连续铸造用保温帽及连续铸造方法

文档序号:3410750阅读:117来源:国知局
专利名称:连续铸造用保温帽及连续铸造方法
技术领域
本发明涉及连续铸造用保温帽及使用了该连续铸造用保温帽的连续铸造方法。
背景技术
从提高连续铸造中铸造的铸锭的品质的观点出发,在专利文献1、2、3中公开有用于从流槽向铸造模具注入熔融金属的技术。在专利文献1中,将熔化炉的熔融金属出口的熔融金属的液面水平和保温帽内的熔融金属的液面水平形成为相同,以从形成于流槽的左右一对开口部向保温帽的整体遍及的方式注入熔融金属。在专利文献2中,在对具有延伸部的铸锭进行半连续铸造时,在与具备保温帽的铸造模具内的熔融金属的液面水平为大致同一液面水平处,将熔融金属向铸造模具内注入。在该熔融金属的注入时,由于配置在保温帽内的熔融金属整流板的存在,而对熔融金属的流动进行整流,以使熔融金属沿着各延伸部的延伸方向在保温帽中流动。在专利文献3中,不使用保温帽,而从流槽经由供给管向浮在铸造模具内的熔融金属上的分配盘供给熔融金属。分配盘内的熔融金属从该分配盘的喷出孔喷出而向铸造模具供给。分配盘起到供给管的流量调节阀的作用而以稳定的量向铸造模具供给熔融金属。专利文献1 日本特开平06-292946号公报(第3_4页,图2)专利文献2 日本特开平04-182046号公报(第4-5页,图1)专利文献3 日本特开平11-19755号公报(第3_4页,图1)

发明内容
然而,在专利文献1中,虽然从流槽的开口部排出的熔融金属的流动自身可能是未发生紊流的稳定的流动,但熔融金属从保温帽的中央部整体呈放射状地排出。因此,熔融金属从流槽的开口部向保温帽内排出后,熔融金属的流动在保温帽中到达占据大区域的外周部的整体为止,花费时间且熔融金属流速也变慢。因此受环境影响而熔融金属的冷却程度变大,或容易发生熔融金属温度分布的不均勻,从而在连续铸造模具内温度变得不均勻而无法制造充分高的品质的铸锭。在专利文献2中,由于熔融金属从保温帽中的规定的一部位沿着各延伸部的长度方向呈放射状排出,因此熔融金属在到达延伸部的前端为止会在保温帽内流动长距离。因此,受环境的影响而熔融金属的冷却程度变大,或容易发生熔融金属温度分布的不均勻,从而在连续铸造模具内会导致温度不均勻而无法制造充分高的品质的铸锭。在专利文献3中,目的是熔融金属的供给量的自动调节,从铸造模具的规定的一部位向铸造模具内排出熔融金属的情况不变,熔融金属的流动到达铸造模具的外周部整体为止会花费时间且熔融金属流速也变慢。因此受环境的影响而熔融金属的冷却程度变大或容易发生熔融金属温度分布的不均勻,在连续铸造模具内会导致温度不均勻而无法制造充分高的品质的铸锭。
本发明提供一种从保温帽向连续铸造模具内注入熔融金属时,能够进行在连续铸造模具内不会导致温度不均勻的注入的连续铸造用保温帽及连续铸造方法。为了实现上述目的,根据本发明的形态,公开了一种用于通过使熔融金属从熔融金属流下口流下到连续铸造模具的成形空间内而连续地铸造铸锭的保温帽。形成所述熔融金属流下口的保温帽的部位的内周形状是与形成所述成形空间的连续铸造模具的部位的内周形状对应的形状。所述保温帽在所述熔融金属流下口的周围形成熔融金属导入空间, 且在该熔融金属导入空间与所述熔融金属流下口之间具备堰部。


图1是本发明的第一实施方式的连续铸造用保温帽的立体图。图2是图1的连续铸造用保温帽的俯视图。图3是图2中的3-3线剖视图。图4(a)、(b)、(c)都是用于说明熔融金属向图1的连续铸造用保温帽的导入状态的图。图5(a)、(b)、(c)都是本发明的第二实施方式的连续铸造用保温帽的纵向剖视图。图6是本发明的第三实施方式的连续铸造用保温帽的立体图。图7是本发明的第三实施方式的连续铸造用保温帽的纵向剖视图。图8是本发明的第四实施方式的连续铸造用保温帽的立体图。图9是图8的连续铸造用保温帽的俯视图。图10(a)、(b)、(c)都是用于说明熔融金属向图8的连续铸造用保温帽的导入状态的图。图11 (a)及(b)都是用于说明本发明的第五实施方式的连续铸造用保温帽的动作的立体图。图12是另一例的连续铸造用保温帽的俯视图。图13是另一例的连续铸造用保温帽的俯视图。图14(a)及(b)都是另一例的连续铸造用保温帽的纵向剖视图。图15是另一例的连续铸造用保温帽的俯视图。
