后,将喷雾干燥的粉末用热蜡挤压工艺制得直径为2mm的细棒。
接着,在热循环中将蜡烧尽,并在1325℃的空气中将棒烧结1小时至约97%T.D.的密度。在1250℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的棒进行热等静压。经热等静压的棒呈红色,非磁性,并且具有大于99.8% T.D.的高密度。经热等静压的棒的电阻率保持与原来烧结的棒大致相同,为5×107欧姆-厘米。
实施例12用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。使用钢模将喷雾干燥的粉末压制为圆形小丸,然后在207MPa下通过CIPing形成约55% T.D.的生坯密度。
在空气中烧结经冷等静压的试样1小时,得到约98% T.D.的烧结密度。
在1250℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的棒进行热等静压。经热等静压的棒呈红色(非黑色),非磁性,并且具有大于99.8% T.D.的高密度。由2个不同批的粉末制成2个试样。试样1显示由DC两点法测得的体积电阻率为6.2E7欧姆-厘米。试样2显示由DC两点法测得的体积电阻率为1.2E8欧姆-厘米。
用得自Hunter实验室的MiniScan XE plus测定L*a*b*系统的颜色。

实施例13用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。使用钢模将喷雾干燥的粉末压制为圆形小丸,然后在207MPa下通过CIPing形成约55% T.D.的生坯密度。
在空气中烧结经冷等静压的试样1小时,得到约98% T.D.的烧结密度。
在1250℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的试样进行热等静压。经热等静压的棒呈红色,非磁性,并且具有大于99.8% T.D.的高密度。由DC电阻率测定得到材料的电阻率约为5×107欧姆-厘米,这有利于ESD耗散。
用振动磁强计测量磁滞曲线剩余磁感应(Mr)为5.8高斯,矫顽磁力(Hc)为3.7E4A/m,在磁场为9.5E5A/m时的最大剩余磁感应为31.7高斯。
实施例14用氧化锆(Y-ZTP)研磨介质进行研磨,在水中混合ZTA(AZ93,购自Saint-Gobain Ceramics & Plastics in Colorado Springs公司,具有40体积%的Y-TZP和60体积%的Al2O3)和经研磨的Fe2O3粉末(研磨至比表面积为13m2/g,得自MA州Ward Hill的Alpha Aesar公司),接着进行喷雾干燥。然后,将喷雾干燥的粉末用热蜡挤压工艺制得直径为2mm的细棒。
接着,在热循环中将蜡烧尽,并在1325℃的空气中将棒烧结1小时至约97%T.D.的密度。在1250℃和207MPa的氩气下用产生氧气的粉末床进一步对烧结的棒进行热等静压。经热等静压的棒呈红色,非磁性,并且具有大于99.8% T.D.的高密度,其电阻率保持与原来烧结的棒大致相同,为5×107欧姆-厘米。
然后,在各种温度和氧气分压下,在氧化铝管中热处理直径为1.6mm、长度为25mm的棒。该热处理将体积电阻率调节为E4-E8欧姆-厘米。
为了测定该材料顺利地耗散静电荷的能力,使棒与在1000V充电的20pf铝板(Ion Systems Charged Plate Monitor型号210CPM)的一面接触,并在其另一面上用一金属(黄铜)接触物研磨。在25MHz用高频示波器(LeCroy 9310AM双400MHz示波器)测量板电压随时间下降的情况。取板电压从900V下降到100V的时间作为衰减时间。

上述结果是好的,落入目标衰减时间的范围(10-500ms)内。根据一个特征,ESD安全元件,例如结合工具,具有ESD安全特性,使得与其接触的器件(例如经受结合操作的微电子器件)上的1000V以短于500ms的时间耗散至约100V。
