激光加工装置以及激光加工方法

文档序号:3167899阅读:243来源:国知局
专利名称:激光加工装置以及激光加工方法
技术领域
本发明涉及将激光聚光照射于加工对象物并加工该加工对象物的装置以及方法。
背景技术
通过由聚光光学系统对从激光光源输出的激光进行聚光并照射于加工对象物,从 而能够加工该加工对象物。如果单单用透镜对激光进行聚光,那么通过将激光扫描于1个 聚光位置,从而能够将加工对象物加工成所希望的形状。但是,在此情况下,加工所需要的 时间变长用于谋求加工时间的缩短化的最简便的方法是将激光同时聚光照射于多个聚光 位置以进行多点同时加工。例如,如果使用多个激光光源,并由透镜对从各个激光光源输出 的激光进行聚光,那么能够进行多点同时加工。但是,在此情况下,因为使用多个激光光源, 所以成本提高,设置区域以及光学系统会变得复杂。在专利文献1中公开了试图解决这样的问题的发明。在该专利文献1所公开的发 明中,将全息图展示于相位调制型的空间光调制器,由空间光调制器对从1个激光光源输 出的激光进行相位调制,并由聚光光学系统将该被相位调制了的激光同时聚光照射于多个 位置上。被展示于空间光调制器的全息图具有由聚光光学系统将激光聚光于多个聚光位置 上的那样的相位调制分布。专利文献1 日本特许第2723798号公报

发明内容
发明所要解决的课题然而,在由专利文献1所公开的发明中,优选被分别照射于多个聚光位置的激光 的能量均勻。在此情况下,被照射于各个聚光位置的激光的能量大体上与聚光位置的个数 或者聚光区域的面积成反比例。例如,与聚光位置为1个的情况相比较,在聚光位置为2个 的情况下,被照射于各个聚光位置的激光的能量为二分之一。另一方面,众所周知在使用飞秒激光并通过消融(ablation)进行金属表面的加 工的情况下消融率根据激光能量而不同。即在由专利文献1所公开的发明中,通过变动聚 光位置的个数,从而被照射于各个聚光位置的激光的能量发生变动,各个聚光位置上的加 工的程度发生变动。为了解决这样的问题,考虑了通过对应于聚光位置的个数插入所需要的衰减率的 ND (Neutral Density)滤波器(Filter),从而不管聚光位置的个数如何,将被照射于各个聚 光位置的激光的能量维持为一定。然而,在每次聚光位置的个数变化时更换ND滤波器会显 著地降低效率。本发明是为了解决上述问题而悉心研究的成果,是使用展示全息图的相位调制型 的空间光调制器将激光同时照射于具有多个聚光位置或者一定面积的聚光区域以加工加 工对象物的加工区域的方法,以提供一种即使在加工区域中的激光的聚光位置的个数或者聚光区域的面积发生变动,也能够容易地将被照射于各个聚光位置或者聚光区域的激光的 能量维持为大致一定的装置以及方法为目的。解决课题的技术手段为了解决上述课题,本发明的激光加工装置的特征在于,是一种将激光聚光照射 于加工对象物并加工该加工对象物的装置,具备输出激光的激光光源、输入从所述激光光 源输出的激光、分别在二维排列的多个像素上展示调制所述激光的相位的全息图并输出该 相位调制后的激光的相位调制型的空间光调制器、被设置于所述空间光调制器的后段的聚 光光学系统、以及将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的 激光聚光于多个聚光位置的全息图展示于所述空间光调制器的控制部,所述控制部使多个 全息图依次展示于所述空间光调制器,并在使从分别展示所述多个全息图的所述空间光调 制器输出的所述相位调制后的激光输入到所述聚光光学系统的情况下,在所述多个聚光位 置中存在于所述加工对象物的加工区域的聚光位置上,使所述相位调制后的一部分激光作 为具有规定的阈值以上的一定的能量的激光而聚光,而在所述多个聚光位置中存在于所述 加工区域以外的区域的聚光位置上,使所述相位调制后的激光的残留部分作为具有不到所 述阈值的能量的多个激光而聚光,从而加工所述加工对象物。在此情况下,所述阈值优选为表示用于使所述加工区域的加工开始的激光的能量 的值。另外,在所述相位调制后的激光的能量与用于加工在加工时需要最大的能量的规 定的加工区域的能量相同的情况下,优选所述控制部将所述相位调制后的全部激光作为具 有所述阈值以上的一定的能量的多个激光而分别聚光于存在于所述规定的加工区域的多 个聚光位置上。另外,优选,所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底 面作为基准的存在于所述加工区域的聚光位置的高度与将所述底面作为基准的存在于所 述加工区域以外的区域的聚光位置的高度彼此不同。另外,本发明的激光加工方法的特征在于,是一种将激光聚光照射于加工对象物 并加工该加工对象物的方法,使用输出激光的激光光源、输入从所述激光光源输出的激光、 分别在二维排列的多个像素上展示调制所述激光的相位的全息图并输出该相位调制后的 激光的相位调制型的空间光调制器、被设置于所述空间光调制器的后段的聚光光学系统、 以及将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光聚光于 多个聚光位置的全息图展示于所述空间光调制器的控制部,由所述控制部,使多个全息图 依次展示于所述空间光调制器,并在使从分别展示所述多个全息图的所述空间光调制器输 出的所述相位调制后的激光输入到所述聚光光学系统的情况下,在所述多个聚光位置中存 在于所述加工对象物的加工区域的聚光位置上,使所述相位调制后的一部分激光作为具有 规定的阈值以上的一定的能量的激光而聚光,而在所述多个聚光位置中存在于所述加工区 域以外的区域的聚光位置上,使所述相位调制后的激光的残留部分作为具有不到所述阈值 的能量的多个激光而聚光,从而加工所述加工对象物。在此情况下,所述阈值优选为表示用于使所述加工区域的加工开始的激光的能量 的值。另外,在所述相位调制后的激光的能量与用于加工在加工时需要最大的能量的规定的加工区域的能量相同的情况下,优选由所述控制部,将所述相位调制后的全部激光作 为具有所述阈值以上的一定的能量的多个激光而分别聚光于存在于所述规定的加工区域 的多个聚光位置上。另外,优选,所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底 面作为基准的存在于所述加工区域的聚光位置的高度与将所述底面作为基准的存在于所 述加工区域以外的区域的聚光位置的高度彼此不同。在本发明的激光加工装置以及激光加工方法中,在存在于加工区域的聚光位置上 使相位调制后的一部分激光(入射光)作为具有规定的阈值X以上的一定的能量的激光 (贡献光)而聚光。另一方面,聚光在存在于加工区域的聚光位置上的贡献光以外的激光 (不要光)在存在于加工区域以外的区域的聚光位置上作为具有不到规定的阈值X的能量 的多个激光(非贡献光)而被分散并被聚光。如以上所述,通过以无助于加工的方式将不 要光作为具有不到规定的阈值X的能量的非贡献光来进行处理,从而即使在加工区域中的 聚光位置的个数发生变动,也能够将贡献光的能量保持为一定。另外,本发明的激光加工装置的特征在于,是一种将激光聚光照射于加工对象物 并加工该加工对象物的装置,具备输出激光的激光光源、输入从所述激光光源输出的激光、 分别在二维排列的多个像素上展示调制所述激光的相位的全息图并输出该相位调制后的 激光的相位调制型的空间光调制器、被设置于所述空间光调制器的后段的聚光光学系统、 以及将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光聚光于 规定的聚光区域的全息图展示于所述空间光调制器的控制部,所述控制部使多个全息图依 次展示于所述空间光调制器,并在使从分别展示所述多个全息图的所述空间光调制器输出 的所述相位调制后的激光输入到所述聚光光学系统的情况下,在所述规定的聚光区域中存 在于所述加工对象物的加工区域的聚光区域中,使所述相位调制后的一部分激光作为具有 规定的阈值以上的一定的能量的激光而聚光,而在所述规定的聚光区域中存在于所述加工 区域以外的区域的聚光区域中,使所述相位调制后的激光的残留部分作为具有不到所述阈 值的能量的激光而聚光,从而加工所述加工对象物。在此情况下,所述阈值优选为表示用于使所述加工区域的加工开始的激光的能量 的值。另外,在所述相位调制后的激光的能量与用于加工在加工时需要最大的能量的规 定的加工区域的能量相同的情况下,优选所述控制部使所述相位调制后的全部激光作为具 有所述阈值以上的一定的能量的激光而聚光于存在于所述规定的加工区域的聚光区域。另外,优选,所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底 面作为基准的存在于所述加工区域的聚光区域的高度与将所述底面作为基准的存在于所 述加工区域以外的区域的聚光区域的高度彼此不同。