具体实施例方式根据图1 图4(c),说明本发明的第一实施方式的连续铸造用保温帽2。图1表示连续铸造用保温帽2的立体图。需要说明的是,图1表示将连续铸造用保温帽2安装在连续铸造模具4上的状态。图2是图1的俯视图,图3是图2的3-3线剖视图。连续铸造用保温帽2由隔热材料形成。在该连续铸造用保温帽2的中央部形成有熔融金属流下口 6。在图1中,附属于连续铸造模具4的型芯8以从上方被吊起的状态配置在熔融金属流下口 6的中央。熔融金属通过该熔融金属流下口 6而向连续铸造模具4供给。 通过向金属制的连续铸造模具4与其型芯8之间的圆筒空间10 (成形空间)供给熔融金属而将熔融金属成形为所希望的圆筒形,该熔融金属被从冷却水路如供给的冷却水冷却,从而连续地铸造圆筒形的铸锭。在此,形成熔融金属流下口 6的保温帽2的部位的内周形状对应于形成圆筒空间10的连续铸造模具4的部位的内周形状。以下,将形成熔融金属流下口 6的保温帽2的部位简称为流下口形成部位,将形成圆筒空间10的连续铸造模具4的部位称为圆筒空间形成部位。需要说明的是,上述的内周形状彼此对应的一方式是两者一致, 但没有必要完全一致,只要使熔融金属流下口 6的内周形状对应于圆筒空间10的内周形状即可,熔融金属流下口 6的内周形状可以比圆筒空间10的内周形状稍大或比其小。从熔化炉经由流槽向连续铸造用保温帽2供给熔融金属。在此,例如,熔融金属是铝合金的熔融金属。熔融金属从流槽向在连续铸造用保温帽2呈槽状形成的熔融金属导入路12供给。熔融金属从熔融金属导入路12被导入到作为熔融金属导入空间的环状槽14,该环状槽14在连续铸造用保温帽2的中央部以包围熔融金属流下口 6的方式形成。在环状槽14与熔融金属流下口 6之间形成有堰部16。在环状槽14内的熔融金属的液面水平比堰部16的高度低的状态下,即蓄积在环状槽14内的熔融金属量比环状槽14的最大体积量少的期间,熔融金属不会越过堰部16向熔融金属流下口 6流动。因此,在熔融金属的导入初期,熔融金属沿着环状槽14在熔融金属流下口 6的周围分支流动,在与熔融金属导入路12对置的一侧形成的熔融金属排出路18处合流。然后, 熔融金属从该熔融金属排出路18向熔融金属罐20内流入。该状态如图4(a)所示。如图4(a)所示,从熔融金属导入路12被导入的熔融金属M经由环状槽14、熔融金属排出路18而积存在熔融金属罐20内的空间20a中。当熔融金属M从流槽向熔融金属导入路12继续导入时,包括熔融金属罐20在内的熔融金属导入路12、环状槽14、熔融金属排出路18整体的熔融金属M的液面水平上升。在此期间,由于熔融金属M的热量而连续铸造用保温帽2升温。尤其是熔融金属M在环状槽14的作用下总是绕熔融金属流下口 6流动, 从而堰部16等的熔融金属流下口 6的周围的部位成为高温。作为作业工序,从熔融金属M 由熔融金属导入路12导入开始到目前为止的工序相当于铸造预备工序。然后,熔融金属M的蓄积继续进行,如图4 (b)所示,当熔融金属M的液面水平到达在环状槽14的整周水平形成的堰部16的顶部16a时,如图4(c)所示,熔融金属M越过堰部16,向连续铸造模具4流下。由此熔融金属M在圆筒空间10中流动而被冷却水冷却。通过从连续铸造模具4的下侧拉下铸锭而连续地铸造圆筒状的铸锭。作为作业工序,从堰部 16使熔融金属M连续地溢出到向连续铸造模具4侧流下为止的工序相当于熔融金属流下工序。本实施方式具有如下的优点。(1)通过形成在环状槽14与熔融金属流下口 6之间的堰部16,防止被导入环状槽 14的熔融金属在其导入初期从熔融金属流下口 6向连续铸造模具4流下。而且,由于熔融金属罐20的存在,而熔融金属也经由熔融金属排出路18向熔融金属罐20内的空间20a流入。