改善低介电常数材料的破裂临界值及机械特性的方法

文档序号:3279358阅读:304来源:国知局
专利名称:改善低介电常数材料的破裂临界值及机械特性的方法
技术领域
本发明的一或多个实施例是关于改善低介电常数(或称低k值)材料(用于制作集成电路(IC)组件)的一或多种特性的方法及设备。
背景技术
集成组件(ICs)的制造(以非作为限制的举例来说,如半导体集成电路)已相当复杂,但是由于更高组件速度的需求增加了组件设计的要求,使得制造更趋复杂。目前的制造设备仍惯常生产0.13μm特征尺寸的组件,然而未来将很快会开始制造更小的特征尺寸组件。此外,集成电路是以厚度更小的绝缘层堆栈或放置于各电路层之间。
在生产具有0.13μm或更小特征尺寸的高级集成电路时,阻容延迟(RC delay)、电源消耗以及干扰的情况会变得明显。例如,组件速度会因阻容延迟而部分受限,而阻容延迟是通过用于内联机结构中的金属电阻、以及该用于金属内联机间绝缘介电材料的介电常数来判定。此外,随着几何规格及组件尺寸的降低,半导体工业已尝试避免该集成电路中不当的绝缘层所引起的寄生电容及干扰噪声。一种达到所要的低阻容延迟及组件集成电路中较高效能表现的方法包括在低介电常数(低k值材料)的绝缘层中使用介电材料。
用于降低材料介电常数的制程步骤必须也能改善该介电材料的一或多种破裂临界值及机械特性。

发明内容
本发明的一或多种实施例可有效的满足上述公知领域的一或多种需求。特别是,本发明的一实施例是一种用于沉积低k值介电薄膜的方法,其至少包括下列步骤(a)以CVD法沉积一低k值介电薄膜;以及(b)以等离子体处理该CVD沉积的低k值介电薄膜。


图1是一依据所述实施例所使用的一示范性CVD反应器的截面概要图。
具体实施例方式
在符合本发明的一或多个实施例中,一CVD沉积的低k值介电薄膜的破裂临界值及机械特性是通过等离子体处理来改善。一般相信前述改善目标均能达成的原因在于等离子体处理可增加更多Si-H键,从而增加薄膜的硬度及杨式系数。
在符合本发明的一或多种实施例里,在制造一具有经改善的破裂临界值及机械特性的低k值介电薄膜的方法的第一步骤中,一低k值介电薄膜是利用一CVD沉积制程(其详细方法将描述于下文)进行沉积。此外,在符合本发明的上述一或多个实施例里,在制造一具有经改善的破裂临界值及机械特性的低k值介电薄膜的方法的第二步骤中,可在CVD沉积薄膜上执行一等离子体处理(亦可选择性包括同时加热该薄膜)。
沉积一低k值介电薄膜的该第一步骤的一或多种实施例包含沉积一含有硅、氧和碳的低k值介电薄膜。在符合前述一或多个实施例中,该沉积包含使用一由一或多种环状有机硅基化合物的前提。此外,这种实施例包含混合一或多种环状有机硅基化合物及一或多种非环状有机硅基化合物。在前述一实施例的一方面中,一非环状有机硅以及一碳氢化合物与一氧化气体反应,其是在一足以形成一低k值介电薄膜(k值小于或约等于2.5)的条件下进行。该环状有机硅化物包括至少一硅碳键结。该非环状有机硅化物包括(此为举例并非限制)一硅氢键或一硅氧键。该碳氢化合物可为直链或环状,且可包括一双碳键或三碳键。在符合本发明的一或多个实施例中,若至少一有机硅气体含有氧,则可不需氧化气体。
上述CVD沉积的低k值薄膜含有一Si-O-Si环状结构的网状结构,其是与一或多种直链有机化合物交联。由于此交联,所得反应性较稳定的网状结构在该等环状结构间将具有较大的间隔,并因此该沉积薄膜与公知CVD沉积薄膜相较下将具有更大程度的孔隙率。
前述CVD沉积的低k值薄膜也包括一碳含量介于约10和约30的原子百分比(不含氢原子时),且较佳是介于约10及约20的原子百分比。前述CVD沉积的低k值薄膜的碳含量可参照该薄膜结构(其一般未含足够数量的未键结碳氢化合物)的原子分析。该碳含量是以该沉积薄膜中的碳原子百分比表示(排除难以量化的氢原子)。例如,一平均含有一硅原子、一氧原子、一碳原子以及两个氢原子的薄膜中即有原子百分比为20的碳含量(按五个原子一碳原子计算),或排除氢原子时即有原子百分比为33的碳含量(按三个原子一碳原子计算)。