参看附图,所述附图示出了各个实施方式。如图1-2中所示,具有结合尖端10的结合工具1由本文中所述的ZTA系ESD安全陶瓷材料形成。具有大致是圆柱形的基底部分和圆锥形的尖端部分的结合尖端10由具有所需ESD安全性能的烧结的、经热等静压的棒料加工形成。所述结合尖端10可由本文中所述的单斜晶陶瓷基的组合物形成。操作端14的表面结构能握住工件,并能更好地将超声波能量转移到工件上以便更好地结合。通常,所述工件是要结合到微电子器件中的接触垫上的金属线。所述结合工具以已知的方式使用,通常包括将超声波源16连接于其上用来产生超声波振动。在使用时,将操作加工端14放置与所述工件接触且与其偏置,连接上超声波发生器以使工件上发生振动。通过使用超声波并且任选地在热处理辅助下的机械振动,进行工件的结合。在使用金属线结合的情况下,使金属线在加热条件下机械地变形,从而结合到下面的接触垫上。
图3示出了如上文中已详细地描述的用于在HIPing过程中形成局部环境的简单的坩埚结构。这里,巢状坩埚30和32的构造是使得坩埚32倒置在坩埚30上。在围绕坩埚30的底部周边的两个坩埚之间提供一个环形开口。坩埚30含有嵌入粉末床形式的操作气体源内的陶瓷元件34。
图4示出了另一种坩埚结构。将吸气剂40提供在两个坩埚之间,操作气体通过间隙逸入HIPing环境中。所述吸气剂如上所述,通常能减弱操作气体向HIPing环境的逸入。这里,吸气剂40是金属粉末。
上述主题内容应当认为是说明性的,而非限制性的,所附的权利要求书用来覆盖所有落入本发明范围之内的修改、增加、等价内容以及其它实施方式。因此,为了得到法律所允许的最大范围,本发明的范围是由下述权利要求和它们的等价内容所允许的最宽泛解释所界定的,不应由前述具体实施方式
来限制。
权利要求
1.一种ESD安全陶瓷元件,它由一种烧结的组合物形成,所述烧结的组合物包含由氧化锆韧化的氧化铝形成的基本材料,它包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2包含四方晶系ZrO2;电阻率调节剂,用以减小所述基本材料的电阻率。
2.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述电阻率调节剂的含量为所述基本材料的约5-40体积%。
3.如权利要求2所述的ESD安全陶瓷元件,其特征在于,所述电阻率调节剂是导电颗粒。
4.如权利要求3所述的ESD安全陶瓷元件,其特征在于,所述导电颗粒是选自氧化物、碳化物、氮化物、氧碳化物、氧氮化物和氧碳氮化物的材料。
5.如权利要求4所述的ESD安全陶瓷元件,其特征在于,所述导电颗粒是过渡金属氧化物。
6.如权利要求5所述的ESD安全陶瓷元件,其特征在于,所述导电颗粒选自TiO2、MnO2、Fe2O3、CoO、NiO、SiC、Cr2O3、SnO2、ZrC、LaMnO3、BaO6Fe2O3、LaCrO3和SrCrO3。
7.如权利要求5所述的ESD安全陶瓷元件,其特征在于,所述过渡金属氧化物选自Fe2O3、TiO2和MnO2。
8.如权利要求7所述的ESD安全陶瓷元件,其特征在于,所述过渡金属氧化物是Fe2O3。
9.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述基本材料的主要成分的含量大于所述次要成分的含量。
10.如权利要求9所述的ESD安全陶瓷元件,其特征在于,所述基本材料包含比例不小于55∶45的Al2O3和ZrO2,以体积%计。
11.如权利要求10所述的ESD安全陶瓷元件,其特征在于,所述比例不小于60∶40。
12.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述主要成分形成所述基本材料的主相,所述次要成分形成分散在所述主相中的次相。
13.如权利要求12所述的ESD安全陶瓷元件,其特征在于,所述次要成分主要包含四方晶系ZrO2。
14.如权利要求12所述的ESD安全陶瓷元件,其特征在于,所述次要成分包含至少75体积%的四方晶系ZrO2。
15.如权利要求14所述的ESD安全陶瓷元件,其特征在于,所述次要成分包含至少85体积%的四方晶系ZrO2。
16.如权利要求14所述的ESD安全陶瓷元件,其特征在于,所述次要成分还包含立方晶系ZrO2和单斜晶系ZrO2中的至少一种。
17.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述ZrO2包含稳定剂。
18.如权利要求17所述的ESD安全陶瓷元件,其特征在于,所述稳定剂包含至少一种选自氧化钇、二氧化铈和氧化钪的材料。
19.如权利要求17所述的ESD安全陶瓷元件,其特征在于,所述ZrO2是在烧结前与所述稳定剂进行了预合金化的。