因此,在熔融金属的导入初期,熔融金属向熔融金属罐20排出,抑制熔融金属M的液面水平的上升速度,防止熔融金属M向连续铸造模具4注入的状态持续一会儿。然后,当熔融金属M的液面水平到达堰部16的顶部16a时,熔融金属M从堰部16 溢出,由此,溢出的量的熔融金属向连续铸造模具4流下。因此在熔融金属的导入初期,熔融金属不从熔融金属流下口 6流下而通过在环状槽14内流动来使连续铸造用保温帽2的温度、尤其是堰部16的温度高效地上升。由此,之后流入熔融金属导入路12的熔融金属在维持充分的高温的状态下从堰部16溢出而流入连续铸造模具4内。而且,流下口形成部位的内周形状是对应于圆筒空间形成部位的内周形状的形状,在本实施方式中,流下口形成部位的内周形状与圆筒空间形成部位的内周形状大体一致,因此从堰部16溢出而流下的熔融金属在圆筒空间10的整周不会发生紊流而顺畅地注入,其结果是,充分地维持高温状态的熔融金属向连续铸造模具4的圆筒空间10内供给。由此,从连续铸造用保温帽2向连续铸造模具4内注入熔融金属时,在连续铸造模具4内不会导致温度不均勻。因此铸锭的表面性状和内部性状变得均勻,能够充分地制造出高品质的圆筒状的铸锭。(2)熔融金属导入路12和熔融金属排出路18将熔融金属流下口 6夹在其间而配置在对置的位置。由此,从熔融金属导入路12被导入环状槽14的熔融金属绕熔融金属流下口 6均勻地流动,从而能够使熔融金属流下口 6的周围均勻地升温。(3)在本实施方式中,由于在连续铸造模具4使用了型芯8,因此圆筒空间形成部位的内径存在增大的倾向,并且进而制造出中空状的、在本实施方式中为圆筒状的铸锭,但通过上述那样的优点,在整周能充分地进行均勻的温度管理,因此能得到高品质的铸锭。接下来,参照图5(a) 图5(c),说明本发明的第二实施方式。在上述第一实施方式中,熔融金属导入路12的底部、环状槽6的底部、熔融金属排出路18的底部及熔融金属罐20内的底部它们彼此相互处于同一水平面上,作为整体也处于同一水平面上。在本实施方式中,如图5所示,将它们的底部形成为倾斜面或设置高低差。在图5 (a)所示的连续铸造用保温帽52中,环状槽M的底部5 相对于熔融金属导入路56的底部及熔融金属罐60的底部倾斜。底部Ma将其与熔融金属导入路56连接的部位(导入部)作为最高位置,以从该部位朝向熔融金属排出路58逐渐降低的方式倾斜。由此,如图5 (a)中箭头线所示,从熔融金属导入路56导入的熔融金属在环状槽 54内迅速地流动而到达熔融金属排出路58,然后以该势头如箭头线所示流入到熔融金属罐60内的空间60a中。然后,熔融金属从熔融金属导入路56的导入继续而熔融金属的液面水平到达堰部62的顶部62a,进一步超过时,熔融金属向连续铸造模具流下而开始连续铸造。在此种连续铸造用保温帽52中,在熔融金属的导入初期,熔融金属迅速地流动而遍及到环状槽M整体,能够使环状槽M整体迅速均勻地实现高温化,然后开始连续铸造。图5(b)所示的连续铸造用保温帽72中,熔融金属导入路74、环状槽76及熔融金属排出路78的底部74a、76a、78a这些彼此相互处于同一水平面上,作为整体也处于同一水平面上。熔融金属罐80的底部80a水平,但其高度位置比熔融金属导入路74、环状槽76及熔融金属排出路78的底部74a、76a、78a的高度位置低。由此,与上述第一实施方式相比,从熔融金属导入路74导入的熔融金属在熔融金属罐80内多积存出熔融金属罐80的底部80a的高度位置比其他底部74a、76a、78a的高度位置低的量的体积差。在熔融金属被导入到熔融金属罐80内之后,熔融金属的液面水平到达堰部82的顶部82a。并且超过该顶部82a,从而向连续铸造模具4流下而开始连续铸造。在此种连续铸造用保温帽72中,即使因某种理由而需要将熔融金属导入路74、环状槽76及熔融金属排出路78较浅地形成,但通过调节熔融金属罐80的底部80a的高度位置,也能够充分地使熔融金属流到环状槽76内,之后,使熔融金属超过堰部82而开始连续铸造。