该环状有机硅化物可包括一具有三个(或以上)的硅原子的环状结构,且该环状结构更可包括一或多个氧原子。市面上所销售的环状有机硅化物包括数个硅和氧原子交替的环,其中所述硅原子与一或两个烷基相键结。例如,该环状有机硅化物可包括下列一或多种化合物

该非环状有机硅化物包括直链或分支(即非环状)有机硅化物,其具有一或多个硅原子及一或多个碳原子,且直链或分支碳氢化合物具有至少一不饱和碳键。所述结构可进一步含有氢。市面上销售的非环状有机硅化物包括硅原子及有机硅氧烷间不含有氧的有机硅烷,其是在两个或多个硅原子间含有氧。例如,该非环状有机硅化物可包括下列一或多种化合物



该直链或具分支的碳氢化合物包括介于约1至约20个邻接的碳原子。该碳氢化合物可包括任何以单键、双键或三键键结的邻接碳原子。例如,该有机化合物可包括具两个至约20个碳原子的烯类,例如乙烯、丙烯、乙炔、丁二烯、第三丁基乙烯、1,1,3,3-四甲基丁基苯、第三丁基醚、甲基丙烯酸甲酯(MMA)以及糠基第三丁基醚(t-butylfurfurylether)。
上述部分前提含有氧,因此可能不需额外的氧化剂。然而,在需要一或多种氧化气体或液体的情况下,它们可包括氧(O2)、臭氧(O3)、一氧化二氮(N2O)、一氧化碳(CO)、二氧化碳(CO2)、水(H2O)、过氧化氢(H2O2)、一含氧的有机化合物或其结合物。该氧化气体以氧气为佳。然而,当以臭氧作为氧化气体时,一臭氧产生器会将一氧气源中重量百分比由6%至20%(一般约为15%)的氧气转换为臭氧,而剩余者一般为氧。然而,该臭氧浓度可依据所需臭氧量以及所用的臭氧形成设备的种类作增加或减少。该一或多种臭氧气体可加入该反应气体混合物,藉以增加反应性及达到该沉积薄膜中的所需碳含量。
沉积低k值介电薄膜可为连续或不连续的在一单一沉积处理室中进行。或者,该薄膜可相继沉积在两个或多个沉积处理室中,例如沉积于一群集设备内(如加州圣塔克拉拉市的美商应用材料公司所上市的ProducerTM设备)。
图1是显示一平行板化学气相沉积(CVD)制程处理室10的垂直截面图,该处理室10具有一高真空区域15。制程处理室10含有气体散流歧管11,该歧管具有数个穿孔以用其散布制程气体至一衬底(未示出)。该衬底被置放于衬底支撑板或转座12上。转座12被安装在支撑杆13以将转座12连接至升举马达14。升举马达14可将转座12上升及下降于一制程位置及一较低的衬底装载位置之间,以使转座12(以及支撑在该转座12上表面的衬底)可控制地移动于一较低装载/卸载位置及一较高制程位置(其紧邻歧管11)之间。当位于一较高制程位置时,绝缘体17环绕转座12及衬底。
在制程期间,引入歧管11的气体被均匀地通过一淋浴头放射分布于衬底表面。具有一节流阀的真空泵32可控制该等气体由处理室10经过歧管24的排出率。沉积气体及载气流经气体线18进入混合系统19并接着进入歧管11。一般而言,各制程气体供应线18包括(i)安全关闭阀门(未示出),其可用于自动或手动的关闭制程气体流入处理室,以及(ii)质量流控制器(也未示出),用以测量气流通过气体供应线18的流率。当有毒气体用于制程中,数个安全关闭阀门系以习知配置方式定位于各气体供应线18。
在沉积期间,一或多种环状有机硅化物的混杂/混合物及一或多种非环状有机硅化物与一氧化气体反应以于衬底上形成一低k值介电薄膜。在符合前述的一实施例中,该环状有机硅化物与至少一非环状有机硅化物以及至少一碳氢化合物结合。例如,该混合物含有体积百分比约5至约80的一或多种环状有机硅化物、体积百分比约5至约15的一或多种非环状有机硅化物、以及体积百分比约5至约45的一或多种碳氢化合物。该混合物也包含体积百分比约5至约20的一或多种氧化气体。在符合前述的一实施例中,该混合物含有体积百分比约45至约60的一或多种环状有机硅化物、体积百分比约5至约10的一或多种非环状有机硅化物、以及体积百分比约5至约35的一或多种碳氢化合物。
