交流焊接方法

文档序号:3003877阅读:333来源:国知局
专利名称:交流焊接方法
技术领域
本发明涉及电弧焊领域,更特别地涉及一种改进的使用新型药芯焊条的交流药芯焊丝电弧焊方法。
背景技术
本发明涉及有交流(AC)焊接过程的电弧焊领域。过去几年,许多专利涉及交流惰性气保护金属电弧焊(MIG)和/或交流药芯焊丝电弧焊(FCAW);然而,这里作为参考文献只引用Stava的美国专利No.6,111,216作为通用背景技术信息,因为其公开了一种基于逆变器的交流MIG焊机,这种焊机在实践中可以用于交流MIG焊或用于本发明优选实施例中的交流药芯焊丝电弧焊。而且,Stava专利使用了一种在极性变换过程中电流降低的体系。本发明涉及一种用于增强交流MIG焊带有药芯焊条的药芯焊条的添加剂。这种带有药芯焊条的交流MIG焊被称为FCAW。如果焊条的芯只是金属,则这种焊接就通常被称为GMAW-C。Nidodym的美国专利No.6,855,913公开了将石墨和钾结合用于电弧稳定。这种化合物用于早期的交流焊接工艺,其中基于变压器的电源在零相交的过程中提供低频低压的有限波形。本专利在此加以引用,有关含实心或有芯金属丝交流焊的优点和早期交流波形电弧稳定器的公开作为背景技术。Nikodym没有解释钾化合物用于电弧稳定的优点。本发明所针对的添加剂是一种预先形成的接枝化合物,而不是仅仅和芯中的其它颗粒混合。受让人在2005年4月5日递交的在先专利申请No.11/099,267中公开了这种接枝化合物。这不是在先技术,但这里作为背景技术加以引用以公开在实现本发明中所使用的新型接枝化合物。

发明内容
为了在获得降低的湿气吸收的同时获得药芯焊条具有高速运行的高沉积速度,以及具有降低的可扩散氢含量的优异焊珠性能,已经发现一种加入到药芯焊条芯中的钠-硅-钛化合物是非常有用的。同时也发现这些加入到药芯焊条芯材料中的添加剂在通常与药芯焊条一起应用时,提高了药芯焊条在直流焊接中的电弧稳定性。过去,为普通直流正焊所开发的药芯焊条在用于交流焊接时并没有显示出良好的稳定性,尤其是在使用一个通用变压器基电源来获得交流波形的时候。这些电源在波形零相交时产生一个非常低压的正弦波。这种类型的早期电源采用弧稳定添加剂例如钠和钾化合物来解决极性改变过程中电弧熄灭倾向的问题。随着逆变器电源出现,电弧反向可以在高压高电流下在非常短时间内实现。这减少了电弧熄灭的倾向;但是,其带来了在极性变换中电弧稳定性的进一步问题。当在高压(例如在20伏特以上)和高电流(通常在500安培以上)下变换极性时,组成焊接电弧的等离子体柱不容易熄灭。因此,变换过程中,电弧稳定性对于保持焊缝外形和减少由于电流快速变化导致大量电能而产生的飞溅是非常必要的。因此需要提供药芯焊条芯中电弧稳定性组成成分,这样药芯焊条才能用于交流焊接,在早期和随后的正弦型电源两者中,以及极性间快速转换的逆变器电源。已经发现将钠和可能是某种钾与二氧化钛接枝的化合物可以导致在逆变器交流电弧焊接中电弧的稳定,这样该化合物能提供电弧稳定性以及提高的焊缝机械性能。通过一种接枝钛和钠的化合物,已经发现能提高焊接过程中电弧的稳定性,尤其是在逆变器基电源中。得到焊缝的机械性能也同样提高。这些性能使得药芯焊条可以在交流模式的逆变器基电源下使用,从而产生高沉积速度和高焊条运送速度。2005年4月5日提交的在先专利申请No.11/099,267所公开的新型化合物的电弧稳定特性用于在本发明中方法的改进交流电弧焊接方法中。
