卷对卷激光再流焊装置及再流焊方法与流程

文档序号:16808046发布日期:2019-02-10 13:16阅读:303来源:国知局
卷对卷激光再流焊装置及再流焊方法与流程

本发明涉及卷对卷激光再流焊装置及再流焊方法。



背景技术:

通常,为了在基板固定半导体器件而实施再流焊工序。批量回流(massreflow)包括如下工序,即,将附着有焊接物质的基板放置于输送带上,并借助输送带来使基板经过具有红外线加热器(infraredheater)或陶瓷加热器的加热空间。红外线加热器或陶瓷加热器设置于输送带的上侧和下侧,通过向基板上的焊接物质施加热量来将半导体器件附着于基板。在批量回流工序中,红外线集热器或陶瓷加热器向焊接物质施加热量来使半导体器件与基板相紧贴的过程最少需要数分左右的时间,因而并不经济。

最近,使基板和半导体器件相紧贴的基板结构体的厚度变薄,并且使用膜(film)基板,在一个膜基板附着无源器件、集成电路(ic)器件等半导体器件。在进行批量回流工序期间,会发生膜基板的热变形(膨胀及损伤),因而在批量回流工序之后,集成电路器件很难正常的被焊接在规定的位置。并且,在批量回流工序中,可在基板的下部面和输送带的上部面之间产生气隙(airgap)。因此,由于从红外线加热器施加的热量的一部分被气隙所困并残留在气隙当中,因此可在基板发生热变形。

韩国公开专利第2012-0037543号中公开了利用激光模块的再流焊装置及再流焊方法。根据韩国公开专利第2012-0037543号,利用形成有锡球(solderball)的印刷电路板来对红外线(ir)灯进行预热,并向经过预热的基板照射激光束来使锡球熔融。韩国公开专利第2012-0037543号中公开的利用激光模块的再流焊装置及再流焊方法无法调节激光束照射区域,因此,在一个基板附着无源器件、集成电路器件等半导体器件的情况下,集成电路器件会受到热冲击,从而会发生不良。

中国公开专利第101533482号中公开了利用激光来对芯片进行焊接的方法。根据中国公开专利第101533482号,利用激光,将各向异性导电膜的切割片焊接在基材的凹凸部之后,在基材的凹凸部装载芯片,之后利用激光来对芯片和基材进行焊接。但是,中国公开专利第101533482号中完全没有记载调节激光束照射区域的方法。

美国公开专利第2003-0084563中公开了用于运送加工物的上料卷及下料卷的焊接装置。但是,美国公开专利第2003-0084563号中也未公开调节激光束照射区域的方法。



技术实现要素:

技术问题

本发明所要提供可通过向基板照射均匀的激光束来将照射对象器件焊接在基板的卷对卷激光再流焊技术。

进而,本发明所要提供可根据照射对象器件的形状及位置调节被均匀化的激光束的照射区域的形状及大小的卷对卷激光再流焊技术。

本发明的其他目的可通过对以下实施例所进行的说明来易于理解。

解决问题的手段

为了实现上述技术问题,本发明一实施例的卷对卷激光再流焊方法包括:步骤a),使卷绕成卷形态的基板开卷并向一侧移送;步骤b),在基板形成焊接部;步骤c),在上述焊接部放置照射对象器件,在上述基板放置非照射对象器件;步骤d),向放置有上述照射对象器件的焊接部以面照射方式照射激光束来使上述照射对象器件附着于上述基板;步骤e),对通过上述步骤d)制造的基板结构体进行检查;以及步骤f),将上述基板结构体卷绕成卷形态。

本发明另一实施例的卷对卷激光再流焊装置包括:第一卷盘,用于使卷绕成卷形态的基板开卷;移送部,用于对通过上述第一卷盘开卷的基板进行移送;第二卷盘,用于控制上述基板的移动;焊接形成部,用于在上述基板形成焊接部;器件放置部,用于在上述焊接部上放置照射对象器件,在上述基板放置非照射对象器件;光学部,以仅向放置于上述焊接部上的照射对象器件照射均匀化的激光束的方式调节激光束的调节区域;检查部,用于检查附着有照射对象器件的基板结构体,上述照射对象器件放置于上述焊接部;以及第三卷盘,用于以卷形态卷绕经过上述检查部的基板结构体。