20.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述陶瓷的杨氏模量大于约230GPa。
21.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的维氏硬度大于约13GPa。
22.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的热膨胀系数小于约10.0×10-6K-1。
23.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的密度至少为其理论密度的98%。
24.如权利要求23所述的ESD安全陶瓷元件,其特征在于,所述元件的密度至少为其理论密度的99%。
25.如权利要求24所述的ESD安全陶瓷元件,其特征在于,所述元件的密度至少为其理论密度的99.5%。
26.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的平均粒度小于约1.0μm。
27.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件选自金属线结合尖端、金属线结合毛细管、磁-电阻操作工具、基片、载体、切片工具、切割工具、脱胶载体工具、拾放工具、半导体器件封装工具、一步及两步探头、以及测试插座。
28.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的体积电阻率约为105-1011欧姆-厘米。
29.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的体积电阻率约为106-109欧姆-厘米。
30.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的L*大于约35。
31.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的矫顽磁力Hc不大于约5E4 A/m。
32.如权利要求1所述的ESD安全陶瓷元件,其特征在于,所述元件的剩余磁感应Mr不大于10高斯。
33.一种由烧结的组合物形成的ESD安全陶瓷结合工具,所述烧结的组合物包含由氧化锆韧化的氧化铝形成的基本材料,它包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2包含四方晶系ZrO2;电阻率调节剂,用以减小所述基本材料的电阻率,所述电阻率调节剂包含过渡金属氧化物,其中所述工具的密度不小于其理论密度的98%,其体积电阻率约为106-109欧姆-厘米。
34.如权利要求33所述的工具,其特征在于,所述结合工具具有一种有表面结构的尖端部分,能用来握住工件。
35.如权利要求34所述的工具,其特征在于,所述结合工具还包括用来使所述尖端部分振动的超声波波发生器。
36.一种形成ESD安全陶瓷元件的方法,它包括通过热处理使陶瓷生坯致密化,所述陶瓷生坯包含(i)由氧化锆韧化的氧化铝形成的基本材料,所述基本材料包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2包含四方晶系ZrO2,(ii)电阻率调节剂,用以减小所述基本材料的电阻率,其中,所述热处理在小于约1400℃的温度下进行。
37.如权利要求36所述的方法,其特征在于,所述热处理通过选自无压烧结、加压烧结、或者它们的组合的方法进行。
38.如权利要求37所述的方法,其特征在于,所述热处理包括加压烧结,所述加压烧结是通过热等静压(HIPing)进行的。
39.如权利要求36所述的方法,其特征在于,所述温度不超过约1350℃。
40.一种形成ESD安全陶瓷元件的方法,它包括将基本材料和电阻率调节剂混合在一起,所述基本材料包含Al2O3和ZrO2,其中,所述ZrO2包含部分稳定的四方晶系ZrO2,并含有稳定剂以使ZrO2预合金化;形成包含所述基本材料和电阻率调节剂的混合物的陶瓷生坯,在形成所述陶瓷生坯之前所述ZrO2含有所述稳定剂;烧结所述陶瓷生坯。