根据本发明,提供一种具有特定芯焊条的交流焊接方法。该方法包括向加工件补给新型焊条,其中焊条具有一个被低碳钢外鞘环绕的特别的芯。电源在前进的焊条和加工件间提供具有给定波形的交流电以熔化焊条并通过选择性交流焊接过程由焊条沉积金属到工件上。在本发明的优选实施方式中,电源是一个可以在正级和负级间转换、具有输出极性的逆变器基电源,从而形成选择的交流焊接过程;然而本发明同样对仅使用一个正弦焊接波形的早期变压器电源适用。本发明方法还包括在前进的焊条周围通过保护气体和提供含有特殊电弧稳定添加剂的焊条芯,其中添加剂是钠和二氧化钛接枝化合物的形式,超过芯20%重量。优选地,将金红石熔渣体系用于焊条芯中。在本发明中,接枝的电弧稳定化合物是颗粒形式的钠-硅-钛化合物。
在本发明的优选实施方式中,该方法包括输出交流波形的逆变器基电源,其中波形具有由波形产生器表示的轮廓,其控制以高于大约18kHz频率运行的脉冲持续时间调节器。这类电源是用于电弧焊接的更先进技术,这种方法主要是为这种焊接程序而设计的;但是,其也在早期变压器电源的使用中有优势。
根据本发明的另一个方面,选择的交流焊接工艺在正负电压之间变化,其中每种电压都高于20伏特。而且,在选择的交流焊接工艺中极性的变换在电流低于500安培下,最好是在200安培以下。
本发明的主要目的是提供一种使用药芯焊条的交流电弧焊接(FCAW)方法,该方法使用焊条填充物中的接枝电弧稳定化合物,该化合物是钠化合物和二氧化钛的掺杂物。优选钠-硅-钛化合物。
本发明的另一目的是提供一种使用药芯焊条的交流电弧焊接(FCAW)方法,该方法在极性转换过程中具有提高的沉积速度、提高的前进时间以及控制的等离子体柱,以维持良好的焊缝外观和减少的飞溅。
由以下描述及附图,可以明显了解这些和其它目的及优点。


图1是描述运行本发明焊接方法的交流焊接设备的放大截面图。
图1A是沿着图1中1A-1A线的截面图。
图2是用于变压器电源交流焊接中的正弦波形电流图。
图3是使用逆变器电源的交流MIG焊接过程中的电流波形,其中该电源具有输出极性变换的网络,如同Stava的专利No.6,111,216中所示。
图4是表示产形成图3中电流波形的电源和焊接操作的示例方块图。
图5是本发明中使用的新型钠和二氧化钛化合物的制作流程图。
具体实施例方式
为了提高气保护金属电弧焊(GMAW)的沉积速度和传送速度,已经知道药芯焊条具有实质上的优势;但是,药芯焊条通常用在直流正焊接中以稳定电弧和减少飞溅。为了得到在交流焊接中的优势,其中仍然使用药芯焊条,芯材料需要改进以在零相交时减少飞溅和稳定电弧。本发明涉及直流焊接中使用的药芯焊条,该焊条采用了必要的合金体系,焊药体系,其具有控制湿气、氢控制组分,氧控制组分以及控制焊缝外观元素,而仍然保持良好焊缝物理特性和电弧稳定性。在图1中示范表示了本发明的方法。焊接设备A利用新的药芯焊条或者焊丝E用于在焊条和工件WP之间焊接。在这样一个设备中,药芯焊条向下前进以接触到接触端10,这样交流电源20,优选图4中所示类型,在电源通路22和接地通路24产生电压和电流。电源通路通过连接器30连接到接触端10以引导在前进焊条E和工件WP之间的电压和电流以产生电弧焊接等离子体P用于选择的交流焊接过程,由电源20控制决定。本发明应用如图1A所示的一个特别的药芯型焊条E,其中一种特殊填充材料50被低碳刚外鞘52包围用于保留芯材料一直到芯材料与外鞘52熔化。这种特殊芯材料50有一个焊药体系,优选为金红石体系,以及在正负级转换过程中保持电弧稳定的同时,能控制湿气,控制氢,控制氧,控制焊缝的组分。图2中表示了常见的交流波形图,其中正极区102和负极区104在零相交106处转换。零相交发生在由距离110表示的低压和低电流处。低压和低电流负面影响电弧稳定,这在本发明中通过在特殊芯材料50中使用的新型接枝化合物而克服。
