高温焊锡和高温焊锡膏材料以及功率半导体装置的制作方法

文档序号:3004911阅读:285来源:国知局
专利名称:高温焊锡和高温焊锡膏材料以及功率半导体装置的制作方法
技术领域
本发明涉及要求280℃以上高熔点的无铅焊锡材料和使用了该无铅焊锡材料的功率半导体装置。
背景技术
在现有技术中,在功率半导体装置的器件与外部电极的接合中,使用了包含90%以上的铅、此外包含百分之几的Sn、Ag等的显示出280℃以上的熔点的高熔点铅焊锡。近年来,保护环境使之不受有害物质的污染这一点变得越来越重要,要求从电子装置的组装构件中除去铅。但是,目前的状况是,尚未开发出能按原样置换包含铅的高温焊锡的不使用铅的高温焊锡。作为存在可能性的材料的候补,已知有Zn-Al系或Sn-Sb系、Bi-Ag系的高温焊锡。在专利文献1中记载了这样的材料的例子。
此外,在用于安装在汽车上等的功率半导体装置中,在热沉/陶瓷布线基板/功率半导体器件的层叠接合构造中,在热沉/陶瓷布线基板的接合中使用了Sn-Pb共晶焊锡、在陶瓷布线基板/功率半导体器件的接合中使用了高铅焊锡。对于不使用铅的要求来说,对共晶焊锡研究了Sn-Ag-Cu焊锡等的代替材料候补,但尚处于没有高铅焊锡的代替材料候补的状态。
此外,在一般的功率半导体装置或高频半导体装置中,在二次安装时的回流处理时,在高温规格中施加260℃的高温。在目前的状况下,尚未发现能耐受该回流温度且在温度循环可靠性方面优良的高铅焊锡的代替材料。
专利文献1日本专利申请特开2003-290976号公报(从(0006)段落至(0012)段落的记载)。
作为对用于功率半导体的安装的高温焊锡要求的性质,可举出以下的7个项目。如果不能满足这些性质,则难以按原样应用于半导体装置的组装。作为该性质,1)润湿性焊锡材料对于半导体器件的电极材料或外部连接用的金属构件在润湿性方面优良,2)接合温度根据管芯键合的工艺温度小于等于400℃、更为希望的是小于等于360℃这一点,液相温度小于等于370℃,3)耐热温度具有能耐受将半导体装置以二次安装方式安装到更大的装置上时的260℃的回流加热和200℃或250℃的高温环境下的使用的耐热性,4)变形缓和功能焊锡接合部缓和伴随将半导体器件接合到外部连接用的金属构件上时的加热冷却的热变形以防止因热应力引起的半导体器件的破损,5)热疲劳寿命对于因半导体器件的发热引起的温度变动,焊锡接合部的热疲劳寿命充分长,6)高温可靠性在焊锡材料与半导体器件的电极或金属构件之间不引起伴随化合物的生长的裂纹或空洞的形成及大幅度的强度下降,7)加工性焊锡材料可加工为能应用于半导体装置的批量生产组装的形状。
在这些性质中,最重要的性质是润湿性、接合温度、耐热温度。利用接合构造或金属化的改进,在变形缓和功能、高温可靠性或热疲劳寿命方面存在可采取某种对策的余地,此外,在包含焊锡的形态和组装工艺方面作改进,对加工性可采取对策。
虽然现有技术的Zn-Al系焊锡在接合温度和耐热温度方面具有必要的性质,但对于Ni或Cu润湿性差。此外,虽然现有技术的Sn-Sb二元系焊锡的润湿性良好,但不能同时满足接合温度和耐热温度这两者。再者,现有技术的Bi-Ag系焊锡的固相温度为262℃,存在耐热温度低的问题。
另一方面,在用于安装在汽车上等的现有的功率半导体装置中,由于没有高温铅焊锡的代替材料,故未能在功率半导体装置中完全不使用铅。在最近的汽车设备等中,在每个新机种中使用的电流容量越来越增加,同时与功率半导体装置的小型化要求相应地,要求增加每1个半导体器件的通电容量。此外,从确保效率和居住空间这一点来看,存在将功率半导体装置的设置场所集中在温度方面苛刻的发动机室内的趋势。在该情况下,因半导体器件的温度上升和环境温度的上升,接合部受到的低温与高温的温度差变大,在使用了现有技术的高铅焊锡的功率半导体装置中存在温度循环寿命随热变形的增大而下降的问题。
此外,在现有的功率半导体装置或高频半导体装置中,由于尚未发现不使用铅、具有260℃的耐热性且具有温度循环或高温高湿可靠性的代替材料作为管芯键合或将无源元件安装到陶瓷基板上的接合中使用的焊锡,故存在不能达到完全不使用铅的问题。

发明内容
本发明的目的在于提供在作为高温焊锡所必需的性质的对于Ni或Cu的润湿性方面优良、满足接合温度≤400℃、尽可能接合温度≤370℃且耐热温度≥280℃、进而对于Cu或Ni在温度循环寿命和高温可靠性方面优良的焊锡。
