生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品的制作方法

文档序号:3393454阅读:157来源:国知局
专利名称:生产涂覆超亲水性薄膜的金属产品的方法及涂覆超亲水性薄膜的金属产品的制作方法
技术领域
本发明涉及生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。
背景技术
在其表面上具有亲水性表面层的金属材料已被有效地用于整个工业领域中,这种金属材料将通过使用热交换器作为例子进行说明。
通过使具有不同温度的两种流体彼此直接或间接接触而交换热的热交换器已被广泛地用在各种工业领域中,特别是用于加热、空气调节、动力的产生、废热回收和化学加工。
空调热交换器在空气侧形成翅片,翅片是增大的表面,用于改善热传送。当含湿气的空气在热交换操作中流经翅片时,通过供给到管中的低温冷却剂发生热传送。当翅片表面温度等于或低于含湿气的空气的露点温度时,在热交换器表面上形成小滴以截断空气的流动,这增加了作为热交换器进口和出口之间的压力差的压力降。因此,必须增加风扇的功率以供给相同的流量,这导致大功率的消费。
为了解决上述问题,如日本待审专利申请61-8598所公开的,通过使用Cr+6在铝翅片上进行防腐处理以改善耐腐蚀性,以及在其上进行硅酸盐基涂覆工艺以赋予亲水性,该材料被称为预涂材料(PCM),从而在热交换器翅片表面上形成的凝结水的流动得以改善。
PCM基本上需要Cr+6以获得耐腐蚀性。然而,由于环境问题,Cr+6自2006年后被禁用。因此越来越需要替代Cr+6的材料。直到目前为止,已经建议了Cr+3或树脂类型。在PCM的制备中,不可避免地用于铝洗涤的四氯乙烷(TCE)还造成环境污染。另外,在初始阶段表现优异亲水性的PCM逐渐丧失亲水性,即,具有老化特性。近年来,主要使用化学产品作为壁纸的材料。用于赋予亲水性的硅酸盐材料具有挥发性并且与墙纸发生化学结合,从而使墙纸褪色。另外,挥发物质还令人不快。
一直不断地进行各种尝试以通过在现有材料上形成功能性(例如亲水性或疏水性)表面层以满足各种需要。形成功能性表面层的示例性方法包括1)在现有材料上淀积功能性表面层,和2)通过改善现有材料的表面膜而赋予新的物理和化学性质。
然而,在后一种方法中,随着时间的流逝,表面性质发生改变并返回到初始性质。例如,在诸如铝的金属根据离子束辅助反应工艺进行处理的情况中,金属表面的亲水性得以改善。因为在铝表面上蚀刻了自然氧化膜并在铝表面上形成了功能性薄膜。随着时间的流逝,氧化膜自然地在铝表面上生长。结果是,通过蚀刻自然氧化膜获得的亲水性改善作用变差。在铝表面上形成的功能性薄膜由对各种环境变量(水、温度等)随时间具有极低机械抗性的超薄层(<几个纳米)组成。因此,改善的亲水性降低并返回到初始表面性质。
为了解决上述问题,一直不断地努力以在金属材料上形成亲水性或疏水性的功能性表面层,该功能性表面层可以保持物理和化学稳定状态。
例如,如日本待审专利公开2001-280879中所建议的,在金属管(其作为冷冻剂的通道)上安装了由传导金属材料制成的热交换器中,含钛的化合物蒸气(其作为原料气)被供给为在空气中以与热交换器翅片表面平行的方向上流动。因此,在翅片表面上涂覆二氧化钛薄膜的热交换器根据等离子体CVD技术生产。上述专利申请教导了热交换器可以获得优异的亲水性、抗菌性和除臭性。