发明的效果

本发明的卷对卷激光再流焊工序可根据照射对象器件的形状及位置来简单调节激光束的照射区域的形状及大小。

并且,本发明的卷对卷激光再流焊工序可通过向照射对象器件照射1~2秒钟的激光束来将照射对象器件附着在基板,因此,与以往的批量回流工序相比,缩减了工序时间。

并且,在移送体和基板之间不产生气隙,因此,可防止基板因所残留的热能量而受损。

附图说明

图1为本发明一实施例的卷对卷激光再流焊方法的流程图。

图2为示出本发明一实施例的卷对卷激光再流焊方法的整体工序流程的例示图。

图3为示出使放置有照射对象器件及非照射对象器件的基板紧贴于移送体的主要结构的例示图。

图4为示出将照射对象器件附着于基板的步骤的流程图。

图5为示出将照射对象器件附着于基板的主要结构的例示图。

图6及图7为示出第一柱面透镜及第二柱面透镜的例示图。

具体实施方式

参照图1及图2,本发明实施例的卷对卷激光再流焊方法包括使卷绕成卷形态的基板开卷并向一侧移送的步骤(步骤s110)。基板210的柔性印刷电路板(fpcb)可呈卷形态。基板210的厚度可以为0.03mm至0.15mm。第一卷盘220a使基板210开卷,借助第一卷盘220a开卷的基板210向第三卷盘220c移送。

在图1中,在步骤s110之后,卷对卷激光再流焊方法包括在基板210形成焊接部s的步骤(步骤s120)。焊接部s包括焊球、焊膏等。步骤s120可通过在基板210上丝网印刷焊膏的步骤来实现。可在图2的b1区间在基板210上进行丝网印刷。

参照图1,本发明的卷对卷激光再流焊方法包括在焊接部s放置照射对象器件211,在基板放置非照射对象器件212的步骤(步骤s140)。照射对象器件211是指通过照射激光束来将要附着于基板210的半导体器件,作为一例,可包括无源器件。非照射对象器件212是指由于可能通过激光束发生热变形,从而通过额外的装置附着于基板210的半导体器件,作为一例,可包括集成电路器件。集成电路器件包括触摸芯片(touchic)、驱动器集成电路(driveric)。照射对象器件211及非照射对象器件212可在图2的b2区间通过器件放置部(未图示)放置于基板210上。

参照图1,本发明的卷对卷激光再流焊方法在步骤s140之前或之后,还可包括使基板210的下部面与用于移送基板210的移送体231的上部面相互紧贴的步骤(步骤s130)。在基板210并未紧贴于移送体231的情况下,可在基板210的下部面与移送体231的上部面之间存在气隙。

作为一例,在图2的b3区间,图3及图5所示的第二卷盘220b设置于移送体231的两侧,并用于控制基板210的移动。第二卷盘220b可与后述的移送模块232相联动来使基板210移动或停止,使得激光束依次照射照射对象器件211。第二卷盘220b可与第一卷盘220a及第三卷盘220c的移动相联动来以相同的方式移动。由于基板210在移送体231的两侧被第二卷盘220b所按压,因而无法使基板210与移送体231完全相紧贴,而可能在基板210与移送体231之间发生气隙。若向焊接部s照射激光束,则经过基板210的激光束的能量中的一部分无法完全经过基板210,而是残留在气隙中。基板210可能因残留的能量而发生热变形。

在图1的步骤s130中,基板210以紧贴与移送体231的状态借助移送部230向激光束的照射位置移送。参照图3,移送部230包括:移送体231,可在上部面放置基板210;以及移送模块232,用于向第二卷盘220b提供动力,使得基板210向一侧移动。

移送体231可以指放置有基板210,并向激光束的照射位置移送基板210的移送部230的本体。移送部230还可包括以使移送体231的上部面与基板210的下部面相紧贴的方式提供真空压的真空模块233。真空模块233与移送体231相连接,能够以基板210的下部面与移送体231相紧贴的方式提供真空压。移送体231可通过由陶瓷(ceramic)材料形成的多孔真空吸盘(porousvaccumchuck)来实现。由多孔真空吸盘形成的移送体231中存在多个微小裂纹,因此,在移送体231的内部借助真空模块233来处于真空状态的情况下,移送体231的上部面的空气可经过移送体231的内部向下部移动。可通过空气的流动来使基板210进一步紧贴于移送体231的上部面。