本发明的目的在于提供在惰性气氛或还原气氛下且在350℃~400℃的接合条件下可容易地对接合部供给上述的焊锡而不损害对Ni或Cu的润湿性、在接合后能尽可能消除在接合部上留下的遗留物的焊锡膏材料。
本发明的目的在于提供具有260℃回流耐性、200℃-1000h以上的耐热可靠性、温度循环可靠性高、不使用铅的功率半导体装置。
本发明的功率半导体装置用由42wt%<Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu<25wt%的组成构成的焊锡接合了半导体元件或金属电极构件。
按照本发明,可提供在对于Ni或Cu的润湿性方面优良、满足接合温度≤400℃、尽可能接合温度≤370℃且耐热温度≥280℃、对于Cu或Ni在温度循环寿命和高温可靠性方面优良的不含有铅的高温焊锡。
此外,本发明的不含有铅的高温焊锡膏在惰性气氛或还原气氛下的接合中可容易地供给到接合部而不损害对Ni或Cu的润湿性、在接合后能尽可能消除在接合部上留下的遗留物以便能实现无清洗化。
此外,本发明的功率半导体装置在不使用铅的情况下具有260℃回流耐性、200℃-1000h以上的耐热可靠性和高的温度循环可靠性。


图1是实施例3的功率半导体模块的剖面构造的说明图。
图2是实施例2的高温焊锡膏材料构成的说明图。
图3是实施例2的高温焊锡膏材料的规格和特性测定结果。
图4是实施例4的功率半导体模块的剖面构造的说明图。
图5是实施例5的高频模块的剖面构造的说明图。
图6是实施例6的功率半导体封装体的剖面构造的说明图。
图7是实施例1的Sn-Sb-Ag-Cu系合金的固相、液相线温度的Sb/(Sn+Sb)比率依存性的说明图。
图8是实施例1的Sn-Sb-Ag-Cu系合金的固相、液相线温度的Ag浓度依存性的说明图。
图9是实施例1的Sn-Sb-Ag-Cu系合金的固相、液相线温度的Cu浓度依存性的说明图。
图10是实施例1的Sn-Sb-Ag-Cu系焊锡硬度的Ag浓度依存性的说明图。
图11是实施例1的Sn-Sb-Ag-Cu系焊锡硬度的Cu浓度依存性的说明图。
图12是实施例1的Sn-Sb-Ag-Cu系焊锡硬度的Ni浓度依存性的说明图。
图13是实施例1的Sn-Sb-Ag-Cu系高温焊锡的固相、液相线温度和硬度的(Ag+Cu)浓度依存性的说明图。
图14是实施例1的Sn-Sb-Ag-Cu系高温焊锡的对于Cu和Ni的润湿试验结果的说明图。
图15是实施例2的Sn-Sb-Ag-Cu系高温焊锡膏的对于Cu和Ni的润湿试验结果的说明图。
图16是Sn-Sb合金的二元状态图。
图17是实施例7的电子部件的剖面构造的说明图。
图18是在实施例7中制作的Sn-Sb-Ag-Cu合金的机械特性的说明图。
图19是实施例7的电子部件的剖面构造的说明图。
具体实施例方式
以下使用附图详细地说明本发明的实施例。
实施例1对于本实施例的高温焊锡材料来说,以Sn、Sb、Ag和Cu为主要构成元素,作成了具有42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu≤25wt%的组成、剩下的部分由其它的不可避免的杂质元素构成的高温焊锡材料。再者,在上述组成的高温焊锡材料中添加了0.01wt%~5.0wt%的Ni、Ge、Ga、0.005wt%~0.5wt%的P中的一种或多种。
试制了各种上述组成的合金并研究了固相和液相温度,结果发现固相线温度由Sn和Sb的组成比来决定,在上述组成范围内可大于等于280℃;再者,如果添力Ag或Cu,则固相线温度几乎不下降,可只使液相线温度下降,在上述的组成中,液相线温度小于等于370℃。在图7、图8、图9中表示该测定结果。这些图表示在Sn-Sb-Ag-Cu的四元合金中改变了特定的元素的比率时的固相和液相线温度,图7是用Sb/(Sn+Sb)的比率整理的结果,图8是用Ag的含量整理的结果,图9是用Cu的含量整理的结果。
如图7中所示,在42wt%≤Sb/(Sn+Sb)的条件下,固相温度大于等于280℃。另一方面,如图8、图9中所示,液相温度在Sb/(Sn+Sb)=48wt%时随着增加Ag或Cu的添加量而下降。从图16中表示的Sn-Sb二元状态图可知,在Sb/(Sn+Sb)=48wt%时,不含有Ag、Cu的情况的液相温度是422℃,但如果将Ag添加到10wt%以上或将Cu添加到8wt%以上,则如图8、图9中所示,液相温度为370℃。此外,也确认了在Sb/(Sn+Sb)=42wt%时,在5wt%≤Ag、3wt%≤Cu且5wt%≤(Ag+Cu)的条件下,满足液相温度≤370℃。