根据本发明,填料组合物(芯材料50的重量百分比)的通用配方如下所示TiO22~50%钠-硅-钛化合物1~55%溶渣形成剂1~60%金属合金剂0~70%。
在另一个特定的填料组合物(重量百分比)通用配方中TiO23~40%钠-硅-钛化合物1~55%溶渣形成剂20~50%金属合金剂0~55%。
在另一个特定的填料组合物(重量百分比)通用配方中TiO220~40%
钠-硅-钛化合物20~50%溶渣形成剂25~45%金属合金剂0~35%。
在另一个特定的填料组合物(重量百分比)通用配方中TiO23~15%钠-硅-钛化合物15~25%溶渣形成剂30~40%金属合金剂35~45%。
在另一个特定的填料组合物(重量百分比)通用配方中TiO220~30%钠-硅-钛化合物1~5%溶渣形成剂20~30%金属合金剂45~55%。
在上述实施例中,填料组合物重量百分比典型地为药芯焊条的8~60%重量,更典型地为药芯焊条的10~28%重量;但是,也可以使用其它重量百分比。用于形成焊缝的金属外鞘包括大约0~0.2%重量的硼、大约0~0.2%重量的碳、大约0~12%重量的铬、大约0~5%重量的锰、大约0~2%重量的钼、少于0.01%的氮、大约0~5%重量的镍、少于0.014%重量的磷、大约0~4%重量的硅、少于0.02%的硫、大约0~0.4%重量的钛、大约0~0.4%重量的钒和大约75~99.9%重量的铁。在电弧焊接过程中,有芯焊条通常会使用保护气体;然而这不是必须的。当使用保护气体的时候,保护气体一般是二氧化碳和氩气的混合物。
溶渣形成剂通常包括但不限于金属氧化物,例如氧化铝、氧化硼、氧化钙、氧化铬、氧化铁、氧化镁、氧化铌、氧化钾、氧化硅、氧化钠、氧化锡、氧化钒和/或氧化锌。当使用金属合金剂的时候,通常包括但不限于铝、硼、钙、碳、铁、锰、镍、硅、钛和/或锆。焊药体系包括其它化合物,例如但不限于金属碳酸盐(如碳酸钙等)和/或金属氟化物(如氟化钡、氟化铋、氟化钙、氟化钾、氟化钠以及特氟纶等)。焊药体系的特定成分通常由所使用的焊接方法的类型(埋弧焊、气保护金属电弧焊以及药芯焊丝电弧焊)和/或需要焊接的加工件来决定。优选地,焊药体系是金红石基。
钠-硅-钛化合物被特别配制以提供电弧稳定和减少焊药体系中湿气吸收。钠-硅-钛化合物通常包括二氧化钛、硅酸钾、硅酸钠和胶体硅。钠-硅-钛化合物中二氧化钛通常占主要重量百分比。硅酸钠和硅酸钾的重量比通常为1.5~3.5∶1,而更有代表性的则是1.75~2.5∶1。通常,形成胶体硅的二氧化硅大部分是来自纯来源。硅颗粒的平均颗粒大小典型地为2~25纳米,但更典型地平均颗粒大小为6~12纳米。钠-硅-钛化合物包括其它钠化合物,例如但不限于碳酸钠。这些钠化合物能在焊接过程中提供电弧稳定性和/或气体保护。钠-硅-钛化合物也包括其它成分,例如水、锂化物、硫、碳等;但是这些不是必须的。这些其他组分,当包括在钠-硅-钛化合物中时,通常小于钠-硅-钛化合物的10%重量。
钠-硅-钛化合物典型地通过混合胶体硅溶液和氧化钛(如金红石)、硅酸盐以及钠-硅-钛化合物的其它成分而形成。在钠-硅-钛化合物成分适当混合在一起后,干燥钠-硅-钛化合物以除掉钠-硅-钛化合物中的水。在钠-硅-钛化合物干燥后,钠-硅-钛化合物中水含量通常小于0.1%重量,典型地是小于0.08%重量,更典型地是小于0.06%重量。在钠-硅-钛化合物干燥后,钠-硅-钛化合物通常按尺寸来制作。这个制作过程典型地是通过研磨和筛选操作来完成;但是,也可以使用其它按尺寸制作过程。按尺寸制作后钠-硅-钛化合物平均颗粒大小典型地小于40目,而更典型的为大约50~200目。