由此,能够迅速且均勻地实现环状槽76整体的高温化,然后开始连续铸造。在图5 (c)所示的连续铸造用保温帽92中,环状槽94的底部9 相对于熔融金属导入路96的底部及熔融金属罐102的底部倾斜。底部9 将与该熔融金属导入路96连接的部位(导入部)作为最高位置,以随着从该部位朝向熔融金属排出路100而逐渐降低的方式倾斜的点与图5(a)所示的连续铸造用保温帽52相同。与图5(a)所示的连续铸造用保温帽52的不同点在于,堰部98的顶部98a也与环状槽94的底部94a同样地,将顶部98a中的与熔融金属导入路96对应的部位(导入部) 作为最高位置,以随着从该部位朝向熔融金属排出路100逐渐降低的方式相对于熔融金属导入路96的底部及熔融金属罐102的底部倾斜。但是顶部98a的倾斜程度不一定与底部 94a的倾斜程度相同。由此,如箭头线那样从熔融金属导入路96导入的熔融金属在环状槽94内迅速地流动而到达熔融金属排出路100,然后以该势头如箭头线那样流入到熔融金属罐102内的空间10 中。由此,在熔融金属的导入初期,熔融金属迅速地向环状槽94整体流动,能够迅速且均勻地实现环状槽94整体的高温化这一点与图5(a)的连续铸造用保温帽52相同。但是,在图5(a)的连续铸造用保温帽52中,在熔融金属的流速高的状态下从熔融金属导入路56导入的熔融金属与堰部62发生碰撞,从而存在如下情况在环状槽M内,靠近熔融金属导入路56的熔融金属的液面水平高于靠近熔融金属排出路58的熔融金属的液面水平,而环状槽M内的熔融金属的液面水平倾斜。或者由于熔融金属的流动性低,因此存在如下情况在环状槽M内,靠近熔融金属导入路56的熔融金属的液面水平高于靠近熔融金属排出路58的熔融金属的液面水平,而环状槽M内的熔融金属的液面水平倾斜。相对于此,在图5 (c)所示的连续铸造用保温帽92中,堰部98的顶部98a以对应于环状槽94内的熔融金属的液面水平的倾斜的方式倾斜,因此超过堰部98而向熔融金属流下口 104流下的熔融金属的量在熔融金属流下口 104的整周变得均勻。由此,能得到更高品质的铸锭。接下来,参照图6及图7,说明本发明的第三实施方式的连续铸造用保温帽202。图 7是图6的纵向剖视图。需要说明的是,在图6中示出安装型芯208前的状态。本方式与上述第一实施方式除了环状槽214的底部21 的形状不同之外,其他的结构相同。即,环状槽214的深度随着从堰部216向径向外侧离开而减小。换言之,环状槽 214的底部21 随着从堰部216离开而逐渐升高。在图7的剖视图中如箭头线所示,熔融金属从熔融金属导入路212被导入环状槽 214时,在其初期,在环状槽214的底部21 中,集中向环状槽214的深度大的靠近堰部216 的部分流动,然后经由熔融金属排出路218向熔融金属罐220内的空间220a排出。然后,包括熔融金属罐220内的空间220a而环状槽214内的熔融金属的液面水平上升,当超过堰部216的顶部216a时,从熔融金属流下口 206的整周向连续铸造模具204 流下。上述本实施方式除了上述第一实施方式的优点(1) ( 之外还具有以下的优
点ο(4)在熔融金属的导入初期,环状槽214的底部21 中的靠近堰部216的部分迅速升温,能够提高熔融金属的导入开始时的供给速度,从而能够进行更高效的连续铸造。接下来,参照图8、图9、图10(a) 图10(c)说明本发明的第四实施方式的连续铸造用保温帽252。如图8及图9所示,在本实施方式的连续铸造用保温帽252中,环状槽沈4 内存在有第一堰部266及配置在比该第一堰部266靠径向内侧的第二堰部267这一点与上述第一实施方式不同。其他结构与上述第一实施方式相同。因此,在熔融金属的导入初期,如图9中箭头线所示,熔融金属从熔融金属导入路 262流入到环状槽沈4中的比第一堰部266靠径向外侧的空间中,并经由熔融金属排出路 268流入到熔融金属罐270内的空间270a中。