但是,希望高温焊锡材料是在接合后可减小对半导体器件给予的应力的柔软的材料。在图10、图11、图12中表示试制了的焊锡的硬度的测定结果。作为焊锡硬度的上限,接合了各种各样的材料与半导体器件并进行了评价的结果,可知按维克斯硬度小于等于130Hv在实用上是适合的。
作为焊锡的成分,增加Ag、Cu的含量对于降低液相温度是有效的,但判明了如果含量增加则焊锡变硬。作为满足按维克斯硬度小于等于130Hv的条件的组成,确认了如图10中所示Ag<20wt%、此外,如图11中所示Cu<10wt%是适当的范围。此外,如图12中所示,只要Ni<2wt%,则满足按维克斯硬度小于等于130Hv的条件。
图13是以Ag+Cu的含量(wt%)整理了固相和液相温度以及维克斯硬度的说明图。硬度依存于Ag+Cu的含量的趋势较强,可知为了使维克斯硬度小于等于130Hv,必须定为Ag+Cu≤25wt%的范围。
此外,在该四元系的焊锡中,关于(1)46Sn-35Sb-11Ag-8Cu(Sb/(Sn+Sb)=43wt%)、(2)42Sn-40Sb-10Ag-8Cu(Sb/(Sn+Sb)=49wt%)、(3)38Sn-45Sb-9Ag-8Cu(Sb/(Sn+Sb)=54wt%)这四种组成在360~400℃的加热处理条件下研究了对Cu箔、Ni电镀膜的润湿性。结果,关于对Ni电镀膜的润湿性,在全部的加热温度下没有焊锡组成引起的明显差别,可确认良好的润湿性。但是,关于对Cu的润湿性,只有(1)46Sn-35Sb-11Ag-8Cu(Sb/(Sn+Sb)=43wt%)的焊锡显示出良好的润湿性,判明了随着Sb的含量增加,润湿的扩展面积减小。
在图14中表示关于高温焊锡(1)46Sn-35Sb-11Ag-8Cu(Sb/(Sn+Sb)=43wt%)和(2)42Sn-40Sb-10Ag-8Cu(Sb/(Sn+Sb)=49wt%)的润湿试验结果。判明了高温焊锡(2)42Sn-40Sb-10Ag-8Cu(Sb/(Sn+Sb)=49wt%)的对于Cu的润湿性差的原因是由于在焊锡中包含的Sb与Cu的反应加剧,Cu进入焊锡中,在润湿前端进行高熔点化。其结果,从对于Cu的润湿的观点来看,判明了减少Sb的含量的做法是良好的。
如上所述,研究评价了高温焊锡材料的结果,只要焊锡组成是42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu≤25wt%,对于Cu、Ni、Ni-P的润湿性是良好的,可在350~400℃的范围内选择接合温度,可将耐热温度提高到大于等于280℃。
此外,判明了如果将焊锡组成定为42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu≤25wt%,则按维克斯硬度可使焊锡硬度为小于等于130Hv,可减小与热膨胀差不同的构件接合时在半导体器件中产生的热应力。
再者,关于高温放置可靠性,例如在250℃-1500h的试验中,如果在接合面上形成Ni-P电镀膜,则可抑制与焊锡的金属反应,可抑制Ni-Sn化合物等的生长,也确认了可靠性的提高。判明了这是由于Ni-P即使在高温下也是稳定的,可抑制焊锡的与Sn或Sb的反应。即,关于高温可靠性,本实施例的四元系焊锡也是有效的。再者,即使在该四元系焊锡中添加0.01wt%~5.0wt%的Ni、Ge、Ga、0.005wt%~0.5wt%的P中的一种或多种,也不会改变润湿性或耐热温度、焊锡硬度等。
如以上详细地叙述的那样,按照本实施例,通过将高温焊锡材料作成以Sn、Sb、Ag和Cu为主要构成元素、具有42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%而且5wt%≤Ag+Cu≤25wt%的组成、剩下的部分由其它的不可避免的杂质元素构成的合金,可提供在作为高温焊锡所必需的性质的对于Ni或Cu的润湿性方面优良、满足接合温度≤400℃、尽可能接合温度≤370℃且耐热温度≥280℃、进而对于Cu或Ni在温度循环寿命和高温可靠性方面优良的焊锡材料。