然而,在翅片被安装到管上以构成热交换器的情况中,二氧化钛薄膜被淀积到热交换器的翅片上。因此,二氧化钛薄膜不能均一地淀积到翅片整个表面上,这引起亲水性和耐老化性变差。另外,不能获得直接应用于工业生产的生产能力。

发明内容
为解决上述问题而完成了本发明。本发明的一个目的是提供生产具有优异的亲水性、耐老化性和防腐性的涂覆超亲水性薄膜的金属产品的方法,以及提供涂覆超亲水性薄膜的金属产品。
本发明的另一个目的是通过在片型金属基材上形成防腐性薄膜和超亲水性薄膜并将所述片型金属基材机械加工成目标形状而以工业生产规模容易地生产超亲水性薄膜。
本发明的又一个目的是在片型金属基材的两个表面上均一地形成防腐性薄膜和超亲水性薄膜。
本发明的又一个目的是在片型金属基材的两个表面上连续地顺序地形成防腐性薄膜和超亲水性薄膜。
为了实现本发明的上述目的,提供了生产涂覆超亲水性薄膜的金属产品的方法,该方法在真空室中通过使用等离子体在被连续供给的片型金属基材的两个表面上连续地涂覆防腐性薄膜,在真空室中通过使用等离子体在被连续供给的片型金属基材的已涂覆防腐性薄膜的两个表面上连续地涂覆超亲水性钛化合物薄膜,并将顺序地涂覆所述薄膜的片型金属基材机械加工成目标形状。这里,防腐性薄膜是Si-O基化合物薄膜。防腐性薄膜的涂覆工艺通过将活性气体、气相硅前体和载气注入真空室进行。优选地,活性气体、气相硅前体和载气的注射量分别为70到200sccm、700到1500sccm和700到2000sccm。
所述钛化合物薄膜为Ti-O基化合物薄膜。钛化合物薄膜进一步含有C和/或H。钛化合物薄膜的涂覆工艺通过将活性气体、气相钛前体和载气注入真空室进行。活性气体、气相钛前体和载气的注射量分别为1500sccm、1000sccm和800sccom。气体注射比满足活性气体∶气相钛前体∶载气=3∶3∶1。
活性气体为空气或O2。载气为选自He、N2和Ar中的至少一种。防腐性薄膜和钛化合物薄膜的总厚度为1到200纳米。
金属基材为铝基材。金属产品是热交换器的翅片。
本发明还提供了涂覆超亲水性薄膜的金属产品,该产品通过等离子体涂覆工艺在两个表面上顺序地涂覆防腐性薄膜以及在防腐性薄膜上的钛化合物薄膜而生产。防腐性薄膜是Si-O基化合物薄膜。防腐性薄膜含有15到22原子%的Si和45到65原子%的O。钛化合物薄膜为Ti-O基化合物薄膜。钛化合物薄膜含有15到22原子%的Ti和45到65原子%的O。钛化合物薄膜进一步含有C和/或H。另外,钛化合物薄膜含有15到22原子%的Ti和45到65原子%的O,并且进一步含有20到25原子%的C和/或20到25原子%的H。
防腐性薄膜和钛化合物薄膜的总厚度为1到200纳米。金属基材为铝基材。涂覆薄膜的金属片可被机械加工成目标形状。


本发明通过参考附图得以更好地理解,所述附图仅仅是示例性的,不对本发明构成限制,其中图1是说明根据本发明通过使用等离子体在片型金属基材上连续地涂覆防腐性薄膜,以及通过使用等离子体在片型金属基材上连续地涂覆超亲水性钛化合物薄膜的装置的原理图;图2是表示根据本发明的防腐性薄膜的淀积比对等离子体加工时间的图;图3是表示根据本发明的防腐性薄膜的防腐性能对等离子体加工时间的图;图4是表示根据本发明在超亲水性薄膜和防腐性薄膜的等离子体加工中等离子体形成比对真空度的图;图5是表示根据本发明在超亲水性薄膜和防腐性薄膜的等离子体加工中等离子体形成比对载气的图;图6是表示用于分析根据本发明涂覆防腐性薄膜和超亲水性薄膜的金属片的表面组成的XPS数据的图;图7是表示用于分析根据本发明涂覆的薄膜的厚度的AES数据的图;图8是表示根据本发明涂覆的钛化