在一方面中,该一或多种环状有机硅化物是以约1000至约10000mgm的流率引入混合系统19中(且依据一实施例中,其流率约为5000)。该一或多种非环状有机硅化物是以约200至约2000的流率引入混合系统19中(且依据一实施例,其流率约为700sccm)。该一或多种碳氢化合物是以约100至约10000sccm的流率引入该混合系统19中(且依据一实施例,其流率约为1000sccm)。该含氧气体流率介于约200及约5000sccm之间。依据一实施例中,该环状有机硅化物为2,4,6,8-四甲基环四硅氧烷、八甲基环四硅氧烷或一其混合物,且该非环状有机硅化物为三甲基硅烷、1,1,3,3-四甲基二硅氧烷或一其混合物。根据一实施例中,该碳氢化合物为乙烯。
该沉积制程可为热制程或一等离子体增强制程。于一等离子体增强制程中,一经控制的等离子体是通过利用RF电源25施加到气体散流歧管11的RF能量形成于邻近该衬底处。或者,RF电源可提供至转座12。至该沉积处理室的该RF电源可为周期式或脉冲式以降低衬底受热并促进沉积薄膜的多孔性。用于200mm衬底的该等离子体的电源密度介于约0.03W/cm2以及约3.2W/cm2之间,对应至RF电源位准约为10瓦至约2000瓦。依据一实施例,该RF电源位准介于约300瓦至约1700瓦。
RF电源供应器25可提供一介约0.01MHz及300MHz间的单一频率的RF电源。或者,该RF电源可利用混合、同步频率作传送以强化引入高真空区域15的反应物种的分解。在一方案中,该混合频率是一约12kHz的低频及一约13.56MHz的高频的混合频率。在另一方案中,该低频范围介于约300Hz至约1000kHz间,而该高频范围介于约5MHz及约50MHz间。
在沉积期间,该衬底被维持在约-20℃及约500℃间的温度,且依据一实施例中,该温度是介于约100℃及约400℃之间。该沉积压力一般介于约1Torr及约20Torr之间,且依据一实施例中,该沉积压力介于约4Torr及约6Torr之间。该沉积率一般是介于约10000埃/分及约20000埃/分之间。
当要额外分解氧化气体时,一选择性的微波处理室28可在该气体进入制程处理室10之前先将介于约0瓦及约6000瓦间的电压输给该氧化气体。该额外的微波电源可避免该有机硅化物在与氧化气体反应之前发生过量分解。当微波电源加至该氧化气体时,较佳是使用一具有各个用于有机硅化物及该氧化气体的通道的气体散流板(未示出)。
一般而言,该处理室内衬、散流歧管11、转座12及各种其它反应器硬件的任一或全部是以诸如铝或电镀铝的材料制造的。上述CVD反应器的一例子是描述于颁给Wang等人并受让给美商应用材料公司(本发明的受让人)的美国专利案第5,000,113号,标题为「A Themal CVD/PECVDReactor and Use for Thermal Chemical Vapor Deposition of Silicon Dioxideand In-situ Multi-step Planarized Process」中。
系统控制器34控制马达14、气体混合系统19及RF电源供应器25是通过控制线36相连接。系统控制器34可控制该CVD反应器的活动且一般包括一硬盘机、一软盘机及一卡架(card rack)。该卡架包含一单板式计算机(single board computer,SBC)、模拟及数字输入/输出板、接口板以及步进马达控制板。系统控制器34符合总线模块欧式卡(Versa ModularEuropeans,VME)标准,该标准可界定基板、卡盒(card cage)以及连接器尺寸及类型。该VME标准也界定具有16位数据及24位地址总线的总线结构。系统控制器34操作于计算机程序(储存于硬盘机中)控制下。如一般所熟知,该计算机程序可命令时间、气体的混合、RF电源位准、转座位置以及其它特定制程参数。
特定处理室组件的操作将参照图1作描述。当一衬底加载制程处理室10时,转座12被降低以承接该衬底,其后转座12会升至该处理室的一所要高度,以于CVD制程期间将该衬底与气体散流歧管11维持于一第一距离或第一间距。在某些制程中,一惰性气体(诸如氦气或氩气)被送入制程处理室10中,以在引入反应性制程气体前先稳定处理室压力。
前述该CVD系统描述主要是用于说明,而其它的CVD设备,例如电子环绕共振式(ECR)等离子体CVD设备、感应耦合式RF高密度等离子体CVD设备或其它类似者都可使用。此外,前述系统的更动,例如转座设计、加热器、RF电源连接器的位置以及其它设计皆有可能。例如,该衬底可通过一电阻式加热转座进行支撑和加热。