在制造过程中,基板210可发生弯曲等变形。因此,当基板210放置于移送体231时,发生变形的基板210的下部面中的一部分有可能未完全紧贴于移送体231。加压紧贴部240可使基板210紧贴于移送体231。加压紧贴部240包括加压杆241及加压控制模块242。加压杆241可在移送体231的上部设置有一个以上,加压杆241可呈向上下方向延伸的柱形状。加压杆241的形状并不局限于一实施例。只要是向基板210的上部面暂时施加压力来使基板210紧贴于移送体231的形状,就均可使用。加压控制模块242可使加压杆241向水平方向移动,使得加压杆241位于基板210与移送体231未紧贴的部分的上侧。加压控制模块242与加压杆241相连接来使加压杆241向下侧移动。加压控制模块242在使基板210与移送体231相紧贴之后,可使加压杆241向上侧移动。加压控制模块242可使加压杆241向未形成焊接部s的基板210的上部面施加压力。

在基板210的下部面紧贴于移送体231的上部面的状态下,在向焊接部s照射激光束的情况下,由于移送体231与基板210之间不产生气隙,因此可防止基板210因残留能量而受损。

移送部230还可包括设置于移送体231的加热模块234及冷却模块235。加热模块234及冷却模块235可通过调节移送体231的温度来有效防止基板210发生热变形。加热模块234可以由红外线加热器形成,冷却模块235可以由具有制冷剂的制冷器形成。冷却模块235也可由热电(te)制冷器(thermoelectriccooler)形成。

移送模块232以使各个基板210依次位于照射位置的方式移动移送体231。移送模块232能够以使位于照射位置的基板210在被激光束照射的预设时间内停留在照射位置的方式控制第二卷盘220b。

参照图1及图5,本发明的卷对卷激光再流焊方法包括向放置有照射对象器件211的焊接部s照射四角形激光束来使照射对象器件211附着于基板210的步骤(步骤s160)。步骤s160可在图2的b3区间实施。在图4中,步骤s160包括使激光束的能量均匀化的步骤(步骤s161)。通常,激光束具有越远离照射区域中心,则能量越减少的高斯分布。因此,在向放置有照射对象器件211的焊接部s照射具有高斯函数分布的激光束的情况下,照射区域的中心部因过度的热能量而发生热变形,照射区域的边缘因再流焊所需的能量不足而可能使照射对象器件221无法固定于基板210。因此,在步骤s161中,可使照射激光束的照射区域内的能量变得均匀。以下,对使具有高斯函数分布的激光的能量均匀化的方法进行说明。

在本发明中,为了将高斯形态的激光转换为具有均匀化的能量分布的光源而使用光束整形器(beamshaper)(图5的附图标记250)。有关光束整形器的实施例公开在韩国专利授权号第10-1017848号中。作为一例,光束整形器可包括用于形成光纤维和均匀化的四角形激光束的方光管(squarelightpipe)。

在图4中,在步骤s161之后,可实施调节激光束的照射区域的步骤(步骤s162)。固定于基板210的照射对象器件211的大小及形状可根据半成品发生变化。除照射对象器件211之外,在基板210还放置有非照射对象器件212,非照射对象器件212可通过激光的能量易于发生热变形。因此,在步骤s162中,为了照射与放置于基板210的照射对象器件211的形状及大小相对应的激光束,可调节激光束的照射区域。照射区域可以指在向照射对象器件211照射激光束时,所要照射激光束的面积。以下,对通过使用光学部260来调节激光束的照射区域的方法进行说明。

参照图5,光学部260可包括凸透镜261、柱面透镜262及聚焦透镜265。光学部260位于光束整形器250的出口侧,当向位于照射对象器件211的焊接部s照射激光束时,光学部260可调节照射区域。凸透镜261能够以与光束整形器250的出口侧相邻的方式设置,上述光束整形器250用于使激光束均匀化,以对进行面照射的激光束进行聚光。激光束在经过光束整形器250的出口侧时可能因散射而分散。因此,凸透镜261进行聚光,以防止被均匀化的光束散射,并可向柱面透镜262传递经过聚光的激光束。通过凸透镜261聚光的激光束的照射区域可呈与为了使激光束得到均匀化而经过的线圈251的形状相同的形状。经过凸透镜261的激光束的照射区域可形成第一照射区域a1。只要是可对从光束整形器250的出口侧散射的激光束进行聚光的透镜,则可代替凸透镜261。