钠-硅-钛化合物的实施例如下所示(钠-硅-钛化合物重量百分比)实施例1TiO260~90%;硅酸钠 1~20%硅酸钾 1~15%钠化合物1~20%胶体硅 1~10%其它组分0~5%。
实施例2TiO270~90%;
硅酸钠4~15%硅酸钾1~10%碳酸钠3~16%胶体硅2~16%其它组分 0~1%。
实施例3TiO270~80%;硅酸钠3.5~10%硅酸钾1.5~6%碳酸钠5~15%胶体硅2~5%其它组分 0~0.5%。
新型药芯焊条E利用钠-硅-钛化合物来减少芯材料在制作过程中的湿气吸收性。目前日常实践也已经证明在直流正焊接中药芯焊条是有效的电弧稳定物质。同时发现这种特殊化合物加入到焊条E的芯50中也能在交流焊接中使焊条能起到电弧稳定的作用。本发明中使用了这种特性。这些接枝物质已经被证明作为电弧稳定剂用于正弦波形100很有效,如图2所示。它同样也被证明在高压高电流情况下反转极性时对于稳定等离子体柱P有效,正如通常使用的矩形波形,例如图3所示的波形200。波形200被修饰后减少在极性反转前的电流。这就是Stava专利6,111,216所描述的特征。
波形200包括振幅a宽度b的正极区202和振幅c宽度d的负极区204。在实际应用中,振幅a和c并不总是相等。它们会根据交流焊接过程中需要的热量和工件清洗动作数目来调整。在实际应用中,振幅在600~1000安培之间。为了避免在高电流下的极性反转,电流在实际极性反转前会朝向线210,212衰落。在这种方式下,即使振幅相当高,电流反转仍然在低压情况下进行。这是优选的;但是,在实际应用中,反转通常在200~300安培范围内而电压依然维持在高水平上,例如20伏特。用于产生波形200的电压曲线没有在图中表明;但是最大电压要高于200伏特。高电流高电压使得等离子体柱有些不稳定并会影响焊缝外观。这可以通过使用焊条E来克服。
当电源20为图4方块图中所示的逆变器基电源的时候,波形200已经变成在焊条E和加工件WP间进行焊接操作时比较标准的交流焊接波形。电源20由线电压输入220通过在线224上有输出直流信号的整流器222来驱动。通过有电源因子纠正芯片的升压变换器230来改变该信号以纠正输入电源因子。线232上输出电压是直流电压,成为逆变器240输入。逆变器是一种有极性转换网络250的标准结构的高转换速度逆变器,从而根据线252上的逻辑来控制焊缝22和24间的极性。为了产生波形200,电源20包括波形发生器或者波形整形器260,其具有输出线262,从而在任何给定时刻都可以控制波形200的轮廓。波形极性通过线252上的逻辑来控制。将轮廓输出线262上信号与来自分流器266的线264上实际电弧电流比较,这样放大器270由输出272上电压来控制脉冲宽度调节器280,脉冲宽度调节器由在频率大于18kHz(大于20~50kHz更好)运行的振荡器282来驱动。振荡器282在线284上产生脉冲以便根据线272上电压驱动脉冲宽度调节器280,这样输出线286就可以控制波形200的轮廓。极性反转通过使用极性转换网络250的线252上的逻辑来完成。这样,本发明中的新型交流MIG焊接方法就在如图4所示逆变器基电源条件下,或在如图2所示波形100为代表的没这么复杂的变压器电源条件下,使用药芯焊条E。在任何一种交流焊接方法中,稳定电弧等离子体以防止飞溅同时保持良好焊缝外观和良好的机械性能。