另外,本发明的激光加工方法的特征在于,是一种将激光聚光照射于加工对象物 并加工该加工对象物的方法,使用输出激光的激光光源、输入从所述激光光源输出的激光、 分别在二维排列的多个像素上展示调制所述激光的相位的全息图并输出该相位调制后的 激光的相位调制型的空间光调制器、被设置于所述空间光调制器的后段的聚光光学系统、 以及将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光聚光于 规定的聚光区域的全息图展示于所述空间光调制器的控制部,由所述控制部,使多个全息图依次展示于所述空间光调制器,并在使从分别展示所述多个全息图的所述空间光调制器 输出的所述相位调制后的激光输入到所述聚光光学系统的情况下,在所述规定的聚光区域 中存在于所述加工对象物的加工区域的聚光区域中,使所述相位调制后的一部分激光作为 具有规定的阈值以上的一定的能量的激光而聚光,而在所述规定的聚光区域中存在于所述 加工区域以外的区域的聚光区域中,使所述相位调制后的激光的残留部分作为具有不到所 述阈值的能量的激光而聚光,从而加工所述加工对象物。在此情况下,所述阈值优选为表示用于使所述加工区域的加工开始的激光的能量 的值。另外,在所述相位调制后的激光的能量与用于加工在加工时需要最大的能量的规 定的加工区域的能量相同的情况下,优选由所述控制部,使所述相位调制后的全部激光作 为具有所述阈值以上的一定的能量的激光而聚光于存在于所述规定的加工区域的聚光区 域。另外,优选,所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底 面作为基准的存在于所述加工区域的聚光区域的高度与将所述底面作为基准的存在于所 述加工区域以外的区域的聚光区域的高度彼此不同。在本发明的激光加工装置以及激光加工方法中,在存在于加工区域的聚光区域中 将相位调制后的一部分激光(入射光)作为具有规定的阈值X以上的一定的能量的激光 (贡献光)而聚光。另一方面,聚光在存在于加工区域的聚光区域的贡献光以外的激光(不 要光)在存在于加工区域以外的区域的聚光区域中作为具有不到规定的阈值X的能量的激 光(非贡献光)而被分散并被聚光。如以上所述,通过以无助于加工的方式将不要光作为 具有不到规定的阈值X的能量的非贡献光来进行处理,从而即使在加工区域中的聚光区域 的面积发生变动,也能够将贡献光的能量保持为一定。发明的效果根据本发明所涉及的激光加工装置或者激光加工方法,使用展示全息图的相位调 制型的空间光调制器,将激光同时照射于具有多个聚光位置或者一定面积的聚光区域,从 而能够加工加工对象物的加工区域。另外,即使加工区域中的激光的聚光位置的个数发生 变动,或者即使加工区域中的激光的聚光区域的面积发生变动,也能够容易地将被照射于 各个聚光位置或者聚光区域的激光的能量维持为大致一定。


图1是表示第1实施方式所涉及的激光加工装置1的结构的图。图2是说明在第1实施方式所涉及的激光加工装置1中由控制部22从驱动部21 使全息图记入到空间光调制器20的第1方式的图。图3是说明在第1实施方式所涉及的激光加工装置1中由控制部22从驱动部21 使全息图记入到空间光调制器20的第2方式的图。图4是说明在第1实施方式所涉及的激光加工装置1中由控制部22从驱动部21 使全息图记入到空间光调制器20的第3方式的图。图5是说明在第1实施方式的说明中的比较例的激光加工方法的图。图6是说明第1实施方式所涉及的激光加工方法的第1方式的图。
图7是说明第1实施方式所涉及的激光加工方法的第2方式的图。图8是说明第1实施方式所涉及的激光加工方法的第3方式的图。图9是说明第1实施方式所涉及的激光加工方法的第4方式的图。图10是说明第1实施方式所涉及的激光加工方法的第5方式的图。图11是说明第1实施方式所涉及的激光加工方法的第5方式的图。图12是第1实施方式中的全息图修正方法的流程图。图13是说明第2实施方式所涉及的激光加工方法的图。图14是说明第2实施方式所涉及的激光加工方法的图。图15是在实施例1的说明中说明比较例的图。图16是说明实施例1的图。图17是在实施例1的说明中汇总了比较例中的在各个聚光位置上的激光能量的 图表。图18是汇总了实施例1中的在各个聚光位置上的激光能量的图表。图19是说明实施例2的图。图20是汇总了实施例2中的在各个聚光区域中的激光能量的图表。图21是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第4方式的图。图22是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第5方式的图。图23是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第6方式的图。图M是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第7方式的图。图25是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第8方式的图。图沈是说明在第1实施方式所涉及的激光加工装置1中向空间光调制器20记入 全息图的第9方式的图。图27是表示第1实施方式所涉及的激光加工装置1的其它结构的图。图观是表示第1实施方式所涉及的激光加工装置1的其它结构的图。图四是表示第1实施方式所涉及的激光加工装置1的其它结构的图。图30是表示第1实施方式所涉及的激光加工装置1的其它结构的图。图31是表示第1实施方式所涉及的激光加工装置1的其它结构的图。符号的说明1…激光加工装置、10…激光光源、11…空间滤波器(Spatial Filter)、12…准直 透镜(Collimating lens)、13、14…镜、20…空间光调制器、21…驱动部、22…控制部、30... 聚光光学系统、90···加工对象物、91···加工区域、92···非加工区域。
具体实施例方式以下,参照附图,详细地说明用于实施本发明的最佳方式。还有,在附图的说明中,将相同的符号标注于相同的要素上,省略重复的说明。(第1实施方式)[激光加工装置1的结构]首先,对本发明所涉及的激光加工装置以及激光加工方法的第1实施方式进行说 明。图1是表示第1实施方式所涉及的激光加工装置1的结构的图。由该图1所表示的激 光加工装置1是对加工对象物90中的加工区域91以及加工区域91以外的区域92(参照 后面所叙述的图6)聚光照射激光从而加工该加工对象物90的装置,具备激光光源10、空间 滤波器(Spatial Filter) 11、准直透镜(Collimating lens) 12、镜13、镜14、空间光调制器 20、驱动部21、控制部22以及聚光光学系统30。激光光源10是输出用于照射到加工对象物90的加工区域91以及加工区域91以 外的区域92的激光的装置,优选为飞秒激光光源或者Nd:YAG激光光源等的脉冲激光光源。 从该激光光源10输出的激光在经过空间滤波器11之后被准直透镜12准直,并被镜13以 及镜14反射,从而被输入到空间光调制器20。空间光调制器20是相位调制型的调制器,输入从激光光源10输出的激光,并分 别在二维排列的多个像素中展示调制激光的相位的全息图,从而输出该相位调制后的激 光。在该空间光调制器20中所展示的相位全息图优选为由数值计算所求得的全息图(CGH Computer Generated Hologram)0该空间光调制器20可以是反射型的调制器,也可以是透过型的调制器。作为反射 型的空间光调制器 20,可以是 LC0S(Liquid Crystal on Silicon)型、MEMS (Micro Electro Mechanical Systems)型以及光寻址型中的任意一种。另外,作为透过型的空间光调制器 20,可以是LCD (Liquid Crystal Display)等。在图1中显示了作为空间光调制器20的反 射型的调制器。驱动部21是设定空间光调制器20的二维排列的多个像素的各个中的相位调制量 的装置,将用于该每个像素的相位调制量设定的信号提供给空间光调制器20。驱动部21通 过设定空间光调制器20的二维排列的多个像素的各个中的相位调制量,从而使全息图展 示于空间光调制器20。聚光光学系统30被设置于空间光调制器20的后段,输入在空间光调制器20中在 每个像素中被相位调制并输出的激光。特别是该聚光光学系统30包括对从空间光调制器 20输出的激光进行傅里叶变换的透镜。该傅里叶变换图像被形成于傅里叶变换透镜的后焦 点面上。控制部22由例如计算机所构成,通过控制驱动部21的动作,从而从驱动部21使 全息图记入到空间光调制器20。此时,控制部22将由聚光光学系统30使从空间光调制器 20输出的激光聚光于多个聚光位置的全息图展示于空间光调制器20。特别是在本实施方式中,控制部22依次将多个全息图展示于空间光调制器20。 然后,控制部22在使从分别展示多个全息图的空间光调制器20输出的相位调制后的激光 输入到聚光光学系统30的情况下,在加工对象物90中的多个聚光位置中存在于加工区域 91 (参照图6等)的聚光位置上,使上述相位调制后的一部分激光作为具有规定的阈值X以 上的一定的能量(强度)的激光(如后面所述称为“贡献光”)而聚光。另一方面,控制部 22在加工对象物90中的多个聚光位置中存在于加工区域91以外的区域92 (参照图6等)的聚光位置上,使上述相位调制后的激光的残留部分作为具有不到上述阈值X的弱能量的 多个激光(如后面所述称为“非贡献光”)而被分散并被聚光,从而加工加工对象物90。图2 图4分别是说明在第1实施方式所涉及的激光加工装置1中由控制部22 从驱动部21使全息图记入到空间光调制器20的第1方式的图。