下述例子将阐述一般利用前述CVD处理室所沉积的低k值介电薄膜。特别是,该薄膜是利用「Producer」(其是由加州圣塔克拉拉市美商应用材料公司所上市)系统来进行沉积。
以CVD沉积低k值介电薄膜的第一步骤范例一低k值介电薄膜是通过下列反应性气体以约5.75Torr的处理室压力及约400℃的衬底温度沉积于一300mm衬底上流率约6400mgm的八甲基环四硅氧烷(OMCTS)、流率约575sccm的三甲基硅烷(TMS)、流率约3200sccm的乙烯、流率约1600sccm的氧气以及流率约1600sccm的氦气。该衬底被定位于距该气体分布淋浴头约1500mils处,且一约1200瓦的电源位准被以约13.56MHz的频率施加至该淋浴头以等离子体强化沉积该薄膜。该薄膜是以约13000埃/分的速率进行沉积,且该薄膜的介电常数(k)在频率约0.1MHz时测量约为2.54。
在前述薄膜沉积后,它们会利用(以非限制性的举例而言)前述参照图1所述的一处理室进行等离子体处理。在符合本发明的一或多个实施例中,该等离子体利用下列一或多种气体形成氢气、氦气、氩气及四氟化硅。此外,该等离子体是由一第一电源来源以施加电源至该气体散流歧管的方式产生,其中该频率约为2MHz至约100MHz且电源约为10瓦至约1500瓦间(且较佳是通过约200瓦至约600瓦),以及由一第二电源来源以施加电源至该气体散流歧管的方式产生,其中该频率约为100MHz至约500MHz且电源约为10瓦至约1500瓦间。在符合本发明的一或多个实施例中,该晶片座被维持在约200℃至约500℃间的温度,且该等离子体处理维持约5秒至50秒。在符合本发明另一或多个实施例中,该低k值介电薄膜为多层,其中一后沉积等离子体处理步骤是在各沉积步骤后进行。在符合本发明又另一或多个实施例中,该等离子体处理是在一不同于沉积该低k值介电薄膜的等离子体CVD处理室的一处理室中进行。
以CVD沉积低k值介电薄膜的等离子体处理的第二步骤的范例1该薄膜是在约5.0Torr的一处理室压力以及约400℃的衬底温度下利用流率约500sccm的氢气进行等离子体处理约30秒。该衬底被定位于距该气体分布淋浴头约1000mils处,且一约550瓦的电源位准系以约13.56MHz的频率施加至该淋浴头。该所得薄膜具有约1GPa的硬度,且其杨式系数约为5.8GPa。
以CVD沉积低k值介电薄膜的等离子体处理的第二步骤的范例2该薄膜是在约5.0Torr的一处理室压力以及约400℃的衬底温度下利用流率约500sccm的氢气进行等离子体处理约10秒。该衬底被定位于距该气体分布淋浴头约1000mils处,且一约650瓦的电源位准系以约13.56MHz的频率施加至该淋浴头。该所得薄膜具有约0.8GPa的硬度,且其杨式系数约为5.2GPa。
在实务上,前述的后沉积等离子体处理改善了低k值薄膜(例如一以前述方式沉积的薄膜)的破裂临界值,未经处理的破裂临界厚度值在经后沉积处理后从约1.0μm改善至约1.2μm。此外,前述多层后沉积等离子体处理亦将一多层沉积低k值薄膜的破裂临界值改善至一超过约2.5的破裂临界厚度值。此外,该后处理薄膜的机械特性例如硬度及杨式系数也有改善。
本领域技术人员应可了解前述说明仅用于例示及解说。而其本身并非作为本发明精确揭示的限制。例如,虽然某些尺寸已描述于前文,但由于各种设计均可利用前述实施例达成,故它们仅为例式性,且这种设计的实际尺寸应依据电路需求而决定。此外,名词「衬底」包括这种适用于处理成为集成电路或其它微电子组件者,且「衬底」应以最广的定义解释的。适用于本发明的衬底并非仅包括如砷化镓(GaAs)、锗、硅、硅锗、铌酸锂(lithium niobate)以及含硅的组合物如结晶硅、多晶硅、非晶硅、磊晶硅和氧化硅及其结合混合物等的半导体材料。名词「衬底」亦应包括任何种类的玻璃衬底。
权利要求
1.一种沉积低k值介电薄膜的方法,其至少包含下列步骤以CVD法沉积一低k值介电薄膜;以及等离子体处理该CVD沉积的低k值介电薄膜。