因此在熔融金属的导入初期,熔融金属的液面水平如图10(a)的纵向剖视图所示,不流入到环状槽沈4中的第一堰部沈6与第二堰部267之间的空间及熔融金属流下口 256。需要说明的是,图10(a)是图9的10-10线剖视图。而且,熔融金属从熔融金属导入路262被导入而熔融金属的液面水平上升,当超过第一堰部266的顶部时,熔融金属如图10(b)所示流入到环状槽沈4中的第一堰部 266与第二堰部267之间的空间。然后,像这样熔融金属向环状槽沈4中的第一堰部266与第二堰部267之间的空间流入的状态继续之后,如图10(c)所示当熔融金属的液面水平超过第二堰部267的顶部 267a时,熔融金属向熔融金属流下口 256流下,具有型芯258的连续铸造模具2M中的连续铸造开始。本实施方式除了上述第一实施方式的优点(1) (3)之外还具有以下的优点。(5)在环状槽沈4内,通过设置多条堰部(第一堰部266及第二堰部267、,即使超过第一堰部266的顶部时的熔融金属的量的分布在整周不均勻地发生偏斜,由于第一堰部266与第二堰部267之间的空间的存在,也能够抑制该偏斜。由此,在熔融金属超过水平的内侧的第二堰部267的顶部时,熔融金属在其整周以均勻的流量流下到熔融金属流下口 256内。由此,能够进一步提高连续铸造模具254内的温度均勻性,从而能够制造更高品质的圆筒状的铸锭。接下来,参照图11(a)及图11(b),说明本发明的第五实施方式的连续铸造用保温帽302。如图11(a)所示,本实施方式的连续铸造用保温帽302与上述第一实施方式不同, 不具备熔融金属罐20。而且,在熔融金属排出路318的中途形成有从其两侧壁朝向对置的侧壁突出的一对突出部318a,在比该一对突出部318a靠上游配置有开闭构件319。在熔融金属的导入初期,从熔融金属导入路312导入的熔融金属绕环状槽314被导入熔融金属排出路318后直接向连续铸造用保温帽302外排出,其中该环状槽314以包围熔融金属流下口 306的方式形成。因此,由于对连续铸造用保温帽302进行加热而低温化了的熔融金属向连续铸造用保温帽302外排出。然后,如图11(b)所示,在形成于熔融金属排出路318的一对突出部318a的上游侧配置开闭构件319。通过使开闭构件319从开状态向闭状态转移,而熔融金属排出路318 从敞开状态成为闭塞状态。通过使该熔融金属排出路318向闭塞状态转移而防止熔融金属的排出,因此连续铸造用保温帽302内的熔融金属的液面水平逐渐上升。然后熔融金属如虚线的箭头线所示超过堰部316的顶部316a。由此,熔融金属向熔融金属流下口 306流下,连续铸造模具304 中的连续铸造开始。本实施方式除了上述第一实施方式的优点(2)、(3)之外还具有以下的优点。(6)通过在环状槽314与熔融金属流下口 306之间形成的堰部316所产生的阻挡效果及来自熔融金属排出路318的熔融金属的排出,而在熔融金属的导入初期,防止被导入到环状槽314中的熔融金属从熔融金属流下口 306向连续铸造模具304流下的情况。因此,在熔融金属的导入初期,熔融金属不向连续铸造模具304流下而在环状槽314内流动, 但在此期间,能够高效地使连续铸造用保温帽302尤其是堰部316的温度上升。该升温期间可根据开闭构件319进行的熔融金属排出路318的闭塞时间而任意设定,因此能够将用于实现向连续铸造模具304内流下的熔融金属温度的均勻化的作业形成为自由度高的作业。在任意的升温期间后,当利用开闭构件319关闭熔融金属排出路318时,然后被导入的熔融金属充分地维持高温,在该状态下,从堰部316溢出而向连续铸造模具304流下, 在连续铸造模具304的整周成为顺畅的流动而被注入。由此,在从连续铸造用保温帽302向连续铸造模具304内注入熔融金属时,在连续铸造模具304内不会导致温度不均勻。因此铸锭的表面性状和内部性状变得均勻,能够充分地制造高品质的圆筒状的铸锭。在上述第一至第五实施方式中,熔融金属导入路、熔融金属排出路形成为恒定宽度,但本实施方式不是这样,如图12所示的连续铸造用保温帽352那样,在熔融金属导入路 362中,与环状槽364连接的连接部分的宽度逐渐扩大,且该连接部分没有棱角地平滑。