在由图2所表示的第1方式中,控制器22包括中央处理部221、通信部222以及存 储部223。中央处理部221预先制作用于在空间光调制器20中展示的多个全息图CGHl CGH3的数据,并将其预先存储到存储部223中。在使全息图展示于空间光调制器20的时 候,中央处理部221从存储部223读出全息图的数据,并将该被读出的全息图的数据送往通 信部222,通信部222将该全息图的数据送往驱动部21的处理部211。然后,驱动部21的 处理部211将从控制部22接收的全息图的数据送往空间光调制器20,并使全息图展示于空 间光调制器20。在由图3所表示的第2方式中,驱动部21的存储部213预先存储用于在空间光调 制器20中展示的多个全息图CGHl CGH3的数据。在使全息图展示于空间光调制器20的 时候,控制部22对驱动部21指定被存储到存储部213的全息图的数据,并使该指定的全息 图的数据送往空间光调制器20,从而使全息图展示于空间光调制器20。在由图4所表示的第3方式中,包含于控制部22中的存储部223预先存储在激光 被聚光光学系统30聚光时的聚光位置的所希望图形1 3的数据。在使全息图展示于空 间光调制器20的时候,中央处理部221从存储部223读出所希望图形的数据,制作能够再 生该读出的所希望图形的全息图,并将该全息图的数据送往通信部222,通信部222将该全 息图的数据送往驱动部21的处理部211。然后,驱动部21的处理部211将从控制部22接 收到的全息图的数据送往空间光调制器20,并使全息图展示于空间光调制器20。在由图21所表示的第4方式中,空间光调制器和驱动部由一个模块2A所构成。在 此,光调制部2A0对应于空间光调制器20。在使全息图展示于光调制部2A0的时候,控制部 22指定被存储在存储部223的全息图数据,并使该指定的全息图的数据送往光调制部2A0, 从而使全息图展示于光调制部2A0。 在由图22所表示的第5方式中,驱动部和存储部由一个模块2B所构成。在该方式 中,模块2B的存储部2B3预先存储用于在光调制部2B0中展示的多个全息图CGHl CGH3 的数据。在使全息图展示于光调制部2B0的时候,控制部22对模块2B指定被存储在存储 部2B3的全息图的数据,并使该指定的全息图的数据送往光调制部2B0,从而使全息图展示 于光调制部2B0。在由图23所表示的第6方式中,驱动部和控制部由一个模块2C所构成。在使全 息图展示于空间光调制器20的时候,模块2C指定被存储在存储部2C3的全息图的数据,并 使该指定的全息图的数据送往空间光调制器20,从而使全息图展示于空间光调制器20。在由图M所表示的第7方式中,空间光调制器和驱动部由一体化那样的模块2D 所构成。在由图25所表示的第8方式中,包含于模块2C的存储部2C3存储激光被聚光光 学系统30聚光时的聚光位置的所希望图形1 3的数据。在使全息图展示于空间光调制 器20的时候,中央处理部2C1从存储部2C3读出所希望图形的数据,制作能够对该读出的 所希望图形进行再生的全息图,并将该全息图的数据送往处理部2C4。处理部2C4在为了驱
11动空间光调制器20而变换成恰当的信号之后,送往通信部2C2,通信部2C2将该信号送往空 间光调制器20,并使全息图展示于空间光调制器20。在由图沈所表示的第9方式中,包含于模块2D的存储部2D3预先存储激光被聚 光光学系统30聚光时的聚光位置的所希望图形1 3的数据。在使全息图展示于光调制 部2D0的时候,中央处理部2D1从存储部2D3读出所希望图形的数据,制作能够对该读出的 所希望图形进行再生的全息图,并将该全息图的数据送往处理部2D4。处理部2D4在为了驱 动光调制部2D0而变换成恰当的信号之后,将该信号送往光调制部2D0,使全息图展示于光 调制部2D0。在由图2 图4、图21 图沈所表示的任意的方式中,在从聚光位置的所希望图 形制作全息图的时候,也可以由傅里叶变换型以及菲涅尔带片(Fresnel zone plate)型的 任意的方法制作全息图。傅里叶变换型能够根据GS法等的运算法则制作全息图,菲涅尔带 片型能够根据ORA(optimal-rotation-angle)法等的运算法则制作全息图。还有,关于GS 法,在文献《R. W. Gerchberg and W. 0. Saxton, "A practical algorithm for thedetermination of phase from imageand diffract ion plane pictures”,Optik,Vol. 35,pp. 237-246 (1972)》中有记载。另外,关于 ORA 法,在文献 《Jorgen Bengtsson, "kinoform design withanoptimal-rotation -angle method,,, Applied Optics, Vol. 33,No. 29,pp. 6879-6884(1994).》中有记载。另外,作为第1实施方式所涉及的激光加工装置的结构,考虑了若干方式。例如, 如图27所示考虑了没有镜13、14的方式。另外,如图观所示也考虑了使用棱镜108使入 射光和射出光存在于同轴上那样的光学系统。再有,图四是将中继透镜109、110配置于图1的空间光调制器20与聚光光 学系统30之间的光学系统。通过配置中继透镜,从而能够在没有菲涅耳衍射(Fresnel diffraction)的影响下将由空间光调制器20进行调制的相位等的信息传播于聚光光学系 统30。另外,该中继透镜也能够应用于图27、图观的加工装置。在第1实施方式所涉及的激光加工装置1中,优选如图30所示光学系统为了加工 而作为运转部构成并移动,或者如图31所示加工对象物90与台111的移动一起移动。[激光加工方法]接着,与比较例对比,对第1实施方式所涉及的激光加工装置1的动作以及第1实 施方式所涉及的激光加工方法进行说明。在此,以多点表示“H”、“P”以及“K”的三个字母 文字的方式将激光聚光照射于加工对象物90并加工该加工对象物90。[激光加工方法、比较例]图5是说明比较例的激光加工方法的图。在同图(a) (C)的各个中圆圈标记表 示激光聚光位置。同图(a)表示为了加工文字“H”而将激光照射于12点的聚光位置的情 况。同图(b)表示为了加工文字“P”而将激光照射于11点的聚光位置的情况。另外,同图 (c)表示为了加工文字“K”而将激光照射于10点的聚光位置的情况。在该比较例中,最初将能够加工“H”文字那样的全息图展示于空间光调制器,接着 将能够加工“P”文字那样的全息图展示于空间光调制器,最后将能够加工“K”文字那样的 全息图展示于空间光调制器。如以上所述,在以“H”、“p”以及“K”的顺序一个文字一个文 字地进行加工的情况下,因为激光聚光位置的个数根据文字而不同,所以各个聚光位置的激光照射能量根据文字而不同,因此,由于文字而会产生加工不均勻性。还有,为了更加容易地理解,如果被照射于加工对象物90的激光的总计能量例如 是12.0GW/cm2,那么在同图(a)中,具有1. OGW/cm2 (在此,12. 0/12 = 1. 0)的能量的激光被 分别聚光于12点的聚光位置。另一方面,在同图(b)中,具有1.090961/(^2(在此,12.0/11 =1.0909)的能量的激光被分别聚光于11点的聚光位置,在同图(c)中,具有12. OGW/ cm2(在此,12. 0/10 = 1. 2)的能量的激光被分别聚光于10点的聚光位置。如以上所述,在 比较例中,各个聚光位置的激光照射能量根据文字而不同,因此,由于文字而会产生加工不 均勻性。相对于此,在本实施方式中,在使从分别展示多个全息图的空间光调制器20输出 的相位调制后的激光输入到聚光光学系统30的情况下,在加工对象物90中的多个聚光位 置中存在于加工区域91 (参照图6等)的聚光位置上,使上述相位调制后的一部分激光作 为具有规定的阈值X以上的一定的能量的激光(如后面所述称为“贡献光”)而聚光。另 一方面,在加工对象物90中的多个聚光位置中存在于加工区域91以外的区域92(参照图 6等)的聚光位置上,使上述相位调制后的激光的残留部分作为具有不到上述阈值X的弱 能量的多个激光(如后面所述称为“非贡献光”)而被分散并被聚光,从而加工加工对象物 90。以下,对本实施方式中的激光加工方法进行详细的说明。[激光加工方法、第1方式]图6是说明第1实施方式所涉及的激光加工方法的第1方式的图。同图(a)表示 为了加工文字“H”而将激光照射于加工区域91内的12点的聚光位置hi hl2的情况。 由同图(a)所表示的12点的聚光位置hi hl2全部存在于加工区域91内,在各个聚光 位置上,从空间光调制器20输出的相位调制后的激光(以下称为“入射光”)作为具有规 定的阈值X以上的一定的能量的激光而被聚光。在此,规定的阈值X是表示用于使加工区 域91的加工开始的激光的能量的值,取决于加工对象物90的材质等,在本实施方式中例如 是0. 9GW/cm2。因为具有阈值X以上的能量的激光被聚光于存在于加工区域91的聚光位置 hi hl2,所以在激光的聚光照射之后加工区域91以文字“H”的模样被加工。还有,在本 说明书中,激光是具有规定的阈值X以上的能量的激光,将在聚光照射之后对加工区域91 的该聚光照射了的部分的加工作出贡献的激光称为“贡献光”。