钢的连续铸造方法和钢条的制造方法

文档序号:3307888阅读:247来源:国知局
钢的连续铸造方法和钢条的制造方法
【专利摘要】该连续铸造方法包括:拉拔工序,从圆筒状的铸型拉拔出固液共存状态的铸坯;第一压下工序,在拉拔工序之后,对固液共存状态的铸坯实施向与铸坯的长度方向垂直第一压下方向的压下;以及第二压下工序,在将与铸坯的长度方向以及第一压下方向这两方垂直的压下方向设为第二压下方向时,在第一压下工序之后,对为完全凝固且处于中心部的温度比表面部的温度高的状态的铸坯一边交替地实施向第一压下方向和第二压下方向的压下,一边将其成形为在铸坯的与长度方向垂直的截面上进行观察的情况下的角部具有圆角的圆角矩形。
【专利说明】钢的连续铸造方法和钢条的制造方法
【技术领域】
[0001]本发明涉及用于得到中心偏析少、中心疏松少和内部裂纹少的内部品质优异的铸坯(鋳片)的连续铸造方法和能够省略初轧(分塊圧延)工序的钢条的制造方法。
[0002]本申请基于2012年8月22日在日本申请的日本特愿2012-183179号主张优先权,并在此援引其内容。
【背景技术】
[0003]通常,高级(高品质)钢条通过以下方式制造:通过具有大截面的矩形铸型的大方坯(bloom)连续铸造机来铸造铸坯,并对该铸坯进行初轧,然后进行钢胚(鋼片)轧制。该高级钢条包括棒钢、线材等。在这些钢条中,在连续铸造铸坯的凝固末期形成的中心偏析、中心疏松会导致材料特性恶化。因此,铸造铸坯以使得不产生中心偏析和中心疏松等缺陷变得很重要。作为降低该中心偏析和中心疏松的代表性的方法,能够举出连续铸造机内的铸坯的未凝固轻压下法和完全凝固后压下法。
[0004]例如,在专利文献I提出了以下技术:对直径340mm以下的圆铸坯在轴芯部的固相率为0.3?0.7的状态下利用一组辊通过一个行程(path)施加0.1?3.0%的压下。然而,该技术是适用于直径340_以下的截面尺寸小的铸坯的技术。对此,当铸坯的截面尺寸变大时、凝固收缩量也变大,因此,为了通过由一组辊的一个道次所进行的未凝固压下来得到上述效果,需要增加向铸坯的压下量。即,为了通过一个道次使大截面的矩形铸坯的中心偏析和中心疏松消失,需要在连续铸造机内施加大的压下量。但是,在这样的情况下,存在以下问题:在未凝固压下时会在铸坯中产生内部裂纹,有损钢条的材料特性。这样,难以兼顾降低铸坯的中心偏析、中心疏松和防止铸坯产生内部裂纹。
[0005]另外,在专利文献2中例如提出了以下技术:对于直径180mm的圆铸坯,通过控制制造条件来使铸坯内部的等轴晶率为35%以上,在铸坯的中心固相率为0.25?0.35或0.60?0.90的范围的位置通过一对扁平辊(flat roll)施加2.0?3.5%的压下。但是,在该技术中,在铸坯的截面尺寸大的情况下,为了使铸坯的截面的等轴晶率为35%以上就需要对制造条件进行限制,例如过度地降低铸造速度。因此,难以确保充分的生产能力。另夕卜,已知铸坯内部的等轴晶率也受钢组成的影响,因此,能够应用该技术的钢种有限。
[0006]为了提高高级钢条的材料特性,兼顾降低铸坯的中心偏析、中心疏松和防止铸坯产生内部裂纹是重要的。但是,至今还未开发出得到中心偏析少、中心疏松少和内部裂纹少的内部品质优异的铸坯并且也能提高铸坯的生产能力的连续铸造技术。
[0007]现有技术文献
[0008]专利文献
[0009]专利文献1:日本国特开平9-99349号公报
[0010]专利文献2:日本国特开平11-309553号公报