2.如权利要求1所述的方法,其中所述以CVD法沉积一低k值介电薄膜的步骤至少包含沉积一含有硅、氧及碳的低k值介电薄膜。
3.如权利要求2所述的方法,其中沉积一含有硅、氧及碳的低k值介电薄膜的步骤至少包含使用一由一或多种环状有机硅化物组成的前提。
4.如权利要求2所述的方法,其中沉积一含有硅、氧及碳的低k值介电薄膜的步骤至少包含使用一由一或多种环状有机硅化物及一或多种非环状有机硅化物组成的前提。
5.如权利要求2所述的方法,其中沉积一含有硅、氧及碳的低k值介电薄膜的步骤至少包含使用一由一环状有机硅化物、一非环状有机硅化物、一碳氢化合物及一氧化物组成的前提。
6.如权利要求5所述的方法,其中该环状有机硅化物包括至少一硅-碳键结。
7.如权利要求5所述的方法,其中该非环状有机硅化物包括一硅-氢键结或一硅-氧键结。
8.如权利要求5所述的方法,其中所述碳氢化合物为直链或环状。
9.如权利要求1所述的方法,其中所述以CVD法沉积的低k值薄膜至少包含一排除氢原子时含碳量介约10及约30间的原子百分比者。
10.如权利要求5所述的方法,其中所述氧化剂至少包含一或多种氧(O2)、臭氧(O3)、一氧化二氮(N2O)、一氧化碳(CO)、二氧化碳(CO2)、水(H2O)、过氧化氢(H2O2)、一含氧的有机化合物或任一前述的结合物。
11.如权利要求1所述的方法,其中所述以CVD法沉积一低k值介电薄膜的步骤至少包含使用一包括一或多种环状有机硅化物及一或多种非环状有机硅化物的前提。
12.如权利要求11所述的方法,其中所述以CVD法沉积的步骤至少包含使用一包括一或多种环状有机硅化物、至少一非环状有机硅化物及至少一碳氢化合物的前提。
13.如权利要求12所述的方法,其中所述前提至少包含体积百分比约5至约80的一或多种环状有机硅化物、体积百分比约5至约15的一或多种非环状有机硅化物以及体积百分比约5至约45的一或多种碳氢化合物。
14.如权利要求13所述的方法,其中所述前提进一步包括体积百分比约5至约20的一或多种氧化气体。
15.如权利要求1所述的方法,其中所述等离子体处理步骤至少包括利用下列一或多种气体形成一等离子体氢气(H2)、氦气(He)、氩气(Ar)及四氟化硅(SiF4)。
16.如权利要求15所述的方法,其中所述等离子体处理被执行约5秒至约50秒。
17.如权利要求16所述的方法,其中所述等离子体处理被执行于一感应耦合等离子体处理室中,其中所述来源电源是以一范围介于约2MHz至约100MHz间的频率施加,以产生并维持所述等离子体。
18.如权利要求17所述的方法,其中一偏压电源被以一范围介于约100MHz至约500MHz间的频率施加于所述处理室中的一晶片支撑器。
19.如权利要求18所述的方法,其中来源电源对所述偏压电源的一比例是在约0.1∶1至约15∶1的一范围中。
20.如权利要求19所述的方法,其中所述晶片支撑器被维持在约200℃至约500℃的一范围中。
21.如权利要求1所述的方法,其中所述以CVD沉积一低k值介电薄膜的步骤至少包含使用一由八甲基环四硅氧烷、三甲基硅烷、乙烯以及氧组成的前提。
22.如权利要求1所述的方法,其中所述以CVD沉积一低k值介电薄膜的步骤至少包含一等离子体增强制程。
23.如权利要求22所述的方法,其中所述等离子体增强制程包括施加RF电源以形成一等离子体于邻近一衬底处,以沉积所述低k值介电薄膜。
24.如权利要求23所述的方法,其中所述RF电源为周期式。
25.如权利要求23所述的方法,其中所述RF电源为脉冲式。
全文摘要
本发明的一实施例是一种用于沉积低k值介电薄膜的方法,其包括下列步骤(a)以CVD法沉积一低k值介电薄膜;以及(b)以等离子体处理该CVD沉积的低k值介电薄膜。
文档编号C23C16/56GK1698189SQ200480000687
公开日2005年11月16日 申请日期2004年1月12日 优先权日2003年1月13日
发明者李丽华, 黄子芳, 胡安·C·罗奇阿尔瓦雷斯, 夏立群 申请人:应用材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1