实施例2在本实施例中,为了提供在惰性气氛或还原气氛下且在350℃~400℃的接合条件下不损害对Ni或Cu的润湿性、可容易地供给到接合部而在接合后能尽可能消除在接合部上留下的遗留物的焊锡膏材料,作成了混合了实施例1的高温焊锡与从只由C、O、H的原子构成了分子的乙二醇组、醇组、丙三醇组选择的一种或多种材料构成的液状或乳脂状的有机材料的高温焊锡膏材料。再者,将高温焊锡的粒子尺寸(粒度)定为0.05mmφ~0.5mmφ、最好定为0.1mmφ~0.5mmφ,选择了大气压(1个气压)下的沸点是150℃~400℃的有机材料。再有,粒子尺寸(粒度)是用网状的筛子分粒后的粒径,在以下的说明中也是同样的。
Sn-Sb-Ag-Cu系高温焊锡具有在材料方面硬的性质,难以加工成为箔或焊丝形状。因此,难以成为对接合部供给焊锡的形态。通常已知混合了焊锡的粉末与焊剂的焊锡膏作为硬的焊锡对接合面的供给形态,但尚未开发带有焊锡的能在接合温度为350℃~400℃的高温区域中使用的膏。此外,在接合裸芯片状态的半导体器件的情况下,一般是进行在还原气氛中不使用焊剂的清洁的接合。这是为了防止半导体器件的电极等因具有腐蚀作用的焊剂而受到损伤。
因此,在本实施例中,加工成容易进行焊锡供给的膏状态,进行了在惰性或还原气氛中的接合。为了作成膏,选择了在室温附近保持液状或乳脂状、在加热过程中挥发消失、而且对于金属是惰性的有机材料三甘醇或四甘醇,与粒度0.1mmφ的焊锡粒子混合作成膏,实施了对Cu或Ni的润湿试验。其结果,如图15中所示,确认了对于Cu或Ni可得到良好的润湿性。
作为用于作成膏的有机材料,从对于金属为惰性的、不对环境产生影响、对人体不是有害的观点来看,选定只由C、O、H元素构成的材料,从在室温下是稳定的液状、保管性良好、在加热过程中容易挥发消失、不对润湿性产生影响这样的观点来看,确认了希望在大气压(1个气压)下的沸点是150℃~400℃。
在图2中表示本实施例的高温焊锡膏材料的构造。用粒子状的高温焊锡粒1和液状的有机溶剂2构成了膏。在图3中表示本实施例的膏材料的规格和特性测定结果。评价项目是可进行良好的接合的最低温度、焊锡不熔融的耐热温度、依存于焊锡的粒度和焊锡/有机溶剂的体积比率的来自分配器的供给性(供给性用可否进行连续供给和量的控制性来判定)和使用了三甘醇、四甘醇和五甘醇作为有机溶剂时的对于Cu和Ni的润湿性这4个项目。再有,在与接合温度相同的温度下在还原气氛中加热而评价了润湿性。
其结果,得到了下述的结果在焊锡组成为Sb/(Sn+Sb)≥49wt%的组成的情况下(No.1、No.2),不管有机溶剂如何,对于Cu的润湿性差,评价是×。此外,在焊锡组成为Sb/(Sn+Sb)=40.7wt%的组成的情况下(No.4),润湿性是良好的,但耐热性为230℃以下,评价是×。在焊锡组成为Sb/(Sn+Sb)=43wt%(No.3、No.5)和45wt%(No.6)的情况下,接合温度≤380℃、耐热温度≥300℃、焊锡粒度是0.2mmφ~0.3mmφ且固液比率是3/7、焊锡供给性良好、在使用了三甘醇和四甘醇时对于Cu和Ni的润湿性是良好的,在全部的项目中满足必要条件,判定为○。
关于焊锡的粒度,在细至0.01mmφ~0.05mmφ(No.10)的情况下,润湿性差,判定为×,在0.05mmφ~0.1mmφ(No.11)的情况下,润湿性稍差,判定为Δ。另一方面在焊锡粒是0.5mmφ~0.7mmφ(No.14)和0.7mmφ~1.0mmφ(No.15)的情况下,供给焊锡量的控制精度变差,判定为Δ和×。
此外,关于固液比率,在固体比率多至7/3的情况下,来自分配器的供给性差,判定为×,在液体比率多至1/9的情况下,焊锡量的控制性差,判定为Δ。作为焊锡粒度可满足供给性和润湿性这两者的是0.1mmφ~0.5mmφ。此外可知,作为固液比率,3/7≤固体/液体≤6/4的范围是适当的。
按照本实施例,如果将焊锡组成定为43wt%≤Sb/(Sn+Sb)≤45wt%,则可使焊锡接合温度小于等于380℃,而且可使耐热温度大于等于300℃。此外,如果使用三甘醇和四甘醇时作为有机溶剂、将焊锡粒度定为0.1mmφ~0.5mmφ、将固体与液体的体积比率定为3/7~6/4,则可知既可确保焊锡的供给性、又可确保在还原气氛中的润湿性。再有,有机溶剂可以是在大气压(1个气压)下的沸点是150℃~400℃、构成的元素只由C、H、O构成的醇类或丙三醇类、酯类。如果将该高温焊锡应用于功率半导体装置的组装,则可提供能实现批量生产组装、在高温可靠性方面优良的不使用铅的功率半导体装置。此外,该焊锡与现有技术的铅焊锡相比,由于破坏强度高,故也可提高温度循环可靠性。