由此,从熔融金属导入路362导入的熔融金属不会发生紊流而顺畅地向环状槽364流入,而且能够减弱熔融金属从正面对堰部366的碰撞。由此,在导入初期熔融金属从堰部366中的靠近熔融金属导入路362的部分越过,或之后在整周超过堰部366时熔融金属量不会局部性地发生偏斜,在连续铸造模具354内不会导致熔融金属温度的不均勻,从而能够充分地连续铸造高品质的铸锭。而且,在图12所示的实施方式中,熔融金属排出路368的与环状槽364连接的部分未形成棱角而顺畅地与环状槽364连接。由此,从环状槽364经由熔融金属排出路368 向熔融金属罐370内的空间370a顺畅地排出熔融金属,能够在从环状槽364向熔融金属排出路368集合流入的部分减弱熔融金属彼此的碰撞。由此,在导入初期熔融金属从堰部366 中的靠近熔融金属排出路368的部分越过而从熔融金属流下口 356流下,或之后在整周超过堰部366时熔融金属量不会发生局部性偏斜,在连续铸造模具354内不会导致熔融金属温度的不均勻,而能够充分地连续铸造高品质的铸锭。在所述第一至第五实施方式中,熔融金属导入路、熔融金属排出路分别为1条,但也可以为多条。在图13的俯视图所示的连续铸造用保温帽402中,示出了形成两条熔融金属导入路412、413及两条熔融金属排出路418、419的例子。需要说明的是,对应于熔融金属排出路418、419,也形成有两个具有空间420a、421a的熔融金属罐420、421。在图13中,两条熔融金属导入路412、413以熔融金属流下口 406为中心而对置配置在180度的位置,而且关于2条熔融金属排出路418、419,也以熔融金属流下口 406为中心与熔融金属导入路412、413错开90度,S卩,以熔融金属流下口 406为中心而相互对置配置在180度的位置。
如此由于熔融金属导入路412、413为多条,通过使向环状槽414导入的熔融金属分散而进行顺畅的熔融金属的导入。而且由于熔融金属排出路418、419为多条,通过使从环状槽414排出的熔融金属分散,而能够进行顺畅的排出。由此,能够防止在导入初期熔融金属从堰部416中的靠近熔融金属导入路412、413的部分或靠近熔融金属排出路418、419 的部分从熔融金属流下口 406流下或在数量上偏斜流下的情况,在连续铸造模具404内不会导致熔融金属温度的不均勻,而能够充分地连续铸造高品质的铸锭。在所述第一至第五实施方式中,堰部形成为恒定厚度的壁状,但如图14(a)所示, 堰部466的内周面466a在堰部466的顶部466b附近也可以形成为曲面状。由此,如虚线所示的箭头线那样,从环状槽464溢出而向熔融金属流下口 456流下时,熔融金属沿着堰部 466的内周面466a顺畅地流动,从而能够防止熔融金属卷入空气的情况。由此,在熔融金属流下口 456中不会发生流下量局部地偏斜而在连续铸造模具内导致熔融金属温度的不均勻的情况,从而能够充分地连续铸造高品质的铸锭。在图14(b)的堰部516中,而且在堰部516的外周面516c的、堰部516的顶部516b 附近形成有返回部516d。由此,如箭头线所示,从熔融金属导入路512流入而与外周面516c 发生碰撞的熔融金属通过返回部516d而向熔融金属导入路512侧返回,因此在熔融金属导入路512侧能够防止熔融金属的液面水平局部性地变高的情况。由此,在熔融金属流下口 506中,能更有效地防止流下量局部性地偏斜而在连续铸造模具内导致熔融金属温度的不均勻的情况,从而能够连续铸造更高品质的铸锭。在所述第一至第五实施方式中,示出了形成圆筒形的铸锭时的连续铸造用保温帽,但在连续铸造除此以外的形状的铸锭时也能够适用本发明。图15表示在形成截面十字状的铸锭的连续铸造模具604上配置的连续铸造用保温帽602的例子。在此,铸锭以实心状态形成,因此未使用型芯,但也可以使用型芯而形成为中空。