为了生产本发明方法中使用的电弧稳定化合物,图5中的流程通常被用来生产接枝的钠和二氧化钛。如步骤300所示提供二氧化钛或金红石。金红石按步骤302所示研磨到小于50目的尺寸。按步骤304所示在颗粒状的金红石中加入钠化合物,按步骤306所示加入硅酸盐(主要是硅酸钠)。然后按步骤308所示将颗粒状的混合物再混入胶体硅。然后将产生的混合物干燥,如步骤310所示,然后研磨到小于40目的尺寸,优选小于50目。研磨步骤312还包括一个分级过程以除掉小于200目的颗粒。产生的化合物就是在焊条E标准制作流程中加入到焊条芯50中的特殊材料。
本发明是一种使用含有钠钛接枝化合物新型药芯焊条的交流焊接方法(FCAW)。交流焊接可以有气体(气保护药芯焊丝电弧焊,FCAW~G),如MIG焊接,或者自保护(自保护药芯焊丝电弧焊,FCAW~S)。这种接枝化合物是新的,并允许使用焊条E来产生有良好焊缝和物理特性的稳定焊接过程。这种化合物在交流MIC焊接过程极性反转时可以稳定等离子体柱。
权利要求
1.一种交流焊接方法,该方法包括(a)将有芯焊条补给工件,所述有芯焊条包括被钢外鞘环绕的芯材料,所述芯材料包括含钠和二氧化钛的接枝化合物的特定电弧稳定化合物;(b)由电源提供交流电流给前进的焊条从而导致所述焊条至少一部分熔化并从焊条沉积金属到工件上,所述交流电流具有给定的波形;以及(c)提供保护气体,所述保护气体至少部分环绕所述前进的焊条。
2.根据权利要求1所述的方法,其中钠和二氧化钛的接枝化合物包括钠-硅-钛。
3.根据权利要求1或2所述的方法,其中钠和二氧化钛的接枝化合物重量百分比占所述芯材料大约20%重量以上。
4.根据权利要求1~3所述的方法,其中钠和二氧化钛的接枝化合物重量百分比可达所述芯材料的大约50%重量。
5.根据权利要求1~4所述的方法,其中所述芯材料按重量百分比包括TiO22~50%钠-硅-钛化合物1~55%溶渣形成剂1~60%金属合金剂0~70%。
6.根据权利要求1~4所述的方法,其中所述芯材料按重量百分比包括TiO23~40%钠-硅-钛化合物1~55%溶渣形成剂20~50%金属合金剂0~55%。
7.根据权利要求1~4所述的方法,其中所述芯材料按重量百分比包括TiO220~40%钠-硅-钛化合物20~50%溶渣形成剂25~45%金属合金剂0~35%。
8.根据权利要求1~4所述的方法,其中所述芯材料按重量百分比包括TiO23~15%钠-硅-钛化合物 15~25%溶渣形成剂 30~40%金属合金剂 35~45%。
9.根据权利要求1~4所述的方法,其中所述芯材料按重量百分比包括TiO220~30%钠-硅-钛化合物 1~5%溶渣形成剂 20~30%金属合金剂 45~55%。
10.根据权利要求1~9所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO260~90%硅酸钠 1~20%硅酸钾 1~15%钠化合物1~20%胶体硅 1~10%其它化合物 0~5%。
11.根据权利要求1~9所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO270~80%硅酸钠3.5~10%硅酸钾1.5~6%碳酸钠5~15%胶体硅2~5%其它化合物0~0.5%。
12.根据权利要求1~9所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO270~90%硅酸钠4~15%硅酸钾1~10%碳酸钠3~16%胶体硅2~6%其它成分 0~1%。