即被照射到聚光位置hi hl2的激光为贡献光。另外,所谓“加工区域91”,是指加工对象物90的外面上的区域或者内部的区域, 例如在同图(a)中,是在加工对象物90中为了加工文字“H”而应该进行激光加工的区域。 在图面中以虚线表示加工区域91。另外,所谓“加工区域91以外的区域92”,是指加工对象 物90的外面上的区域或者内部的区域,是加工对象物90的整个区域中除了加工区域91的 区域。以下,将加工区域91以外的区域92记作为“非加工区域92”。还有,为了更加容易地理解,如果入射光的总计能量例如是12. OGW/cm2,那么在同 图(a)中,全部入射光被聚光于加工区域91,具有161/(^2(在此,12.0/12= 1.0)的能量 的激光分别被聚光于存在于加工区域91的聚光位置hi hl2。同图(b)表示为了加工文字“P”而将激光照射于加工区域91内的11点的聚光位 置Pl Pll并且被照射到非加工区域92内的4点的聚光位置pl2 pl5的情况。在存在 于加工区域91的11点的聚光位置pi pll上,一部分入射光作为具有规定的阈值X以上的一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的激光被聚光于存在于加工 区域91的聚光位置pi pll,所以在激光的聚光照射之后以文字“P”的模样加工加工区域 91的该聚光照射了的部分。另一方面,在存在于非加工区域92的4点的聚光位置pl2 P15上,入射光的残留部分(即从入射光除去被聚光于聚光位置pi pll的激光的部分的 部分,在加工对象物90的加工面上不要的激光,以下称为“不要光”)作为具有不到规定的 阈值X的弱能量的多个激光而被分散并被聚光。还有,在本说明书中,将作为具有不到规定的阈值X的能量的激光的在聚光照射 之后对该聚光照射了的部分的加工不作贡献的激光称为“非贡献光”。即被照射到聚光位置 pl2 pl5的激光为非贡献光。因为具有不到阈值X的弱能量的非贡献光被聚光于存在于 非加工区域92的聚光位置pl2 pl5,所以即使在非贡献光的聚光照射之后非加工区域92 也不会被加工。还有,在第1实施方式所涉及的图面中,为了便于说明,将激光的能量的差 异以与白圆圈标记的大小成比例的方式进行表示。这样的能量不同的CGH在例如GS法中, 能够通过将差附于目标图形的振幅而制作。在入射光的总计能量例如为12GW/cm2的上述的一个例子中,在同图(b)中,一部 分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分散并被聚光于 非加工区域92。即具有与同图(a)的情况相同的能量(即l.OGW/cm2)的激光分别被聚光 于存在于加工区域91中的聚光位置pi pll。然后,残留的激光,即入射光的总计能量为 12Gff/cm2中除去被照射于聚光位置pi pll的llGW/cm2的lGW/cm2的激光以每个0. 25GW/ cm2 (在此,1. 0/4 = 0. 250)被分散并被聚光于非加工区域92的4点的聚光位置pl2 pl5。 即如果与同图(a)相比较,那么在同图(b)中,存在于加工区域91的激光的聚光位置不够 1个,但是,与其相当的能量(l.OGW/cm2)的激光作为在非加工区域92中具有阈值X以下的 能量(0. 250Gff/cm2)的多个G点)的弱激光而被分散并被聚光。同图(c)表示为了加工文字“K”而将激光照射于加工区域91内的10点的聚光位 置kl kio并且照射于非加工区域92内的8点的聚光位置kll kl8的情况。在存在于 加工区域91的10点的聚光位置kl klO上,一部分入射光作为具有规定的阈值X以上的 一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的激光被聚光,所以在激光的 聚光照射之后加工区域91的该聚光照射了的部分以文字“K”的模样被加工。另一方面,存 在于非加工区域92的8点的聚光位置kll kl8上,入射光的残留部分(即从入射光除去 被聚光于聚光位置kl klO的激光的部分的部分,不要光)作为具有不到规定的阈值X的 弱能量的多个非贡献光而被分散并被聚光。因为在存在于非加工区域92的聚光位置kll kl8上具有不到阈值X的能量的激光被聚光,所以即使在激光的聚光照射之后非加工区域 92也不会被加工。在入射光的总计能量例如为12GW/cm2的上述的一个例子中,在同图(c)中,一部 分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分散并被聚光于 非加工区域92。即具有与同图(a)的情况相同的能量(即l.OGW/cm2)的激光分别被聚光 于存在于加工区域91中的聚光位置kl klO。然后,残留的激光,即入射光的总计能量为 12Gff/cm2中除去被照射于聚光位置kl klO的10GW/cm2的2GW/cm2的激光以每个0. 250GW/ cm2 (在此,2. 0/8 = 0. 250)被分散并被聚光于非加工区域92的8点的聚光位置kll pl8。 即如果与同图(a)相比较,那么在同图(c)中,存在于加工区域91的激光的聚光位置不够
142个,但是,与其相当的能量(2. OGW/cm2)的激光作为具有阈值X以下的能量(0. 250Gff/cm2) 的多个(8点)的弱激光而被分散并被聚光于非加工区域92。在以上所说明的第1方式中,从依次展示分别对应于“H”、“P”以及“K”的全息图的 空间光调制器20输出的激光由聚光光学系统30,在存在于加工区域91的聚光位置(hi hl2.pl pll、kl klO)上作为具有规定的阈值X以上的一定的能量的贡献光而被聚光, 而在存在于非加工区域92的聚光位置(pl2 pl5、kll kl8)上作为具有不到阈值X的 能量的多个非贡献光而被分散并被聚光。如以上所述,即使在以“H”、“P”以及“K”的顺序一个文字一个文字地进行加工的 情况下,不管文字如何,通过以对加工不作贡献的方式将不要光作为具有不到规定的阈值X 的能量的非贡献光进行处理,从而即使加工区域中的聚光位置的个数发生变动,也能够将 贡献光的能量保持为一定,所以不管文字如何能够抑制加工不均勻性。[激光加工方法、第2方式]图7是说明第1实施方式所涉及的激光加工方法的第2方式的图。同图(a)表示 为了加工文字“H”而将激光照射于加工区域91内的12点的聚光位置hi hl2并且照射于 非加工区域92内的5点的聚光位置hl3 hl7的情况。如果与上述第1方式中的图6(a) 相比较,那么不同在于,激光也被照射于非加工区域92内的5点的聚光位置hl3 hl7。同 图(b)表示为了加工文字“P”而将激光照射于加工区域91内的11点的聚光位置pi pl2 并且照射于非加工区域92内的9点的聚光位置pl2 p20的情况。如果与上述第1方式 中的图6(b)相比较,那么不同在于,激光除了被照射于非加工区域92内的4点的聚光位置 pl2 pl5之外,也被照射于5点的聚光位置pl6 p20。同图(c)表示为了加工文字“K” 而将激光照射于加工区域91内的10点的聚光位置kl klO并且照射于非加工区域92内 的13点的聚光位置kll k23的情况。如果与上述第1方式中的图6(c)相比较,那么不 同在于,激光除了被照射于非加工区域92内的8点的聚光位置kll kl8之外,也被照射 于5点的聚光位置kl9 k23。即在该第2方式中,从依次展示分别对应于“H”、“P”以及“K”的全息图的空间光 调制器20输出的激光由聚光光学系统30,在存在于加工区域91的聚光位置(hi hl2、 pi pll、kl klO)上一部分入射光作为具有规定的阈值X以上的一定的能量的贡献光 而被聚光,而在存在于非加工区域92的聚光位置(hl3 hl7、pl2 p20、kll k23)上作 为具有不到阈值X的能量的多个非贡献光而被分散并被聚光。但是,在第1方式中,在加工时需要最大的能量的是文字“H”(权利要求的范围中 的“规定的加工区域”),入射具有与用于文字“H”的加工所必要的能量相同的能量(例如 1. 2Gff/cm2)的激光。而且,在图6(a)中,被入射的全部激光作为具有阈值X以上的一定的 能量的贡献光而被聚光于存在于加工区域91的聚光位置hi hl2,且不存在不要光。相对于此,在第2方式中,为入射具有比用于文字“H”的加工所必要的能量(例如 12Gff/cm2)大的能量(例如13GW/cm2)的激光的情况。而且,在图7(a)中,在入射光的总计 能量例如为13GW/cm2中将用于加工文字“H”的一部分(例如12GW/cm2)作为具有阈值X以 上的一定的能量(例如lGW/cm2)的贡献光而被分别聚光于存在于加工区域91的聚光位置 hi hl2。然后,将残留的激光,即在例如13GW/cm2的入射光中除去作为贡献光而被聚光的 12Gff/cm2的lGW/cm2激光作为具有不到阈值X的能量的非贡献光而以每个0. 20Gff/cm2 (在此,1. 0/5 = 0. 20)被分散并被聚光于非加工区域92的5点的聚光位置hl3 hl7。即如果与图6(a)相比较,那么在图7(a)中,入射光中在加工时需要最大的能量的 文字“H”的加工后的残留的激光在非加工区域92中作为具有阈值X以下的能量的多个弱 激光而被分散并被聚光。