如以上详细地叙述的那样,按照本实施例,通过混合高温焊锡材料与从只由C、O、H构成的乙二醇组、醇组、丙三醇组选择的一种或多种材料构成的液状或乳脂状的有机材料作成了高温焊锡膏材料,可提供在惰性气氛或还原气氛下的接合中不损害对Ni或Cu的润湿性、可容易地不间断地供给上述的焊锡材料、在接合后能尽可能消除在接合部上留下的遗留物、可实现不用清洗的高温焊锡膏材料。此外,即使将由松香、有机酸、溶剂构成的液状或乳脂状的有机材料与本发明的高温焊锡材料混合作成高温焊锡膏材料,在惰性气氛中也能维持良好的焊锡接合性,由于遗留物成为惰性的,故可提供能不用清洗的高温焊锡膏材料。
实施例3图1表示本实施例的功率半导体模块的剖面构造的例子。在图1中,在陶瓷基板12上安装在Si半导体芯片上形成的IGBT或二极管、功率MOSFET等的功率半导体器件11,进而将其安装在热沉17上。利用实施例1的Sn-Sb-Ag-Cu系高温焊锡16经金属电路图案13接合了功率半导体器件11与陶瓷基板12。用Sn-Ag-Cu的中温焊锡18(熔点217℃~222℃)经金属β图案15接合了陶瓷基板12与热沉17。利用Al焊丝21将功率半导体器件的主电流电极和控制电极连线到陶瓷基板12上的另外的金属电路图案14上。
在热沉17上安装了一体地模塑了外部取出引线24的树脂容器22,在其内部充填了凝胶状硅酮树脂23。此外,与树脂容器22一体化了的热沉17经高热传导树脂20以热的方式与散热片19结合。陶瓷基板12的材质用AIN或Si3N4构成,金属电路图案13和金属β图案15是Cu制的,在其表面上进行了Ni-P电镀。对功率半导体器件11的背面电极进行了Ti/Ni/Au的金属化以用于接合。
按照本实施例,由于在功率半导体器件11的接合中使用实施例1的Sn-Sb-Ag-Cu系高温焊锡16,用Sn-Ag-Cu的中温焊锡18接合了陶瓷基板12与热沉17间,故可谋求半导体装置完全不使用铅。此外,由于在两者的的熔融温度中存在差别,故可进行分层焊锡接合,接合组装变得容易。
实施例4在本实施例中,用实施例1的高温焊锡材料接合了功率半导体器件的背面电极和与外部连接的金属电极构件。在使用陶瓷基板的功率半导体装置中,进而在用Cu形成的陶瓷基板上的金属电路图案的表面上进行了Ni-P电镀,在功率半导体器件的背面电极的最表面上进行了无电解Ni-P电镀或Ni-P/Au电镀。此外,作成在功率半导体器件的主电流电极的最表面上进行了Ni-P电镀或Ni-P/Au电镀的电极构造,用低热膨胀率的复合构件对陶瓷基板的电路图案与主电流流过的电极间进行连线,用实施例1的高温焊锡材料接合了各自的接合部。
半导体器件的背面电极的表层通常用Ti/Ni/Au、Cr/Ni/Au或V/Ni/Cu构成,与外部连接的金属电极构件使用了Cu或在Cu上进行了Ni电镀或Ni-P电镀的构件。由于上述实施例1的焊锡对于上述构件在润湿性方面优良,故可容易地进行接合,此外,由于焊锡的固相温度高至280℃以上,故具有耐受260℃的回流的性能,可实现谋求了完全不使用铅的功率半导体装置。
此外,在使用了陶瓷基板的功率半导体装置中,由于陶瓷基板的热膨胀率低至3.0ppm~4.6ppm,故即使安装半导体器件,在接合部中也不产生大的热变形。此外,如果将接合面作成Ni-P电镀膜,则即使在250℃-1500hr的高温保持中,在与实施例1的高温焊锡的接合界面上Ni-Sn化合物也不会生长到几μm以上的厚度,没有裂纹或空洞等的生长,得到了高的高温可靠性。此外,由于在接合界面上,不产生大的热变形,故即使施加温度差大的温度循环,焊锡材料也不产生疲劳破坏,得到了高的温度循环可靠性。在本实施例中,可提供这样具有高的耐热可靠性和高的温度循环可靠性的谋求了完全不使用铅的功率半导体装置。此外,通过用低热膨胀构件在半导体器件的主电流电极与陶瓷基板的金属图案之间进行了连线,用实施例1的高温焊锡进行了接合,即使在任何的接合部中也不产生大的热变形,作为功率半导体装置可得到非常高的可靠性。