柱面透镜262包括第一柱面透镜263及第二柱面透镜264,柱面透镜262能够以使经过凸透镜261的激光束的照射区域具有默认形状的方式进行调节。第一柱面透镜263可对经过凸透镜261的激光束的第一轴向长度进行调节。第一柱面透镜263可呈在使圆柱站立的状态下,向纵轴方向进行切割的形状,第一柱面透镜263设置于凸透镜261的下部,第一柱面透镜263的凸面可朝向上侧。透过第一柱面透镜263的激光束的照射区域可缩短第一轴向长度。透过第一柱面透镜263的激光束的照射区域因照射区域的第一轴向长度的缩短而可从第一照射区域a1变形为第二照射区域a2。

第二柱面透镜264可对经过第一柱面透镜263的激光束的第二轴向长度进行调节。第二轴向长度与第一轴向长度相互正交,第二柱面透镜264可呈与第一柱面透镜263相同的形状。第二柱面透镜264设置于第一柱面透镜263的下部,并且能够以使凸面朝向上侧,且使其方向与第一柱面透镜263的方向相正交的方式配置。透过第二柱面透镜264的激光束的照射区域可使第二轴向长度缩短。透过第二柱面透镜264的激光束的照射区域因照射区域的第二轴向长度缩短而可从第二照射区域a2变形为第三照射区域a3。

第一柱面透镜263及第二柱面透镜264可简单调节激光束的照射区域的形状。第一柱面透镜263及第二柱面透镜264并不局限于一实施例,只要是可简单调节激光束的照射区域的第一轴向长度及第二轴向长度的结构,就可均包含在一实施例。第一柱面透镜263及第二柱面透镜264的凸面可朝向下部,上部面凹陷的透镜可设置于第一柱面透镜263及第二柱面透镜264的位置。激光束的照射区域能够以使第一轴向长度和第二轴向长度增加的方式得到调节。第一柱面透镜263及第二柱面透镜264只要可通过调节激光束的照射区域的第一轴向长度和第二轴向长度来调节照射区域的横向及纵向长度,则可均包含于一实施例。

可以互换第一柱面透镜263和第二柱面透镜264的位置。即,使透过凸透镜261的激光束在透过第一柱面透镜263之前先透过第二柱面透镜264,由此,可在调节照射区域的第二轴向长度之后,调节第一轴向长度。

聚焦透镜265可使经过柱面透镜262的激光束的照射区域具有默认宽度。聚焦透镜265维持通过柱面透镜262形成的照射区域的形状,并可增加或减小照射区域的宽度。聚焦透镜265在通过维持通过柱面透镜262形成的照射区域的第一轴向长度与第二轴向长度之比来维持形状的状态下,可增加或减小照射区域的宽度。可利用聚焦透镜265对作为透过第二柱面透镜264的激光束照射区域的第三照射区域a3进行放大来具有第四照射区域a4的宽度。聚焦透镜265也可减小第三照射区域a3的宽度。聚焦透镜265能够以可更换的方式设置。

在图5中,光学部260还包括升降模块266,升降模块266可通过使第一柱面透镜263、第二柱面透镜264及聚焦透镜265单独上升或下降来调节激光束的照射区域。当通过使第一柱面透镜263上升或下降来使第一照射区域a1变形为第二照射区域a2时,升降模块266可调节第一轴向长度。第一柱面透镜263越上升,第二照射区域a2的第一轴向长度则越大幅度缩短,第一柱面透镜243越下降,第二照射区域a2的第二轴向长度缩短幅度则越小。当通过使第二柱面透镜264上升或下降来使第二照射区域a2变形为第三照射区域a3时,升降模块266可调节第二轴向长度。当通过使聚焦镜头265上升或下降来使第三照射区域a3变形为第四照射区域a4时,升降模块266可调节第四照射区域a4的宽度。基于第二柱面透镜264的上升或下降来对第二轴向长度进行的调节和基于聚焦镜头265的上升或下降来对照射区域的宽度进行的调节与上述第一柱面透镜263类似。