还有,以上所述那样的激光的能量的调节能够通过控制部22将恰 当的全息图展示于空间光调制器20中而进行。以上所说明的第2方式因为在入射光的能量较大的情况下能够恰当地设定在存 在于加工区域91的各个聚光位置上的激光照射能量的大小,所以被优选。在入射光的能量 较大的情况下,通过增加存在于非加工区域92的聚光位置(例如hl3 hl7)的个数,从而 能够恰当地保持在存在于加工区域91的各个聚光位置上的激光照射能量的大小。还有,这 样的调整能够通过如何地设定运用全息图而实现。另外,在第1方式以及第2方式的任意方式中,在加工“H”、“P”以及“K”各个文字 的时候,不管文字如何,通过将不要光以对加工不作贡献的方式作为具有不到规定的阈值X 的能量的非贡献光进行处理,从而即使加工区域中的聚光位置的个数发生变动,也能够将 贡献光的能量保持为一定,所以,不管文字如何能够抑制加工不均勻性。[激光加工法、第3方式]图8是说明第1实施方式所涉及的激光加工方法的第3方式的图。在同图(a) (c)的各个中,白色圆圈标记表示激光聚光位置,黑色圆圈标记表示已经被加工的位置。在 此,以多点表示“H”、“T”以及“V”的三个字母文字的方式将激光聚光照射于加工对象物90 的加工区域91以及非加工区域92从而加工该加工对象物90。但是,并不是以“H”、“T”以 及“V”的顺序一个文字一个文字地进行加工,最初加工“H”以及“T”的各自的文字的一部 分,接着加工“H”以及“T”的各自的文字的残留部分,最后加工“V”文字的全部。同图(a)表示从依次展示3个全息图的空间光调制器20输出的激光由聚光光学 系统30被照射到加工区域91内的8点的聚光位置al a8并且被照射到非加工区域92 内的20点的聚光位置a9 a28的情况。在存在于加工区域91的8点的聚光位置al a8 上,一部分入射光作为具有规定的阈值X以上的一定的能量的贡献光而被聚光。因为具有 阈值X以上的能量的激光被聚光,所以在激光的聚光照射之后加工区域91的该聚光照射了 的部分以文字“H”以及“T”的横杠的模样被加工。另一方面,在存在于非加工区域92的20 点的聚光位置a9 U8上,入射光的残留部分(即从入射光中除去被聚光于聚光位置al a8的激光的部分的部分,在加工对象物90的加工面上不要的激光)作为具有不到规定的阈 值X的弱能量的多个激光而被分散并被聚光。因为具有不到阈值X的弱能量的非贡献光被 聚光于存在于非加工区域92的聚光位置a9 a28,所以即使在非贡献光的聚光照射之后, 非加工区域92也不会被加工。还有,为了更加容易地理解,如果入射光的总计能量例如是13GW/cm2,那么在同图 (a)中,一部分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分 散并被聚光于非加工区域92。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在 于加工区域91中的聚光位置al a8。然后,残留的激光,即入射光的总计能量为13GW/cm2 中除去被照射于聚光位置al a8的8GW/cm2的5GW/cm2的激光以每个0. 250Gff/cm2 (在此, 5. 0/20 = 0. 250)被分散并被聚光于非加工区域92的20点的聚光位置a9 a28。同图(b)表示从依次展示3个全息图的空间光调制器20输出的激光由聚光光学系统30被照射到加工区域91内的12点的聚光位置bl bl2并且被照射到非加工区域92 内的4点的聚光位置bl3 bl6的情况。在存在于加工区域91的12点的聚光位置bl bl2上,一部分入射光作为具有规定的阈值X以上的一定的能量的贡献光而被聚光。因为 具有阈值X以上的能量的激光被聚光,所以在激光的聚光照射之后加工区域91的该聚光照 射了的部分以文字“H”以及“T”的竖杠的模样被加工。另一方面,在存在于非加工区域92 的4点的聚光位置bl3 bl6上,入射光的残留部分(即从入射光中除去被聚光于聚光位 置bl bl2的激光的部分的部分,在加工对象物90的加工面上不要的激光)作为具有不 到规定的阈值X的弱能量的多个激光而被分散并被聚光。因为具有不到阈值X的弱能量的 非贡献光被聚光于存在于非加工区域92的聚光位置bl3 bl6,所以即使在非贡献光的聚 光照射之后非加工区域92也不会被加工。在入射光的总计能量例如为13GW/cm2的上述的一个例子中,在同图(b)中,一部 分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分散并被聚光于 非加工区域92。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在于加工区域91 中的聚光位置bl bl2。然后,残留的激光,即照射激光的总计能量为13GW/cm2中除去被 照射于聚光位置bl bl2的12GW/cm2的lGW/cm2激光以每个0. 250Gff/cm2 (在此,1. 0/4 = 0. 250)被分散并被聚光于非加工区域92的4点的聚光位置bl3 bl6。同图(c)表示从依次展示3个全息图的空间光调制器20输出的激光由聚光光学 系统30被照射到加工区域91内的9点的聚光位置cl c9并且被照射到非加工区域92内 的16点的聚光位置ClO c25的情况。在存在于加工区域91的9点的聚光位置cl c9 上,一部分入射光作为具有规定的阈值X以上的一定的能量的贡献光而被聚光。因为具有 阈值X以上的能量的激光被聚光,所以在激光的聚光照射之后加工区域91的该聚光照射了 的部分以文字“V”的两条斜杠的模样被加工。另一方面,在存在于非加工区域92的16点 的聚光位置ClO c25上,入射光的残留部分(即从入射光中除去被聚光于聚光位置cl c9的激光的部分的部分,在加工对象物90的加工面上不要的激光)作为具有不到规定的阈 值X的弱能量的多个激光而被分散并被聚光。因为具有不到阈值X的弱能量的非贡献光被 聚光于存在于非加工区域92的聚光位置ClO c25,所以即使在非贡献光的聚光照射之后 非加工区域92也不会被加工。在入射光的总计能量例如为13GW/cm2的上述的一个例子中,在同图(c)中,一部 分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分散并被聚光于 非加工区域92。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在于加工区域91 中的聚光位置cl c9。然后,残留的激光,即入射光的总计能量为13GW/cm2中除去被照 射于聚光位置cl c9的9GW/cm2的4GW/cm2的激光以每个0. 250GW/cm2 (在此,4. 0/16 = 0. 250)被分散并被聚光于非加工区域92的16点的聚光位置ClO c25。如以上所述,即使在不是以“H”、“T”以及“V”的顺序一个文字一个文字地进行 加工而是以规定的顺序进行加工的情况下,通过以不对加工作贡献的方式将不要光作为具 有不到规定的阈值X的能量的非贡献光进行处理,从而即使在加工区域中的聚光位置的个 数发生变动,也能够将贡献光的能量保持为一定,所以,不管文字如何能够抑制加工不均勻 性。另外,第3方式与第2方式相同,因为在入射光的能量较大的情况下,能够恰当地设定在存在于加工区域91的各个聚光位置上的激光照射能量的大小,所以被优选。在入射 光的能量较大的情况下,通过增加存在于非加工区域92的聚光位置(例如bl3 bl6)的个 数,从而能够恰当地保持在存在于加工区域91的各个聚光位置上的激光照射能量的大小。[激光加工方法、第4方式]图9是说明第1实施方式所涉及的激光加工方法的第4方式的图。在同图(a) (c)的各个中,白色圆圈标记表示激光聚光位置,黑色圆圈标记表示已经被加工的位置。在 此,以多点表示“H” 一个字母文字的方式将激光聚光照射于加工对象物90的加工区域91 以及非加工区域92从而加工该加工对象物90。另外,最初加工“H”文字的一部分,接着加 工“H”文字的其它的一部分,最后加工“H”文字的残留部分。同图(a)表示从空间光调制器20输出的激光由聚光光学系统30被照射到加工区 域91内的6点的聚光位置dl d6并且被照射到非加工区域92内的8点的聚光位置d7 dl4的情况。在存在于加工区域91的6点的聚光位置dl d6上,一部分入射光作为具有 规定的阈值X以上的一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的激光被 聚光于存在于加工区域91的聚光位置dl d6,所以在激光的聚光照射之后加工区域91被 加工。另一方面,在存在于非加工区域92的8点的聚光位置d7 dl4上,入射光的残留部 分(即从入射光中除去被聚光于聚光位置dl d6的激光的部分的部分,在加工对象物90 的加工面上不要的激光)作为具有不到规定的阈值X的弱能量的多个激光而被分散并被聚 光。因为具有不到阈值X的弱能量的非贡献光被聚光于存在于非加工区域92的聚光位置 d7 dl4,所以即使在非贡献光的聚光照射之后非加工区域92也不会被加工。