13.根据权利要求1~12所述的方法,其中电源为逆变器。
14.根据权利要求13所述的方法,其中逆变器输出基于波形发生器产生的交流波形,波形产生器在18kHz以上频率运行,控制脉冲宽度调节器。
15.根据权利要求1~14所述的方法,其中由电源提供交流电流的步骤包括在正电压和负电压间改变电流,每电压都高于20伏。
16.根据权利要求1~15所述的方法,其中由电源提供交流电流的步骤包括改变大约500安培以下电流的极性。
17.一种在保护气体环境中用于交流焊接的有芯焊条,包括金属外鞘和芯材料,所述芯材料是所述有芯焊条的大约8~60%重量,所述芯材料包括钠和二氧化钛接枝化合物的特殊电弧稳定化合物。
18.根据权利要求17所述的方法,其中钠和二氧化钛的接枝化合物包括钠-硅-钛。
19.根据权利要求17或18所述的方法,其中钠和二氧化钛的接枝化合物重量百分比是所述芯材料的大约20%重量以上。
20.根据权利要求17~19所述的方法,其中钠和二氧化钛的接枝化合物重量百分比最多是所述芯材料的大约50%重量。
21.根据权利要求17~20所述的方法,其中芯材料按重量百分比包括TiO22~50%钠-硅-钛化合物 1~55%溶渣形成剂 1~60%金属合金剂 0~70%。
22.根据权利要求17~20所述的方法,其中芯材料按重量百分比包括TiO23~40%钠-硅-钛化合物 1~55%溶渣形成剂 20~50%金属合金剂 0~55%。
23.根据权利要求17~20所述的方法,其中芯材料按重量百分比包括TiO220~40%钠-硅-钛化合物 20~50%溶渣形成剂 25~45%金属合金剂 0~35%。
24.根据权利要求17~20所述的方法,其中芯材料按重量百分比包括TiO23~15%钠-硅-钛化合物 15~25%溶渣形成剂 30~40%金属合金剂 35~45%。
25.根据权利要求17~20所述的方法,其中芯材料按重量百分比包括TiO220~30%钠-硅-钛化合物 1~5%溶渣形成剂 20~30%金属合金剂 45~55%。
26.根据权利要求17~25所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO260~90%硅酸钠1~20%硅酸钾1~15%钠化合物 1~20%胶体硅1~10%其它化合物0~5%。
27.根据权利要求17~25所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO270~80%硅酸钠 3.5~10%硅酸钾1.5~6%碳酸钠5~15%胶体硅2~5%其它化合物0~0.5%。
28.根据权利要求17~25所述的方法,其中钠和二氧化钛的接枝化合物按重量百分比包括TiO270~90%硅酸钠 4~15%硅酸钾 1~10%碳酸钠 3~16%胶体硅 2~6%其它成分0~1%。
全文摘要
本发明公开一种交流焊接方法,该方法包括通过使用带有接枝钠和二氧化钛形式的特殊电弧稳定化合物的焊条,在前进的焊条和加工件之间由电源提供给定波形的交流电,从而熔化焊条,并将金属从焊条沉积到加工件上。其中化合物占芯的20%重量以上。
文档编号B23K35/36GK1879999SQ20061007588
公开日2006年12月20日 申请日期2006年4月24日 优先权日2005年6月15日
发明者尼克希尔·卡罗高, 拉吉夫·卡提亚 申请人:林肯环球公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1