合物薄膜的微结构的SEM照片;图9a和图9b是分别表示裸铝片和涂覆防腐性薄膜和超亲水性薄膜的金属片在15天盐水喷雾试验后的表面状态的照片;图10a和图10b是分别表示在本发明的表面亲水性/疏水性试验中当表面是亲水性(图10a)和当表面是疏水性(图10b)时小滴分散的照片;图11是表示用于分析涂覆防腐性薄膜的金属片和涂覆防腐性薄膜和超亲水性薄膜的金属片的耐老化性的图;图12是表示在表面亲水性/疏水性试验中表面亲水性的耐老化性对时间/环境变量的图;图13是表示裸铝片、常规PCM片和本发明的涂覆化合物薄膜的金属片的耐老化性的图;和,图14是表示本发明的涂覆化合物薄膜的金属片和常规PCM片的耐老化性的图。
实施本发明的最佳方式将参考附图详细描述本发明的生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。
图1是说明根据本发明用于生产涂覆超亲水性空调薄膜的金属产品的等离子体聚合装置的原理图。图1的等离子体聚合装置在片型金属基材的两个表面上连续地涂覆防腐性Si-O基化合物薄膜,以及在片型金属基材的涂覆防腐性薄膜的两个表面上连续地涂覆超亲水性Ti-O-C基化合物薄膜。这里,等离子体聚合装置在片型金属基材上涂覆防腐性薄膜,然后在该防腐性薄膜上涂覆超亲水性薄膜。因此,等离子体聚合装置通过使用双涂覆室2顺序地涂覆防腐性薄膜和超亲水性薄膜。
用于在涂覆室2内部形成真空的真空泵(未示出)与涂覆室2连接。如图1所示,金属片在安装在上部和下部的电极6和6a之间被连续地供给。通过电极6和6a之间产生的等离子体在金属片8的两个表面上连续地顺序地涂覆防腐性薄膜和超亲水性钛化合物薄膜后,金属片8离开涂覆室2。电源10和10a被施加于电极6和6a。
优选地,含有可形成空气或O2的活性气体的活性气体缸20和20a经由阀22和22a将活性气体注射到涂覆室2。
另外,包含在通过加压器32和32a加压的容器30和30a内的液相钛前体(其是液相四异丙醇钛[Ti(OC3H7)4])和液相硅前体(其是液相HMDSO)由于压力差经由液相质量流量控制器(MFC)38和38a被注入鼓泡器40和40a。通过鼓泡器40和40a鼓泡的气相钛前体和气相硅前体被注入涂覆室2。优选地,可形成He、Ar或N2的载气经由位于液相MFC38和38a以及鼓泡器40和40a之间的管被注射,用于帮助气相钛前体和气相硅前体被注入涂覆室2。载气包含在载气缸50和50a中,并经由阀52和52a被注入管。加热线圈42和42a盘绕鼓泡器40和40a,用于加热和鼓泡液相钛前体和液相硅前体。
这里,活性气体、气相钛前体或气相硅前体以及载气可在涂覆室2的外部合并并经由管60和60a中的每一个被注入涂覆室2(如图1所示),或可分别经由不同的管被注入涂覆室2并在涂覆室2内部经由一个管合并。仍参见图1,合并管60和60a通过涂覆室2的一侧孔被连接。优选地,经由管60和60a被注射的混合气体在涂覆的金属片8的向上/向下的方向上被释放。
气相钛前体或气相硅前体在低温下冷凝。当管60和60a保持在正常温度时,气相钛前体或气相硅前体在管60和60b的内壁上冷凝。为了防止气相钛前体或气相硅前体冷凝,热丝64和64a盘绕气相前体气体流经的管60和60a的外壁,用于保持预定温度。液相钛前体或液相硅前体流经的管66和66a也以相同方式形成。也就是说,热丝68和68a盘绕管66和66a的外壁用于保持预定温度,从而防止钛前体或硅前体在管66和66a的内壁上冷凝。