还有,为了更加容易地理解,如果入射光的总计能量例如是8GW/cm2,那么在同图 (a)中,一部分入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分 散并被聚光于非加工区域92。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在 于加工区域91中的聚光位置dl d6。然后,残留的激光,即入射光的总计能量为8GW/cm2 中除去被照射于聚光位置dl d6的6GW/cm2的2GW/cm2的激光以每个0. 250Gff/cm2 (在此, 2. 0/8 = 0. 250)被分散并被聚光于非加工区域92的4点的聚光位置d7 dl4。同图(b)表示从空间光调制器20输出的全部激光由聚光光学系统30被照射到加 工区域91内的8点的聚光位置el e8的情况。全部入射光作为具有规定的阈值X以上 的一定的能量的贡献光而被聚光于存在于加工区域91的8点的聚光位置el e8。因为具 有阈值X以上的能量的激光被聚光于存在于加工区域91的聚光位置el e8,所以在激光 的聚光照射之后加工区域91被加工。在入射光的总计能量例如为8GW/cm2的上述的一个例子中,在同图(b)中,全部入 射光被聚光于加工区域91。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在于 加工区域91中的聚光位置el e8。同图(c)表示从空间光调制器20输出的激光由聚光光学系统30被照射到加工 区域91内的3点的聚光位置fl f3并且被照射到非加工区域92内的20点的聚光位置 f4 f23的情况。在存在于加工区域91的3点的聚光位置fl f3上,一部分入射光作 为具有规定的阈值X以上的一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的 激光被聚光于存在于加工区域91的聚光位置Π f3,所以在激光的聚光照射之后加工区 域91被加工。另外,在存在于非加工区域92的20点的聚光位置f4 f23上,入射光的残留部分(即从入射光中除去被聚光于聚光位置Π f3的激光的部分的部分,在加工对象 物90的加工面上不要的激光)作为具有不到规定的阈值X的弱能量的多个激光而被分散 并被聚光。因为具有不到阈值X的弱能量的非贡献光被聚光于存在于非加工区域92的聚 光位置f4 f23,所以即使在非贡献光的聚光照射之后非加工区域92也不会被加工。在入射光的总计能量例如为8GW/cm2的上述的一个例子中,在同图(c)中,一部分 入射光被聚光于加工区域91,残留部分作为具有弱能量的多个激光而被分散并被聚光于非 加工区域92。即例如具有lGW/cm2的一定的能量的激光分别被聚光于存在于加工区域91中 的聚光位置f 1 f3。然后,残留的激光,即入射光的总计能量为8GW/cm2中除去被照射于聚 光位置 fl f3 的 3GW/cm2 的 5GW/cm2 的激光以每个 0. 250GW/cm2 (在此,4. 0/16 = 0. 250) 被分散并被聚光于非加工区域92的20点的聚光位置f4 f23。如以上所述,在分3次加工“H”的1个文字的情况下,在各次中,通过以不对加工 作贡献的方式将不要光作为具有不到规定的阈值X的能量的非贡献光进行处理,从而即使 在加工区域中的聚光位置的个数发生变动,也能够将贡献光的能量保持为一定,所以,能够 抑制各次的加工不均勻性。[激光加工方法、第5方式]图10以及图11是说明第1实施方式所涉及的激光加工方法的第5方式的图。图 10以及图11明确地表示加工区域91不限于加工对象物90的上面的表面上,也可以设定于 加工对象90的内部。再有,在此情况下,如图10所示,控制部22也可以以加工对象物90 的底面93作为基准的存在于加工区域91的聚光位置gl的高度H1与将底面93作为基准的 存在于非加工区域92的聚光位置g2的高度吐彼此相同的方式通过驱动部21使全息图展 示于空间光调制器20。或者,如图11所示,控制部22也可以以将加工对象物90的底面93 作为基准的存在于加工区域91的聚光位置gl的高度H1与将底面93作为基准的存在于非 加工区域92的聚光位置g2的高度吐彼此不同的方式通过驱动部21使全息图展示于空间 光调制器20。还有,在图10以及图11中,为了简略的说明,仅一个一个地表示存在于加工 区域91的聚光位置gl以及存在于非加工区域92的聚光位置g2,但是,实际上如图6 图 9所示可以分别是多个。另外,关于除了以上的事项之外的事项,与第1方式共通。在这样的第5方式中,从展示规定的全息图的空间光调制器20输出的激光由聚光 光学系统30,在存在于加工区域91的聚光位置gl上一部分入射光作为具有规定的阈值X 以上的一定的能量的贡献光而被聚光,而在存在于非加工区域92的聚光位置g2上作为具 有不到阈值X的能量的非贡献光而被聚光。如以上所述,即使在加工区域91不限于加工对 象物90的上面的表面上而将加工区域91设定于加工对象物90的内部的情况下,通过以对 加工不作贡献的方式将不要光作为具有不到规定的阈值X的能量的非贡献光进行处理,从 而即使加工区域中的聚光位置的个数发生变动,也能够将将贡献光的能量保持为一定,所 以,能够抑制加工不均勻性。[全息图修正方法]如以上所述全息图能够通过GS法或者ORA法等进行制作,但是,在将该制作的各 个全息图展示于空间光调制器20并由聚光光学系统30使被空间光调制器20相位调制并 输出的激光聚光于规定的聚光位置的情况下,实际上会有加工区域91内的各个聚光位置 上的激光的能量不是一定的情况。在这样的情况下,有必要对由上述的方法制作的全息图
19进行反馈以进行修正。图12是第1实施方式中的全息图修正方法的流程图。对于修正全息图来说,将全息图展示于空间光调制器20并由聚光光学系统30 使被空间光调制器20相位调制并输出的激光聚光于规定的聚光位置(步骤S21),由 CCD (Charged Coupled Device)测定各个聚光位置上的激光的能量(步骤S2》。在被测定 的各个聚光位置上的激光的能量是所希望的(在步骤S23中为YEQ时,就此结束。另一方 面,在被测定的各个聚光位置上的激光的能量不是所希望的(在步骤S23中为NO)时,决定 被测定的各个聚光位置的任意的基准点的能量Ibase (步骤S24),与其相匹配变更所希望图 形中的各个聚光位置上应该被再生的激光的振幅(步骤S2Q,从而再次制作计算机全息图 (步骤S26)。将在步骤S22中被测定的各个聚光位置上的激光的能量作为In。在步骤S25中, 求得由步骤SM所决定的基准点的能量Ibase与各个聚光位置的能量In之比(=In/Ibase), 在当初的图形中将作为基准的点的等级作为tb_,用作为“tn = tb_(ibasyin)"2”的式子求 取修正后的各点的等级tn。然后,在步骤S^中,基于修正后的各点的等级tn并由GS法或 者ORA法等再次制作计算机全息图。还有,关于 ORA 法的反馈,在文献《Hidetomo Takahashi, Satoshi Hasegawa, and Yoshio Hayasaki,"Holographic femtosecond laserprocessing using optimal-rotation-anglemethod with compensation of spatialfrequency response of liquid crystal spatialfrequency response of liquid crystal spatial light modulator. ”Applied Optics, Vol. 46,Issue 23,pp. 5917—5923》中有记载。由这样的反馈进行的全息图的修正即使在有意地使各次的加工的时候的加工区 域91中的激光聚光位置上的激光能量不均勻的情况下也能够进行应用。(第2实施方式)接着,对本发明所涉及的激光加工装置以及激光加工方法的第2实施方式进行说 明。相对于在上述的第1实施方式中聚光以及加工的单位为“点(dot,聚光位置)”,第2实 施方式中聚光以及加工的单位不是“点”而是“具有一定的面积的图形(聚光区域)”,因此 与第1实施方式不同。还有,对于该“具有一定的面积的图形”的术语来说,还包含“线”。另 外,第2实施方式除了聚光以及加工的单位不是“点”而是“具有一定的面积的图形”之外, 基本上与以上所述的第1实施方式相同,所以在以下的说明中以与第1实施方式的不同点 为中心进行简略的说明。[激光加工装置1的结构]第2实施方式所涉及的激光加工装置1的整体结构与由图1所表示的结构大致相 同。但是,在控制部22的功能方面有所不同。即第2实施方式所涉及的控制部22依次将 多个全息图展示于空间光调制器20。而且,控制部22在使从分别展示多个全息图的空间光 调制器20输出的相位调制后的激光输入到聚光光学系统30的情况下,在加工对象物90中 的规定的聚光区域中存在于加工区域91的聚光区域中,使上述相位调制后的一部分激光 作为具有规定的阈值X以上的一定的能量的激光(贡献光)而聚光。另一方面,控制部22 在加工对象物90中的上述规定的聚光区域中存在于非加工区域92的聚光区域中,通过使 上述相位调制后的激光的残留部分作为具有不到上述阈值X的弱能量的激光(非贡献光) 而聚光,从而加工加工对象物90。