以下详细地说明本实施例。图4表示本实施例的功率半导体模块的剖面构造。在图4中,在陶瓷基板32上安装在Si半导体芯片上形成的IGBT或二极管、功率MOSFET等的功率半导体器件31,进而将其安装在热沉37上。利用实施例1的Sn-Sb-Ag-Cu系高温焊锡36经金属电路图案33接合了功率半导体器件31与陶瓷基板32。用Sn-Ag-Cu的中温焊锡38(熔点217℃~222℃)经金属β图案35接合了陶瓷基板32与热沉37。用低热膨胀率的Cu/Fe-Ni/Cu复合引线41将功率半导体器件31的主电流电极和控制电极连线到陶瓷基板32上的另外的金属电路图案34上,用Sn-Sb-Ag-Cu系高温焊锡43、44进行了接合。此外,用Sn-Sb-Ag-Cu系高温焊锡45将外部取出用引线42接合到陶瓷基板32上的金属电路图案34上。用模塑树脂46覆盖了热沉37上的陶瓷基板32、功率半导体器件31和连接用的Cu/Fe-Ni/Cu复合引线41。用高热传导树脂40粘接了热沉37与散热片39。陶瓷基板32的材质用AIN或Si3N4构成,金属电路图案34和金属β图案35是Cu制的,在其表面上进行了Ni-P电镀。对功率半导体器件31的背面电极进行了Ti/Ni/Au的金属化以用于接合。此外,在功率半导体器件31的主电流电极和控制电极的Al电极上进行了Ni-P电镀。
按照本实施例,由于在陶瓷基板32与功率半导体器件31的背面电极的接合、经低热膨胀引线的功率半导体器件31的主电流电极和控制用电极与陶瓷基板32的电路图案间的接合、外部取出引线与陶瓷基板32的接合中使用了Sn-Sb-Ag-Cu系高温焊锡,在陶瓷基板32与热沉37的接合中使用了Sn-Ag-Cu的中温焊锡,故可谋求半导体装置完全不使用铅。
此外,按照本实施例,由于在Sn-Sb-Ag-Cu系高温焊锡与Sn-Ag-Cu的中温焊锡两者间的熔融温度中存在差别,故可进行分层焊锡接合,接合组装变得容易。再者,由于半导体器件的主电流电极和控制用电极部的接合不是Al焊丝的键合,而是成为低热膨胀构件的接合,故可减小与功率半导体器件31的热膨胀差,可提高该电极接合部的温度循环可靠性。其结果,可大幅度地改善功率半导体装置整体的可靠性。此外,由于可大幅度地提高功率半导体器件31的上下的电极接合部的耐热性,故可提高功率半导体器件31的容许温度,其结果,可提高能通电的容许电流,在不改变装置的尺寸的情况下,可谋求大容量化。
如以上详细地叙述的那样,按照本实施例,通过作成用具有42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%而且5wt%≤Ag+Cu≤25wt%的组成的Sn-Sb-Ag-Cu系的高温焊锡材料接合了功率半导体器件的背面电极和与外部连接的金属电极构件的构造,可提供具有260℃回流耐性、200℃-1000h以上的耐热可靠性和高的温度循环可靠性、谋求了完全不使用铅的功率半导体装置。
实施例5图5是本实施例的高频模块的剖面说明图,表示应用了实施例1的Sn-Sb-Ag-Cu高温焊锡的例子。在图5中,在陶瓷基板53上安装了无源元件51、52和高频半导体器件60。用实施例1的高温焊锡58、59将无源元件51、52接合到陶瓷基板53的电路端子54、56上。在无源元件51、52的电极端子表面上进行了Ni/Au电镀,在陶瓷基板53的电路端子上也进行了Ni/Au电镀。在高频半导体器件60上形成了Cu凸点61,在其表面上进行Sn电镀以用于接合。关于接合,使Cu凸点61表面的Sn熔融,利用Au-Sn共晶反应来接合。将接合温度加热到大于等于300℃。因此,Cu扩散混入Au-Sn共晶接合部62中,进行了接合。陶瓷基板53的器件安装侧成为用树脂63覆盖并保护的构造。
关于组装顺序,首先对陶瓷基板53印刷供给实施例1的高温焊锡膏,其次,在安装了无源元件51、52之后,在N2气氛中加热到360℃进行焊锡接合。其次,在取出到大气中后,以倒装方式安装高频半导体器件60。倒装式接合法是脉冲加热的热压接法。最后,利用转移模塑在陶瓷基板的单面上覆盖树脂63。
如以上详细地叙述的那样,按照本实施例,通过作成在无源元件部件或二极管部件等高频半导体器件的接合中用具有42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%而且5wt%≤Ag+Cu≤25wt%的组成的Sn-Sb-Ag-Cu系的高温焊锡材料进行了接合的构造,可提供具有260℃回流耐性、谋求了完全不使用铅的电子部件。
按照本实施例,由于使用了不使用铅的高温焊锡材料作为接合材料,故可提供环境负载少的高频模块。此外,由于用280℃以上的高熔点材料构成了高频模块内的全部的接合部,故在将本模块安装到电子装置上时,即使再次加热到260℃,也不产生模块内的短路或断线这样的问题。可提供260℃回流耐性高的高频模块。再者,由于用接合强度高、具有耐蚀性的材料接合了各接合部,而且用硬质的树脂63覆盖了各接合部,故可提供在温度循环可靠性、高温高湿可靠性方面优良的高频模块。