流下口形成部位的内周形状是与圆筒空间形成部位的内周形状对应的形状,并且在熔融金属流下口 606的外周设置十字环状的熔融金属导入空间614,在该熔融金属导入空间614与熔融金属流下口 606之间形成有十字环状的堰部616。从熔融金属导入路612导入熔融金属时,在熔融金属的导入初期,熔融金属的液面水平未超过堰部616,熔融金属在堰部616的外周侧的熔融金属导入空间614中流动,经由熔融金属排出路618流入到熔融金属罐620内的空间620a中。然后,当熔融金属的液面水平上升时,熔融金属从熔融金属流下口 606的周围超过堰部616而向熔融金属流下口 606流下。由此,利用连续铸造模具604连续铸造截面十字状的铸锭。因此在熔融金属的导入初期,熔融金属不会向熔融金属流下口 606流下而使连续铸造用保温帽602的温度上升。并且,从后方流入的熔融金属在充分地维持高温的状态下, 从堰部616溢出而流入连续铸造模具604。而且,形成熔融金属流下口 606的保温帽602的部位的内周形状呈现出与形成成形空间的连续铸造模具604的部位的内周形状对应的形状,因此从堰部616溢出而流下的熔融金属在连续铸造模具604的整周成为顺畅的流动地被注入,从而充分地维持高温状态的熔融金属向连续铸造模具604供给。即使如此与铸造目标的铸锭的截面形状对应的熔融金属流下口 606的形状复杂, 在从连续铸造用保温帽602向连续铸造模具604内注入熔融金属时,在连续铸造模具604内也不会导致熔融金属温度的不均勻。 所述第一至第五实施方式也可以适用于没有型芯的连续铸造用保温帽。所述第一至第五实施方式的连续铸造用保温帽为了在熔融金属的导入初期将熔融金属从熔融金属导入空间(环状槽)全部或局部地排出而具备熔融金属排出路,但也可以不设置熔融金属排出路。这种情况下,在熔融金属的导入初期,由于蓄积在熔融金属导入空间(环状槽)内的熔融金属而堰部发生升温,然后,熔融金属超过堰部,在连续铸造模具的整周成为顺畅的流动而注入高温的熔融金属。因此在连续铸造模具内不会导致温度不均勻。在所述第一至第五实施方式中,熔融金属的导入空间形成为恒定宽度的槽状,但宽度也可以根据熔融金属的流动的程度而变化。或者也可以不形成熔融金属罐,而能够在连续铸造用保温帽内尽可能地扩大熔融金属导入空间,由此将熔融金属导入空间作为熔融金属罐的替代。标号说明M...熔融金属2、52、72、92、202、252、302、352、402、602...连续铸造用保温帽4、204、254、304、;354、404、604...连续铸造模具8、208、258· · ·型芯10...作为成形空间的圆筒空间12、56、74、96、212、262、312、362、412、413、512、612...熔融金属导入路14、54、76、94、214、264、314、364、414、464、614. · ·作为熔融金属导入空间的环状
槽16、62、82、98、216、266、267、316、366、416、466、516、616· · ·堰部16a、62a、82a、98a、216a、266a、267a、316a、466b、516b...顶部18、58、78、100、218、268、318、368、418、419、618...熔融金属排出路20、60、80、102、220、270、370、420、421、620...熔融金属罐54a,76a,214a...熔融金属导入空间的底部74a...熔融金属导入路的底部78a、94a...熔融金属排出路的底部80a...熔融金属罐的底部104、206、256、306、356、406、456、506、606...熔融金属流下口319...开闭构件
1权利要求
1.一种保温帽,用于通过使熔融金属从熔融金属流下口流下到连续铸造模具的成形空间内而连续地铸造铸锭,其中,形成所述熔融金属流下口的保温帽的部位的内周形状是与形成所述成形空间的连续铸造模具的部位的内周形状对应的形状,所述保温帽在所述熔融金属流下口的周围形成熔融金属导入空间,且在该熔融金属导入空间与所述熔融金属流下口之间具备堰部。