[激光加工方法、对应于第1实施方式的第1方式]与上述的第1实施方式所涉及的激光加工方法的第1方式相同的事项在聚光以及 加工的单位不是“点”而是“具有一定的面积的图形”的第2实施方式中也能够类推。图13 是用于说明此的图。同图(a)表示为了加工文字“H”而将激光照射于加工区域91内的面 积Yl的聚光区域(图形h)情况。由同图(a)所表示的面积Yl的聚光区域(图形h),其全 部存在于加工区域91内,全部入射光作为具有规定的阈值X以上的一定的能量的贡献光而 被照射于图形h。因为具有阈值X以上的能量的激光被聚光,所以在激光的聚光照射之后加 工区域91的该聚光照射了的部分以文字“H”的模样被加工。还有,与第1实施方式相同, 同图的文字“H”、“P”以及“K”中在加工时需要最大的能量的是文字“H”(权利要求的范围 中的“规定的加工区域”),同图(a)是入射与用于文字“H”的加工所必要的能量相同的能 量的激光的情况。同图(b)表示为了加工文字“P”而将激光照射于加工区域91内的面积Y2的聚光 区域(图形P)并且照射于非加工区域92内的面积TO的聚光区域(图形Pl)的情况。在 存在于加工区域91的面积Y2的聚光区域(图形ρ)中,一部分入射光作为具有规定的阈值 X以上的一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的激光被聚光,所以在 激光的聚光照射之后加工区域91的该聚光照射了的部分以文字“P”的模样被加工。另一 方面,在存在于非加工区域92的面积TO的聚光区域(图形pi)中,入射光的残留部分(即 从入射光除去被聚光于图形P的激光的部分的部分,不要光)作为具有不到规定的阈值X 的弱能量的激光而被聚光。同图(c)表示为了加工文字“K”而将激光照射于加工区域91内的面积W的聚光 区域(图形k)并且照射于非加工区域92内的面积TO的聚光区域(图形kl)的情况。在 存在于加工区域91的面积W的聚光区域(图形k)中,一部分入射光作为具有规定的阈值 X以上的一定的能量的贡献光而被聚光。因为具有阈值X以上的能量的激光被聚光,所以在 激光的聚光照射之后加工区域91的该聚光照射了的部分以文字“k”的模样被加工。另一 方面,在存在于非加工区域92的面积TO的聚光区域(图形kl)中,入射光的残留部分(即 从入射光除去被聚光于图形k的激光的部分的部分,不要光)作为具有不到规定的阈值X 的弱能量的激光而被聚光。在参照图13的上述说明中,Y1、Y2J4是存在于加工区域91内的聚光区域的面积 的一个例子,它们的大小关系例如是Yl > Y2 > W。还有,如果更加容易地理解Yl、Y2、W 的大小关系而举例的话,那么与上述的第1实施方式的第1方式(图6)相关联,例如可以 假定面积Yl为12点(dot)的面积,面积Y2为11点(dot)的面积,面积W为10点(dot) 的面积。在此情况下,如果被照射于加工对象物90的激光的总计能量例如是12GW/cm2,那 么具有阈值X以上的一定的能量(lGW/cm2)的激光以12点(dot) (12Gff/cm2)被聚光于图形 h。在图形ρ上具有阈值X以上的一定的能量(lGW/cm2)的激光以11点(dot) (llGW/cm2)被 聚光,而在图形Pl上1点(dot)的不要光作为具有不到规定的阈值X的弱能量(0. 250GW/ cm2)的非贡献光而被聚光。在图形k上具有阈值X以上的一定的能量(lGW/cm2)的激光以 10点(dot) (10Gff/cm2)被聚光,而在图形kl上2点(dot)的不要光作为具有不到规定的阈 值X的弱能量(0. 250GW/cm2)的非贡献光而被聚光。在图形kl上与图形pi相比较,因为2 倍的不要光被聚光,所以面积TO为面积Y3的2倍。还有,在文字“H”的加工中不会产生不要光,所以全部入射光作为贡献光而被聚光于图形h。在以上所说明的方式中,从依次展示分别对应于“H”、“P”以及“K”的全息图的空 间光调制器20输出的激光由聚光光学系统30,在存在于加工区域91的聚光区域(图形h、 P、k)中作为具有规定的阈值X以上的一定的能量的贡献光而被聚光,而在存在于非加工区 域92的聚光位置(图形pl、kl)上作为具有不到阈值X的能量的非贡献光而被聚光。如以 上所述,在以“H”、“P”以及“K”的顺序一个文字一个文字地不是以点而是作为图形进行加 工的情况下,不管文字如何,通过以对加工不作贡献的方式将不要光作为具有不到规定的 阈值X的能量的非贡献光进行处理,从而即使加工区域中的聚光区域的面积发生变动,也 能够将贡献光的能量保持为一定,所以,能够不管文字如何能够抑制加工不均勻性。[对应于第1实施方式的其它事项]根据以上所述,通过立足于聚光以及加工的单位不是“点(dot,点,聚光位置)”而 是“具有一定的面积的图形(聚光区域)”的情况,对与第1实施方式所涉及的激光加工方 法的第1方式相同的事项在第2实施方式中也可以类推的情况进行了说明。如果参照以上 的说明,那么对于第1实施方式的其它的事项即第1实施方式所涉及的激光加工方法的第2 方式、第3方式、第4方式、第5方式以及全息图修正方法,通过立足于聚光以及加工的单位 不是“点(dot) ”而是“具有一定的面积的图形”的情况,本领域技术人员一定能够容易地理 解相同的事项在第2实施方式中也可以类推的情况。在此,在第1实施方式的各个说明中, 所谓“聚光位置”的记载被换成“聚光区域”以及所谓“多个聚光位置”的记载被换成“规定 的聚光区域”因为容易理解而被优选。特别是在第1实施方式的第5方式中,如图14所示 通过将在图10以及图11中以点(dot)表示并说明的聚光位置gl以及g2作为具有一定的 面积的图形g3、g4考虑,从而能够容易地理解。(实施例1)在此,设想最初以加工区域91内的聚光位置2点进行加工,其次以加工区域91内 的聚光位置4点进行加工的情况。在比较例中,如图15所示,最初将加工区域91内的聚 光位置的总数设定为2(图15(a)),其次将加工区域91内的聚光位置的总数设定为4(图 15(b))。当然因为不考虑有关不要光的处理,所以在整个图15中聚光位置不存在于非加工 区域92。相对于此,在实施例1中,如图16所示,最初将在加工区域91中的聚光位置设定 为2点并且将在非加工区域92中的聚光位置设定为8点(图16 (a)),接着将在加工区域91 中的聚光位置设定为4点并且将在非加工区域92中的聚光位置设定为0点(图16(b))。图17是汇总了比较例中的在各个聚光位置上的激光能量的图表。在比较例中,入 射光的总计能量大约为4GW/cm2,在用2点进行加工的情况以及在用4点进行加工的情况 下,可以了解到用于加工的激光能量不同(例如,对于点1为2GW/cm2和lGW/cm2等)。因 为光能量发生了变化,所以均勻的加工是困难的。另一方面,图18是汇总了实施例1中的 在各个聚光位置上的激光能量的图表。在实施例1中,入射光的总计能量大约为4GW/cm2, 即使在加工区域91中的聚光位置的个数发生变化,也会因为在非加工区域92中对残留的 不要光进行恰当地处理,所以可以了解到加工区域91内的在各个聚光位置上的激光能量 大致一定(在0. 990Gff/cm2 1. 020Gff/cm2范围内大致一定)。在图16中,同图(a)中与 同图(b)相比较,产生2个聚光位置分的不要光,将其作为分别具有大约四分之一的弱能量 (大约0. 250Gff/cm2)的8点的非贡献光而在非加工区域92中进行处理。还有,在图15、图
2216中,将激光的能量的差异与白色圆圈的大小成比例地进行表现。(实施例2)实施例2在与上述实施例1完全相同的条件下进行,但是,在聚光以及加工的单位 不是“点(dot)”而是“具有一定的面积的图形”这方面上有所不同。即在实施例2中,如图 19所示最初将在加工区域91中的聚光区域作为面积Y6的线状的图形A并且将非加工区 域92中的聚光区域作为面积Y7的图形B(同图(a))。接着,将加工区域91中的聚光区域 作为面积Y8的线状的图形C,在非加工区域92中不设置聚光区域(同图(b))。但是,Y6、 Y8是存在于加工区域91内的聚光区域的面积的一个例子,它们的大小关系为Y6<Y8。还 有,如果更加容易地理解Υ6、Υ8的大小关系而举例的话,那么与上述的实施例1相关联,例 如可以假定面积Υ6为2点(dot)的面积,面积Y8为4点(dot)的面积。在此情况下,同图 (a)中与同图(b)相比较,产生2点(dot)的不要光,将其作为分别具有大约四分之一的弱 能量的非贡献光而在非加工区域92中以面积Y7的图形B进行处理。图20是汇总了实施例2中的在各个聚光区域中的激光能量的图表。在实施例2 中,即使在加工区域91中的聚光区域的面积发生变化,也会因为在非加工区域92对残留的 不要光进行恰当地处理,所以可以了解到加工区域91内的在各个聚光区域(图形A以及图 形C)中的激光能量大致一定(相当于1点的能量在l.OGW/cm2 l.OlOGW/cm2范围内大致 一定)。另外,非加工区域92内的聚光区域(图形B)中的激光能量以对加工不作贡献的 方式成为不到规定的阈值X(相当于1点的能量为0.250GW/cm2)。还有,在上述例中,图形 A的面积Y6因为是2点(dot)的面积,所以被聚光于图形A的激光的总计能量为2GW/cm2。 另外,图形C的面积Y8因为是4点(dot)的面积,所以被聚光于图形C的激光的总计能量 为 4. 04GW/cm2。产业上的利用可能性本发明提供一种能够将被照射于存在于加工区域的聚光位置或者聚光区域的激 光的能量维持为大致一定的激光加工装置以及激光加工方法。