实施例6图6是本实施例的功率半导体封装体的剖面说明图,表示应用了实施例1的高温焊锡的例子。在图6中,利用实施例1的高温焊锡74、75经由热膨胀率为8ppm~12ppm的Cu/Fe-Ni合金/Cu层叠板构成的应力缓冲板73将半导体器件71管芯键合到Cu制或以Cu为主要成分的合金制的管芯底座72上。即,在作为连接半导体器件71的背面电极的金属电极图案构件的管芯底座72的接合面上供给实施例2的焊锡膏,在其上配置应力缓冲板73,再在其上供给实施例2的焊锡膏,定位并安装半导体器件71,其后在100℃~300℃的高温环境下预先使液状或乳脂状的有机材料挥发、分解,将其干燥、除去,其次,在还原气氛中升温到350℃~400℃,使高温焊锡材料熔融,进行管芯键合。
在半导体器件71的背面电极的表面上将Ti、V、Ta/Ni/Au或Ag层叠为3层来形成。对应力缓冲板73和管芯底座72的表面施加了无电镀的Cu或进行了Ni电镀。用Al焊丝78在半导体器件71的上面的电极与外部取出用的引线端子76间进行了连线。进行了树脂79的模塑,使其覆盖半导体器件71、Al焊丝78和管芯键合部的全体以及管芯底座72和引线端子76的一部分。
按照本实施例,由于使用了不使用铅的焊锡作为接合材料,故可提供环境负载少的功率半导体封装体。此外,由于接合材料是高的强度且硬的材质,故可将现有技术中用接合材料的部分负担的热变形分散于半导体器件71或管芯底座72上,同时,由于在半导体器件71与管芯底座72间夹住Cu/Fe-Ni/Cu低热膨胀材料的应力缓冲板73,故可减少对半导体器件71施加的热应力,在可防止芯片裂纹的同时,可大幅度地延长接合材料的热疲劳寿命,在不降低生产性的情况下,可提供高的可靠性的功率半导体封装体。
实施例7在图17中表示用本发明的高温焊锡安装了陶瓷电容器的电子部件的剖面构造图。在图17中,在内部具有用金属电极夹住高介电常数材料的构造的陶瓷电容器81的两端形成了在表面上形成Ni电镀膜的连接用的电极端子82、83。用本发明的高温焊锡86、87将用于与外部连接的金属引线构件84、85连接到该电极端子上。
金属引线构件的原材料是Cu合金,在表面上进行了约5μm厚的Ni电镀。高温焊锡的组成是Sn-35Sb-10.8Ag-8.7Cu。用热硬化型的绝缘树脂88对金属引线的一部分、接合部和电容器本体进行了模塑。
关于组装是这样的由分配器在电极端子上涂敷混合了松香类焊剂与将粒径调整为0.02mm~0.05mm的本发明的高温焊锡的粉而制作的膏,对金属引线构件进行定位,在纵方向上进行设置,在氮气氛的输送炉中快速地加热到余热温度180℃、峰值温度380℃,进行接合、组装。其后,在清洗工序中清洗并除去焊剂遗留物,用射出成型机进行模塑。再有,在图18中表示所制作的Sn-Sb-Ag-Cu合金的机械特性。如图18中所示,No.3的35Sb合金在高温200℃下的强度和延伸度高,可知是在机械的方面最优良的组成。由于该No.3的35Sb合金在200℃的高温下延伸度大,故在接合后的冷却过程中缓和热应力的效果好,Sb量少的合金可减小接合品的残留应力。
按照本实施例,由于使用作为接合材料的高熔点的Sn-Sb-Ag-Cu合金接合了电极端子与引线构件,故可提供具有260℃回流耐性的无铅的电子部件。此外,由于接合材料的断裂强度高,在室温下不会被破坏,故可提供温度循环可靠性高的电子部件。
实施例8图19表示用本发明的高温焊锡安装了半导体二极管的电子部件的剖面构造。虽然在图19中省略了,但是实际的情况是将二极管器件91的上下的电极作成了在3μm厚的Al蒸镀膜上进行了2μm厚的无电解Ni-P电镀的构造。在图19中,用Sn-35Sb-10.8Ag-8.7Cu合金的高温焊锡94、95将用Cu合金构成的上下的金属引线92、93分别接合到二极管器件91的上下的电极上。用环氧密封树脂96模塑并保护了金属引线的一部分与二极管器件91的接合部。虽然在图19中省略了,但是实际的情况是在从密封树脂伸出的金属引线部上在Cu合金的表面上进行了SnCu电镀。
按照本实施例,由于使用高熔点的Sn-Sb-Ag-Cu合金作为接合材料接合了电极与金属引线,故可提供具有260℃回流耐性的无铅的电子部件。此外,由于在二极管器件91的电极的基底上形成了Al蒸镀膜,由于因金属引线和高温焊锡材料与Si的二极管器件的热膨胀差产生的热变形由与这些构件相比柔软的Al蒸镀膜的变形所吸收,故可减少对器件或接合部施加的热应力,可提供防止器件的损伤或接合部的热疲劳的、高的可靠性的电子部件。
权利要求