41.一种形成ESD安全陶瓷元件的方法,它包括烧结陶瓷生坯以形成致密陶瓷体,所述陶瓷生坯包含(i)由氧化锆韧化的氧化铝形成的基本材料,所述基本材料包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2包含四方晶系ZrO2,(ii)电阻率调节剂,用以减小所述基本材料的电阻率;进行退火调节所述致密陶瓷体的电阻率。
42.如权利要求41所述的方法,其特征在于,所述退火在含氧环境或惰性气体环境中进行。
43.如权利要求41所述的方法,其特征在于,所述退火在约600-1200℃的温度下进行。
44.一种形成陶瓷元件的方法,它包括在热等静压(HIPing)环境中对陶瓷生坯进行热等静压,在一局部环境中提供陶瓷元件,该局部环境中操作气体物质的分压大于所述HIPing环境中操作气体物质的分压。
45.如权利要求44所述的方法,其特征在于,所述HIPing环境含有惰性气体,所述局部环境含有氧气,其中,所述局部环境比所述HIPing环境含氧较多。
46.如权利要求44所述的方法,其特征在于,在装有操作气体源的坩埚中提供元件,所述坩埚限定了所述局部环境的空间。
47.如权利要求46所述的方法,其特征在于,所述坩埚的结构能减少通过其的气流。
48.如权利要求47所述的方法,其特征在于,所述坩埚在HIPing过程中具有单一开口。
49.如权利要求46所述的方法,其特征在于,所述操作气体源包含粉末。
50.如权利要求49所述的方法,其特征在于,所述元件包埋在所述粉末中。
51.如权利要求44所述的方法,其特征在于,所述陶瓷元件是ESD安全陶瓷元件,它包含基本材料和用来减少所述基本材料的电阻率的电阻率调节剂。
52.如权利要求44所述的方法,其特征在于,所述陶瓷元件由至少一种选自铁氧体、变阻器材料、CeO2、TiO2、Ce-TZP、PZT(PbO-ZrO2-TiO3)、PMN(PbO-MnO-NbO3)、PLZT、BaTiO3和SrTiO3的材料组成。
53.如权利要求51所述的方法,其特征在于,在HIPing过程中在坩埚中提供所述元件,所述坩埚含有操作气体源。
54.如权利要求53所述的方法,其特征在于,所述操作气体源包含比所述电阻率调节剂更容易还原的材料。
55.如权利要求44所述的方法,其特征在于,由氧化锆韧化的氧化铝形成的材料包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2主要由四方晶系ZrO2组成。
56.如权利要求44所述的方法,其特征在于,在所述局部环境中操作气体物质的分压不小于约0.1atm。
57.如权利要求44所述的方法,其特征在于,在所述局部环境中操作气体物质的分压不小于约0.5atm。
58.如权利要求44所述的方法,其特征在于,所述操作气体物质是氧,所述局部环境中的平衡氧气分压大于所述HIPing环境中的平衡氧气分压。
59.如权利要求44所述的方法,其特征在于,所述陶瓷元件是棒。
60.如权利要求44所述的方法,其特征在于,所述棒的高宽比大于约5∶1。
61.一种结合微电子器件的方法,它包括使所述器件与由烧结的组合物形成的结合工具接触,所述烧结的组合物包含(i)由氧化锆韧化的氧化铝形成的基本材料,它包含由Al2O3组成的主要成分和由ZrO2组成的次要成分,其中,所述ZrO2包含四方晶系ZrO2,(ii)电阻率调节剂,用以减小所述基本材料的电阻率,所述电阻率调节剂包含过渡金属氧化物;偏置所述工具,使所述微电子器件有效结合。
62.如权利要求61所述的方法,其特征在于,所述偏置是使用超声波波振动来进行的。
63.如权利要求61所述的方法,其特征在于,所述微电子器件包括要与接触物结合的金属线,进行所述结合以将所述金属线结合到所述接触物上。
64.如权利要求61所述的方法,其特征在于,所述结合工具具有ESD特性,使得所述器件上的1000V在少于500ms内耗散至约100V。
全文摘要
提供了ESD安全陶瓷元件,它包括由基本材料和电阻率调节剂形成的烧结的组合物。所述基本材料包含一主要成分和一次要成分,所述主要成分包含Al
文档编号B23K20/10GK101061079SQ200380108603
公开日2007年10月24日 申请日期2003年11月24日 优先权日2002年11月22日
发明者權五熏, C·库雷奥, R·A·戈斯基, M·A·辛普森 申请人:圣戈本陶瓷及塑料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1