权利要求
1.一种激光加工装置,其特征在于是将激光聚光照射于加工对象物并加工该加工对象物的装置, 具备激光光源,输出激光;相位调制型的空间光调制器,输入从所述激光光源输出的激光,分别在二维排列的多 个像素中展示调制所述激光的相位的全息图,并输出该相位调制后的激光; 聚光光学系统,被设置于所述空间光调制器的后段;控制部,将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光 聚光于多个聚光位置的全息图展示于所述空间光调制器中,所述控制部使多个全息图依次展示于所述空间光调制器中,在使从分别展示所述多个 全息图的所述空间光调制器输出的所述相位调制后的激光输入到所述聚光光学系统的情 况下,在所述多个聚光位置中存在于所述加工对象物的加工区域的聚光位置上,使所述相 位调制后的一部分激光作为具有规定的阈值以上的一定的能量的激光而聚光,而在所述多 个聚光位置中存在于所述加工区域以外的区域的聚光位置上,使所述相位调制后的激光的 残留部分作为具有不到所述阈值的能量的多个激光而聚光,从而加工所述加工对象物。
2.如权利要求1所述的激光加工装置,其特征在于所述阈值是表示用于使所述加工区域的加工开始的激光的能量的值。
3.如权利要求1或者2所述的激光加工装置,其特征在于在所述相位调制后的激光的能量与用于加工规定的加工区域的能量相同的情况下,该 规定的加工区域是在加工时需要最大的能量的加工区域,所述控制部将所述相位调制后的全部激光作为具有所述阈值以上的一定的能量的多 个激光而分别聚光于存在于所述规定的加工区域的多个聚光位置上。
4.如权利要求1 3中的任意一项所述的激光加工装置,其特征在于 所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底面作为基准的存在于所述加工区域的聚光位置的高度与将所 述底面作为基准的存在于所述加工区域以外的区域的聚光位置的高度彼此不同。
5.一种激光加工方法,其特征在于是将激光聚光照射于加工对象物并加工该加工对象物的方法, 使用激光光源,输出激光;相位调制型的空间光调制器,输入从所述激光光源输出的激光,分别在二维排列的多 个像素中展示调制所述激光的相位的全息图,并输出该相位调制后的激光; 聚光光学系统,被设置于所述空间光调制器的后段;控制部,将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光 聚光于多个聚光位置的全息图展示于所述空间光调制器中, 通过所述控制部,使多个全息图依次展示于所述空间光调制器中,在使从分别展示所述多个全息图的所述空间光调制器输出的所述相位调制后的激光 输入到所述聚光光学系统的情况下,在所述多个聚光位置中存在于所述加工对象物的加工区域的聚光位置上,使所述相位调制后的一部分激光作为具有规定的阈值以上的一定的 能量的激光而聚光,而在所述多个聚光位置中存在于所述加工区域以外的区域的聚光位置 上,使所述相位调制后的激光的残留部分作为具有不到所述阈值的能量的多个激光而聚 光,从而加工所述加工对象物。
6.如权利要求5所述的激光加工方法,其特征在于所述阈值是表示用于使所述加工区域的加工开始的激光的能量的值。
7.如权利要求5或者6所述的激光加工方法,其特征在于在所述相位调制后的激光的能量与用于加工规定的加工区域的能量相同的情况下,该 规定的加工区域是在加工时需要最大的能量的加工区域,通过所述控制部,将所述相位调制后的全部激光作为具有所述阈值以上的一定的能量 的多个激光而分别聚光于存在于所述规定的加工区域的多个聚光位置上。
8.如权利要求5 7中的任意一项所述的激光加工方法,其特征在于 所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底面作为基准的存在于所述加工区域的聚光位置的高度与将所 述底面作为基准的存在于所述加工区域以外的区域的聚光位置的高度彼此不同。
9.一种激光加工装置,其特征在于是将激光聚光照射于加工对象物并加工该加工对象物的装置, 具备激光光源,输出激光;相位调制型的空间光调制器,输入从所述激光光源输出的激光,分别在二维排列的多 个像素中展示调制所述激光的相位的全息图,并输出该相位调制后的激光; 聚光光学系统,被设置于所述空间光调制器的后段;控制部,将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光 聚光于规定的聚光区域的全息图展示于所述空间光调制器中,所述控制部使多个全息图依次展示于所述空间光调制器中,在使从分别展示所述多个 全息图的所述空间光调制器输出的所述相位调制后的激光输入到所述聚光光学系统的情 况下,在所述规定的聚光区域中存在于所述加工对象物的加工区域的聚光区域中,使所述 相位调制后的一部分激光作为具有规定的阈值以上的一定的能量的激光而聚光,而在所述 规定的聚光区域中存在于所述加工区域以外的区域的聚光区域中,使所述相位调制后的激 光的残留部分作为具有不到所述阈值的能量的激光而聚光,从而加工所述加工对象物。
10.如权利要求9所述的激光加工装置,其特征在于所述阈值是表示用于使所述加工区域的加工开始的激光的能量的值。
11.如权利要求9或者10所述的激光加工装置,其特征在于在所述相位调制后的激光的能量与用于加工规定的加工区域的能量相同的情况下,该 规定的加工区域是在加工时需要最大的能量的加工区域,所述控制部将所述相位调制后的全部激光作为具有所述阈值以上的一定的能量的激 光而聚光于存在于所述规定的加工区域的聚光区域。
12.如权利要求9 11中的任意一项所述的激光加工装置,其特征在于 所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底面作为基准的存在于所述加工区域的聚光区域的高度与将所 述底面作为基准的存在于所述加工区域以外的区域的聚光区域的高度彼此不同。
13.—种激光加工方法,其特征在于是将激光聚光照射于加工对象物并加工该加工对象物的方法,使用激光光源,输出激光;相位调制型的空间光调制器,输入从所述激光光源输出的激光,分别在二维排列的多 个像素中展示调制所述激光的相位的全息图,并输出该相位调制后的激光;聚光光学系统,被设置于所述空间光调制器的后段;控制部,将由所述聚光光学系统使从所述空间光调制器输出的所述相位调制后的激光 聚光于规定的聚光区域的全息图展示于所述空间光调制器中,通过所述控制部,使多个全息图依次展示于所述空间光调制器中,在使从分别展示所述多个全息图的所述空间光调制器输出的所述相位调制后的激光 输入到所述聚光光学系统的情况下,在所述规定的聚光区域中存在于所述加工对象物的加 工区域的聚光区域中,使所述相位调制后的一部分激光作为具有规定的阈值以上的一定的 能量的激光而聚光,而在所述多个聚光区域中存在于所述加工区域以外的区域的聚光区域 中,使所述相位调制后的激光的残留部分作为具有不到所述阈值的能量的激光而聚光,从 而加工所述加工对象物。
14.如权利要求13所述的激光加工方法,其特征在于所述阈值是表示用于使所述加工区域的加工开始的激光的能量的值。
15.如权利要求13或者14所述的激光加工方法,其特征在于在所述相位调制后的激光的能量与用于加工规定的加工区域的能量相同的情况下,该 规定的加工区域是在加工时需要最大的能量的加工区域,通过所述控制部,将所述相位调制后的全部激光作为具有所述阈值以上的一定的能量 的激光而聚光于存在于所述规定的加工区域的聚光区域。
16.如权利要求13 15中的任意一项所述的激光加工方法,其特征在于。所述加工区域存在于所述加工对象物的内部,将所述加工对象物的底面作为基准的存在于所述加工区域的聚光区域的高度与将所 述底面作为基准的存在于所述加工区域以外的区域的聚光区域的高度彼此不同。
全文摘要
本发明涉及激光加工装置以及激光加工方法。激光加工装置(1)具备激光光源(10)、空间光调制器(20)、控制部(22)以及聚光光学系统(30)。空间光调制器(20)输入从激光光源(10)输出的激光,分别在二维排列的多个像素中展示调制激光的相位的全息图,并输出该相位调制后的激光。控制部(22)在存在于加工区域的聚光位置上使一部分相位调制后的激光(入射光)作为具有规定的阈值(X)以上的一定的能量的激光(贡献光)而聚光。另一方面,聚光在存在于加工区域的聚光位置上的贡献光以外的激光(不要光)在存在于非加工区域的聚光位置上作为具有不到规定的阈值(X)的能量的多个激光(非贡献光)而被分散并被聚光。
文档编号B23K26/00GK102137731SQ200980133930
公开日2011年7月27日 申请日期2009年8月24日 优先权日2008年8月26日
发明者井上卓, 伊藤晴康, 松本直也, 福智昇央 申请人:浜松光子学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1