在本方案中,在金属片上涂覆防腐性薄膜后直接涂覆超亲水性薄膜。如有必要,在金属片上涂覆防腐性薄膜后可以根据不同的方法涂覆超亲水性薄膜(即,在金属片展开后,在其上涂覆防腐性薄膜,然后卷绕成筒状)。在这种情况下,可使用一个室。另外,可以在所述室之间布置中间介质(用于冷却)以代替连续安装的室。
根据本发明,通过使用等离子体在被连续供给到涂覆室2的金属片8上连续地涂覆防腐性Si-O基化合物薄膜,以及通过使用等离子体在涂覆防腐性薄膜的金属片8上连续地涂覆超亲水性Ti-O基化合物薄膜。将涂覆所述薄膜的金属片8机械加工成目标形状,例如,加工成空调热交换器的翅片。
可通过使用等离子体聚合装置生产超亲水性金属片。如上所述,将所述金属片机械加工成热交换器的翅片,在以下实施例中测量和说明其物理和表面性质。必须承认本发明的范围不受以下实施例的限制,而受权利要求的限制。
实施例等离子体涂膜的制备通过使用真空泵在涂覆室2中形成10-3托的真空度后,将金属片8连接到阳极上并相对于电极6和6a保持在预定距离上(30到150mm),鼓泡器40和40a的加热线圈42和42a经过电加热(80到120℃)用于鼓泡液相前体。盘绕管60、60a、66和66a外壁的热丝64、64a、68和68a经过电加热(80-120℃),用于防止钛前体和硅前体在管60、60a、66和66a的内壁上冷凝。气相前体气体、载气以及活性气体经由管被注入涂覆室2,并在金属片8的向上/向下的方向上被释放。当通过注射的气体达到目标操作真空度时,打开电源,使得在金属片8相对于管60和60a移动的方向上通过电极6和6a之间的混合气体连续形成等离子体。因此,在金属片8的两个表面上顺序地涂覆防腐性化合物(Si-O-C基)薄膜和超亲水性化合物(Ti-O-C基)薄膜。
在等离子体加工中,电流范围为0.1到0.5A,涂覆室2内部的真空度为0.001到0.5托,用于形成超亲水性钛化合物薄膜的气相钛前体、载气和活性气体的注射量分别为1000sccm∶800sccm∶1500sccm,用于形成防腐性薄膜的气相硅前体、载气和活性气体的注射量为700sccm∶700sccm∶70sccm。用于形成防腐性薄膜的活性气体和载气的注射比为1∶10到1∶20,载气和气相硅前体的注射比为1∶1到1∶2。
如图2所示,随着防腐性薄膜的等离子体加工时间的增加,防腐性薄膜的沉积比增加。这里,通过测量金属片8或样品在薄膜形成前/后的重量获得薄膜的沉积比。
如图3所示,防腐性薄膜随着等离子体加工时间而变的防腐性能(EIS)与等离子体加工时间和沉积比成正比。这里,通过使用EIS测量装置测量防腐性能。
图4表示防腐性能对真空度的变化。当在0.2托、0.3托和0.5托的真空度测量防腐性能时,在0.3托的真空度获得最高的防腐性能。
另外,当使用被注入以形成防腐性薄膜的载气(分别为He、N2、O2)测量防腐性能时,如图5所示,使用He作为载气获得最高的防腐性能。在等离子体加工中,He的淀积比最高。
涂覆薄膜的组成和厚度的分析根据用于类推表面组成的X射线光电光谱学(XPS),通过使用X射线测量分子的吸收率和发射波分析加工后的薄膜样品的组成,根据用于分析深度组成的原子发射光谱法(AES),通过以固定速度进行溅射分析其厚度。图6和图7表示分析结果。
图6为表示当在形成HMDSO防腐性薄膜后形成的钛化合物薄膜的XPS数据图。分析得到19.4原子%的C、58.3原子%的O、2.5原子%的Si和19.8原子%的Ti。也就是说,该化合物薄膜是Ti-Si-O-C基化合物薄膜。