2.根据权利要求1所述的保温帽,其中,形成所述熔融金属流下口的所述保温帽的部位的内周形状与形成所述成形空间的所述连续铸造模具的部位的内周形状大体一致。
3.根据权利要求1或2所述的保温帽,其中,所述熔融金属导入空间是包围所述熔融金属流下口的环状槽。
4.根据权利要求1至3中任一项所述的保温帽,其中,所述熔融金属导入空间具有将熔融金属导入的导入部,该导入部的底部以将该导入部的高度位置作为最高位置并随着从该导入部离开而逐渐降低的方式倾斜。
5.根据权利要求1至4中任一项所述的保温帽,其中, 所述堰部的顶部水平地形成。
6.根据权利要求1至4中任一项所述的保温帽,其中,所述熔融金属导入空间具有将熔融金属导入的导入部,所述堰部的顶部以将与所述导入部对应的部位的高度位置作为最高位置并随着从所述导入部离开而逐渐降低的方式倾斜。
7.根据权利要求1至6中任一项所述的保温帽,其中,所述熔融金属导入空间的底部随着从所述堰部离开而逐渐升高。
8.根据权利要求1至7中任一项所述的保温帽,还具备熔融金属导入路,向所述熔融金属导入空间开口而将熔融金属导入该熔融金属导入空间;熔融金属排出路,向所述熔融金属导入空间开口而将熔融金属从该熔融金属导入空间排出;及熔融金属罐,经由所述熔融金属排出路与所述熔融金属导入空间连接,并蓄积从所述熔融金属导入空间排出的熔融金属。
9.根据权利要求8所述的保温帽,其中,所述熔融金属罐的底部的高度位置设定成低于所述熔融金属导入空间的底部的高度位置,所述熔融金属排出路的底部处于与所述熔融金属罐的底部及所述熔融金属导入空间的底部中的任一方相同的高度位置,或在所述熔融金属罐的底部与所述熔融金属导入空间的底部之间呈倾斜状地延伸。
10.根据权利要求1至7中任一项所述的保温帽,还具备熔融金属导入路,向所述熔融金属导入空间开口而将熔融金属导入该熔融金属导入空间;熔融金属排出路,向所述熔融金属导入空间开口而将熔融金属从该熔融金属导入空间排出;及开闭构件,能够对所述熔融金属排出路进行开闭。
11.根据权利要求8至10中任一项所述的保温帽,其中,所述熔融金属导入路和所述熔融金属排出路在将所述熔融金属流下口置于中间而相对的位置向所述熔融金属导入空间开口。
12.根据权利要求1至11中任一项所述的保温帽,其中,所述堰部为多个。
13.根据权利要求12所述的保温帽,其中,所述堰部为双层。
14.根据权利要求1至13中任一项所述的保温帽,其中,在所述熔融金属流下口的中心配置有型芯。
15.一种连续铸造方法,使用保温帽,该保温帽配置在连续铸造模具的上方,并用于通过使熔融金属从熔融金属流下口流下到连续铸造模具的成形空间内而连续地铸造铸锭,所述保温帽中,形成所述熔融金属流下口的保温帽的部位的内周形状是与形成所述成形空间的连续铸造模具的部位的内周形状对应的形状,所述保温帽在所述熔融金属流下口的周围形成熔融金属导入空间,且在该熔融金属导入空间与所述熔融金属流下口之间具备堰部, 所述方法包括铸造预备工序,将熔融金属导入所述熔融金属导入空间;及熔融金属流下工序,在该铸造预备工序之后,进而将熔融金属导入所述熔融金属导入空间,由此使熔融金属从所述堰部连续溢出而向连续铸造模具流下。
全文摘要
本发明公开了一种用于通过使熔融金属从熔融金属流下口流下到连续铸造模具的成形空间内而连续地铸造铸锭的保温帽。流下口形成部位的内周形状是与圆筒空间形成部位的内周形状对应的形状。所述保温帽在所述熔融金属流下口的周围形成环状槽,且在该环状槽与所述熔融金属流下口之间具备堰部。
文档编号B22D11/00GK102365141SQ201080014208
公开日2012年2月29日 申请日期2010年3月31日 优先权日2009年3月31日
发明者上野纪幸, 升田隆一, 小林岳人, 杉田薰 申请人:丰田自动车株式会社, 日本轻金属株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1