在图4中,在步骤s162之后,可实施通过激光束来使位于照射区域内的焊接部s再流焊,从而使照射对象器件211固定于基板210的步骤(步骤s163)。在步骤s161中均匀化的激光束的照射区域在经过光学部260的过程中得到调节,照射区域得到调节的激光束在步骤s163中向放置有照射对象器件211的焊接部s照射来固定基板210和照射对象器件211。照射于照射对象器件211的激光束经过照射对象器件211和基板210,并使焊接部s再流焊。若焊接部s再流焊,则照射对象器件211附着于基板210,并可使基板210与照射对象器件211电连接。

在本发明的卷对卷激光再流焊方法中,若向照射对象211照射1秒钟至2秒钟的激光束,则可使照射对象器件211附着于基板210。因而可比以往更加快速地生产出基板结构体280,从而提高生产性。

在以往,需要以分离的方式将照射对象器件211和非照射对象器件212分别附着于各个不同的基板210,并使附着有照射对象器件211的基板和附着有非照射对象器件212的基板相结合,因此存在基板结构体280的厚度变厚,且半成品的厚度也变厚的问题。但是,在本发明的卷对卷激光再流焊方法中,可在一个基板210附着照射对象器件211和非照射对象器件212,从而可减小基板结构体280的厚度。

在步骤s163中,可在照射区域内指定一个以上的测定位置。可实时对位于测定位置的焊接部s的温度进行测定。作为一例,可通过位于移送部230的上部的温度测定部270来实时测定焊接部s的温度,温度测定部270可由红外线摄像机或热感摄像机等形成。温度测定部270能够以使位于测定位置的焊接部s维持默认正常温度范围的方式控制激光束的能量照射强度。在位于测定位置的焊接部s的温度脱离默认正常温度范围的情况下,可通过向使用人员通知发生不良来降低半成品的不良率。

图1中,在步骤s160之前或之后,还可实施将非照射对象器件212附着于基板210的步骤(步骤s150)。在以往的批量回流工序中,在将非照射对象器件212附着于基板210的状态下向基板210照射激光束的情况下,存在非照射对象器件212发生热变形的问题。并且,在将照射对象器件211附着于基板210之后附着非照射对象器件212的情况下,因在基板210发生的热变形而存在非照射对象器件212在尚未具有最佳间距的状态下附着于基板210的问题。但是,本发明的卷对卷激光再流焊方法可以仅向照射对象器件211所在的部分照射激光束,因此,即使在向照射对象器件211照射激光束之前或之后的任何时点在基板210附着非照射对象器件212,也不会发生不良。因此,根据情况,在步骤s160之前或之后,步骤s150可通过额外的焊接装置(未图标)进行。并且,当照射对象器件211附着于基板210时,非照射对象器件212可同时附着于基板210。

在图1中,本发明可实施对通过步骤s160制造的基板结构体280进行检查的步骤(步骤s170)。基板结构体280包括基板210和附着于基板210的照射对象器件211及非照射对象器件212。当基板结构体280被激光束所照射时,可检查是否发生热变形,也可检查附着于基板结构体280的照射对象器件211及非照射对象器件212是否附着于规定位置。并且,可对判断为发生不良的基板结构体280进行标记。被标记的基板结构体280可在之后的后续工序中排除。

在图1中,在步骤s170之后,本发明可包括将基板结构体280卷绕成卷形态的步骤(步骤s180)。第三卷盘220c设置于图2的b4区间的下侧,第三卷盘220c可将基板结构体280卷绕成卷形态。本发明的卷对卷激光再流焊方法从第一卷盘220a至第三卷盘220c连续执行各个步骤,最终使基板结构体280呈卷形态,从而在缩短工序时间,且便于运送方面非常经济。

附图标记的说明

210:基板

211:照射对象器件

212:非照射对象器件

220a:第一卷盘

220b:第二卷盘

220c:第三卷盘

230:移送部

231:移送体

232:移送模块

233:真空模块

234:加热模块

235:冷却模块

240:加压紧贴部

241:加压杆

242:加压控制模块

250:光束整形器

260:光学部

261:凸透镜

262:柱面透镜

263:第一柱面透镜

264:第二柱面透镜

265:聚焦透镜

266:升降模块

270:温度测定部

280:基板结构体

最佳实施方式

如上所述,最佳实施方式以具体实施方式进行了详细说明。

产业上的可利用性

本说明书的技术可用于激光再流焊装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1