1.一种焊锡材料,以Sn、Sb、Ag和Cu为主要构成元素,其特征在于该焊锡材料的组成是42wt%<Sb/(Sn+Sb)≤48wt%,5wt%≤Ag<20wt%,3wt%≤Cu<10wt%,而且5wt%≤Ag+Cu≤25wt%,剩下的部分由其它的不可避免的杂质元素构成。
2.如权利要求1中所述的焊锡材料,其特征在于上述焊锡材料含有0.01wt%~5.0wt%的Ni、Ge、Ga中的一种或多种,或者含有0.005wt%~0.5wt%的P。
3.一种焊锡膏,包含焊锡材料和有机材料,其特征在于该焊锡膏含有的焊锡材料以Sn、Sb、Ag和Cu为主要构成元素,该焊锡材料的组成是42wt%<Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%、而且5wt%≤Ag+Cu≤25wt%,剩下的部分由其它的不可避免的杂质元素构成,上述有机材料只由C、O和H的元素构成。
4.如权利要求3中所述的焊锡膏,其特征在于上述焊锡材料用网状的筛子分粒后的粒径是100~500μm,上述有机材料的沸点是150~400℃。
5.如权利要求3或权利要求4中所述的焊锡膏,其特征在于上述有机材料由从乙二醇组、醇组、丙三醇组选择的一种或多种材料构成。
6.一种功率半导体装置,经焊锡材料将功率半导体器件连接到金属导体上,其特征在于通过以Sn、Sb、Ag和Cu为主要构成元素、以42wt%<Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu≤25wt%的组成为主要构成元素的焊锡材料接合了上述功率半导体器件与上述金属导体。
7.如权利要求6中所述的功率半导体装置,其特征在于上述功率半导体器件具备背面电极,上述金属导体是在陶瓷布线基板上配置的金属电路图案,经上述焊锡材料接合了该陶瓷布线基板上的金属电路图案与该功率半导体器件的背面电极,用焊丝或引线状的电连接导体在上述功率半导体器件的上述金属电路图案侧的主电流电极和控制用电极以及陶瓷布线基板的金属电路图案之间进行了连线。
8.如权利要求7中所述的功率半导体装置,其特征在于用Cu形成了上述陶瓷布线基板的金属电路图案,在该金属电路图案的表面上进行了Ni-P电镀,对上述功率半导体器件的背面电极的最表面进行了Ni-P电镀或Ni-P/Au电镀。
9.如权利要求6中所述的功率半导体装置,其特征在于用上述焊锡材料经层叠了Cu、Fe-Ni合金和Cu的复合材料板接合了上述功率半导体器件与上述金属导体。
10.如权利要求9中所述的功率半导体装置,其特征在于上述金属导体是管芯底座。
11.一种焊锡膏,其特征在于混合了权利要求1中所述的焊锡材料的微粒子和包含松香、有机酸、有机溶剂的液状或乳脂状的有机材料。
12.一种电子部件,其特征在于具有由以42wt%<Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu<10wt%且5wt%≤Ag+Cu≤25wt%的组成为主要构成元素的焊锡材料或在上述组成中添加了0.001wt%~2.0wt%的Ni、Ge、Ga、P中的一种或多种所组成的焊锡材料接合了无源元件或半导体元件的第1电极与外部导出用的第1金属引线构件以及第2电极与第2金属引线构件的构造。
13.如权利要求12中所述的电子部件,其特征在于上述电极在最表层或从表层起的第2层上形成了Ni层或NiP层。
14.如权利要求12中所述的电子部件,其特征在于用Cu含量大于等于99.9wt%、维克斯硬度小于等于60Hv的Cu材料构成了上述金属引线构件。
全文摘要
提供一种使用了在大于等于280℃的耐热性、小于等于 400℃时的接合性、焊锡的供给性、润湿性、高温保持可靠性以及温度循环可靠性方面优良的高温无铅焊锡材料的功率半导体装置。本发明的功率半导体装置由以Sn、Sb、Ag和Cu为主要构成元素、具有42wt%≤Sb/(Sn+Sb)≤48wt%、5wt%≤Ag<20wt%、3wt%≤Cu< 10wt%且5wt%≤Ag+Cu≤25wt%的组成、剩下的部分由其它的不可避免的杂质元素构成的高温焊锡材料接合了半导体元件与金属电极构件。
文档编号B23K35/02GK1978122SQ20061016423
公开日2007年6月13日 申请日期2006年12月5日 优先权日2005年12月5日
发明者梶原良一, 伊藤和利 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1