根据分析结果,虽然条件略有不同,但是钛化合物薄膜通常含有15到22原子%的Ti、45到65原子%的O和20到25原子%的Si。
图7是表示典型的AES数据的图。如上所述,通过以固定速度进行溅射分析深度组成的AES可以分析薄膜的厚度。在图7的AES数据中,薄膜的厚度为277(23.3纳米)。根据本发明,薄膜的厚度限制在100和1500之间。优选地,薄膜的厚度为200到400,超亲水性钛化合物薄膜和防腐性硅化合物薄膜的总厚度为1到200纳米。
图8是表示根据本发明的Ti-Si-C基化合物薄膜的SEM照片。如图8所示,得到致密的薄膜。
薄膜的耐腐蚀性的评价根据基于KS D9502的盐水喷雾试验(其是评价金属材料或使用镀有有机涂膜和无机涂膜的金属材料的耐腐蚀性的方法)评价耐腐蚀性。盐浓度为5±1%,温度为35±2℃。根据肉眼观察到的蚀坑数目评价耐腐蚀性。
表1基于盐水喷雾试验的耐腐蚀性评价

如表1所示,未覆层的裸铝片在盐水喷雾条件下整个表面被腐蚀,即,耐腐蚀性非常低,使用湿法涂覆的常规PCM具有一些蚀坑,即耐腐蚀性相对良好。根据本发明,涂覆钛化合物薄膜的铝片具有优异的耐腐蚀性。在涂覆硅化合物薄膜并在硅化合物薄膜上涂覆钛化合物薄膜时,薄膜的耐腐蚀性非常高。
图9a和图9b是分别表示裸铝片和涂覆防腐性薄膜和超亲水性HMDSO+Ti化合物薄膜的金属片在盐水喷雾试验15天后的表面状态的照片。如图9a和图9b所示,裸铝片整个表面被腐蚀,但是涂有防腐性薄膜和超亲水性化合物薄膜的金属片仅具有最多10个蚀坑,即,其耐腐蚀性非常优异。
薄膜的亲水性和耐老化性通过将固定量的小滴(0.1cc)从10mm的高度滴下并测量样品表面上小滴的尺寸来评价亲水性能。当薄膜表面为亲水性时,小滴的尺寸由于高分散性而增加,当薄膜表面为疏水性时,小滴的尺寸由于低分散性而减小。图10a表示在疏水性表面上形成的小滴-小滴的尺寸为9到11毫米。图10b表示在疏水性表面上形成的小滴-小滴的尺寸为2到3毫米。
图11到14是表示上述试验结果的图。图11表示涂覆防腐性薄膜的铝片样品和涂覆防腐性薄膜和超亲水性薄膜的铝片样品的亲水性能。这里,涂覆防腐性薄膜的样品为疏水性的(约3mm),涂有防腐性薄膜和超亲水性薄膜的样品为亲水性的(约10.5mm)。
参见图12,为了评价亲水的耐老化性,在将样品周期地置于蒸馏水中10分钟并且干燥10分钟的300次循环后获得的亲水性能与初始亲水性能相比较。通过在防腐性薄膜上涂覆亲水膜制备的样品在300次循环的加速试验后性能未改变。
如图13所示,通过等离子体加工的薄膜的亲水性能在300次循环的加速试验后未改变。另一方面,常规PCM具有优异的初始亲水性能。然而,当将作为亲水试剂的表面活性剂溶于水中时,常规PCM的亲水性能变差。也就是说,常规PCM发生老化。裸铝片在初始阶段具有疏水性。在加速试验后,在铝表面上形成Al2O3层,从而略微改善了亲水性能。
图14是表示本发明的钛化合物薄膜和常规PCM薄膜的1000次循环老化试验结果的图。本发明的薄膜保持亲水性能(小滴尺寸为至少9毫米)。然而,常规PCM薄膜的亲水性能随着循环次数的增加而急剧变差。
有益效果如以上讨论的,根据本发明,可以工业生产规模容易地生产具有优异的亲水性、耐老化性和耐腐蚀性的涂覆薄膜的空调金属材料。
另外,可以在片型金属基材的两个表面上均一地形成超亲水性薄膜。
虽然已经描述了本发明的优选方案,然而可理解本发明将不限于这些优选方案,可由本领域的技术人员在本发明的精神和范围内进行各种变化和改变,本发明的范围由权利要求进行限制。
权利要求
1.生产涂覆超亲水性薄膜的金属产品的方法,该方法在真空室中通过使用等离子体在被连续供给的片型金属基材的两个表面上连续地涂覆防腐性薄膜,在真空室中通过使用等离子体在被连续供给的片型金属基材的已涂覆防腐性薄膜的两个表面上连续地涂覆超亲水性钛化合物薄膜,并将顺序地涂覆所述薄膜的片型金属基材机械加工成目标形状。
2.权利要求1的方法,其中防腐性薄膜为Si-O基化合物薄膜。
3.权利要求2的方法,其中防腐性薄膜的涂覆工艺通过将活性气体、气相硅前体和载气注入真空室进行。
4.权利要求3的方法,其中活性气体和载气的注射比为1∶10到1∶20。
5.权利要求3的方法,其中载气和气相硅前体的注射比为1∶1到1∶2。
6.权利要求1的方法,其中钛化合物薄膜为Ti-O基化合物薄膜。
7.权利要求6的方法,其中钛化合物薄膜进一步含有C和/或H。
8.权利要求6或7的方法,其中钛化合物薄膜的涂覆工艺通过将活性气体、气相钛前体和载气注入真空室进行。
9.权利要求8的方法,其中活性气体和载气的注射比满足活性气体∶载气=1∶1到3∶1。
10.权利要求8的方法,其中载气和气相钛前体的注射比满足载气∶气相钛前体=1∶1到1∶3。
11.权利要求3或9的方法,其中活性气体为空气或O2。
12.权利要求3或10的方法,其中载气是选自He、N2和Ar中的至少一种。
13.权利要求1到12中任一项的方法,其中防腐性薄膜和钛化合物薄膜的总厚度为1到200纳米。
14.权利要求1到12中任一项的方法,其中金属基材为铝基材。
15.权利要求1到12中任一项的方法,其中金属产品为热交换器的翅片。
16.涂覆超亲水性薄膜的金属产品,该金属产品通过等离子体涂覆工艺在两个表面上顺序地涂覆防腐性薄膜以及在防腐性薄膜上的钛化合物薄膜而生产。
17.权利要求16的金属产品,其中防腐性薄膜为Si-O基化合物薄膜。
18.权利要求17的金属产品,其中防腐性薄膜含有20到25原子%的Si。
19.权利要求16的金属产品,其中钛化合物薄膜为Ti-O基化合物薄膜。
20.权利要求19的金属产品,其中钛化合物薄膜含有15到22原子%的Ti和45到65原子%的O。
21.权利要求19或20的金属产品,其中钛化合物薄膜进一步含有C和/或H。
22.权利要求21的金属产品,其中钛化合物薄膜含有15到22原子%的Ti和45到65原子%的O,并且进一步含有20到25原子%的C和/或20到25原子%的H。
23.权利要求16到22中任一项的金属产品,其中防腐性薄膜和钛化合物薄膜的总厚度为1到200纳米。
24.权利要求23的金属产品,其中金属基材为铝基材。
25.权利要求24中的金属产品,其中涂覆薄膜的金属片被机械加工成目标形状。
全文摘要
本发明公开了生产涂覆超亲水性薄膜的金属产品的方法,以及涂覆超亲水性薄膜的金属产品。为了以工业生产规模容易地生产具有优异的亲水性、耐老化性和耐腐蚀性的空调金属材料,在金属基片(8)的两个表面上选择性地形成HMDSO防腐薄薄膜,以及在防腐性薄膜上涂覆超亲水性Ti-O-C基化合物薄膜。将所述金属基片机械加工成目标形状。
文档编号C23C14/14GK1938446SQ200480042701
公开日2007年3月28日 申请日期2004年11月6日 优先权日2004年4月6日
发明者郑永万, 吴定根, 田贤佑, 李守源, 尹德铉 申请人:Lg电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1