【发明内容】
[0011]发明要解决的问题
[0012]本发明是鉴于上述现状而完成的发明。在本发明中,目的在于,提供一种能够应用于作为钢条来使用的广泛的钢种并且能够兼顾降低中心偏析、中心疏松和防止铸坯产生内部裂纹的铸坯的连续铸造方法,和能够省略钢胚轧制前的初轧工序而提高生产率的钢条的制造方法。
[0013]用于解决问题的技术方案
[0014]本发明的要旨如下。
[0015](A)本发明的一个实施方式涉及的连续铸造方法包括:拉拔工序,从圆筒状的铸型拉拔出固液共存状态的铸坯;第一压下工序,在所述拉拔工序之后,对所述固液共存状态的所述铸坯施加向与所述铸坯的长度方向垂直的第一压下方向的压下;以及第二压下工序,在将与所述铸坯的所述长度方向以及所述第一压下方向这两方都垂直的压下方向设为第二压下方向时,在所述第一压下工序之后,对为完全凝固状态且处于中心部的温度比表面部的温度高的状态的所述铸坯,一边交替地实施向所述第一压下方向和所述第二压下方向的压下,一边将其成形为在所述铸坯的与所述长度方向垂直的截面上进行观察的情况下的角部具有圆角的圆角矩形。
[0016](B)在上述(A)所述的连续铸造方法中,所述铸型的内径为400mm以上且600mm以下;所述铸坯的拉拔速度为0.35m/分钟以上且0.65m/分钟以下;在所述拉拔工序之后且所述第一压下工序之前的所述铸坯的所述中心部的固相率为0.3以上且0.8以下;所述第一压下工序中向所述第一压下方向的每次压下的压下率为0.3%以上且7.0%以下;在所述第一压下工序之后且所述第二压下工序之前的所述铸坯的所述中心部的固相率超过0.8,并且,所述铸坯的所述中心部的所述温度比所述表面部的所述温度高150°C以上;所述第二压下工序中向所述第一压下方向的每次压下的压下率为1.5%以上且7.0%以下,并且,向所述第二压下方向的每次压下的压下率为1.5%以上且7.0%以下;所述第二压下工序之后的所述铸坯的与所述长度方向垂直的所述截面的形状为:长边为235mm以上且270mm以下,所述角部的曲率半径为5mm以上且50mm以下。
[0017](C)本发明的一个实施方式涉及的钢条的制造方法包括:通过上述(A)或(B)所述的连续铸造方法得到所述铸坯的连续铸造工序;和在所述连续铸造工序之后对所述铸坯进行轧制的轧制工序。
[0018]发明的效果
[0019]根据本发明的上述实施方式,不依赖钢种而对具有大截面的圆铸坯施加多次来自铸还厚度方向(第一压下方向)和铸还宽度方向(第二压下方向)的未凝固压下和完全凝固后压下。其结果,能够不产生铸坯的内部裂纹、并且在降低中心偏析和中心疏松的同时将铸坯的截面尺寸缩小至相当于初轧后的尺寸。即,根据本发明的上述实施方式,能够提供一种能够应用于作为钢条来使用的广泛的钢种并且能够兼顾降低中心偏析、中心疏松和防止铸坯产生内部裂纹的铸坯的连续铸造方法,和能够省略钢胚轧制前的初轧工序而提高生产率的钢条的制造方法。
【专利附图】

【附图说明】
[0020]图1是用于对本发明的一个实施方式涉及的连续铸造方法进行说明的概略图。[0021]图2是对该实施方式涉及的连续铸造方法的铸坯的压下形态进行说明的概略图。
[0022]图3是表示该实施方式涉及的连续铸造方法的铸坯的铸造速度与中心偏析的关系的图。
[0023]图4是表示该实施方式涉及的连续铸造方法的铸坯的中心部以及表面部的温度差与超声波探伤检查结果的关系的图。
[0024]图5是表示该实施方式涉及的连续铸造方法的第二压下工序中的累积压下率与超声波探伤检查结果的关系的图。
【具体实施方式】
[0025]以下,参照附图对本发明的优选的实施方式进行详细说明。但是,本发明并非仅限于以下的实施方式的结构,而是能够在不脱离本发明的主旨的范围内进行各种变更。另外,对于在以下的说明中所使用的附图,为了使本发明的特征易于理解,为了方便起见,有时对成为要部的部分进行放大表示,各构成要素的尺寸比率等不限于与实际相同。
[0026]此外,在以下的说明中,铸坯的厚度方向意味着水平辊的压下方向(第一压下方向),所述水平辊配置成辊轴方向与连续铸造机的安装面平行且与铸坯的输送方向垂直。另夕卜,铸坯的宽度方向意味着垂直辊的压下方向(第二压下方向),所述垂直辊配置成辊轴方向与连续铸造机的安装面垂直。即,在铸坯的与长度方向垂直的截面上进行观察,铸坯的长度方向、铸坯的厚度方向(第一压下方向)和铸坯的宽度方向(第二压下方向)垂直。
[0027]另外,铸坯的中心部定义为满足以下条件的区域。在该区域中,在铸坯的与长度方向垂直的截面上进行观察,上述中心部的重心与该截面的重心一致,上述中心部的轮廓的形状与上述截面的缩小后的轮廓的形状一致,并且,上述中心部的面积为上述截面的面积的50%。另外,铸坯的表面部定义为从铸坯的周面到在深度方向上距离表面铸坯直径的5%的区域。另外,在以下的说明中,只要没有特别说明,则铸坯的截面意味着铸坯的与长度方向垂直的截面。
[0028]另外,在将固相和液相处于共存状态时的固相的体积比设为固相率时,将在铸坯的中心部固相率为0.3?0.8 (30体积%?80体积%)的情况定义为“未凝固(固液共存)”状态,将在铸坯的中心部固相率超过0.8(80体积%)的情况定义为“完全凝固”状态。另外,在连续铸造机中,将铸坯的中心部的固相率为0.3?0.8的区域定义为“未凝固压下带”,将铸坯的中心部的固相率超过0.8的区域定义为“完全凝固压下带”。
[0029]此外,固相率例如如下求出即可。固相与液相的体积比能够根据合金状态图进行类推。具体而言,只要钢组成和温度确定,则能够根据合金状态图唯一地求出固相率。由此,使用合金状态图,根据钢组成和铸坯的中心部的温度求出铸坯的中心部的固相率即可。此夕卜,作为合金状态图,也可以使用基于热力学计算系统的计算状态图。
[0030]以下,对得到本发明的一个实施方式涉及的钢的连续铸造方法的经过进行说明。[0031 ] 为了铸造中心偏析少和中心疏松少的内部品质优异的高级钢条用的铸坯,例如,连续铸造具有大截面的铸坯是有效的。即,通过增大铸坯的截面尺寸,每单位时间的铸造量增加,从而能够在不影响生产率的范围内降低铸造速度。由此,铸坯的截面的等轴晶率相对增加,另外,浇包、中间包、铸型间的钢液中的夹杂物的浮上分离的除去效率也提高。
[0032]然而,截面尺寸大的铸坯的凝固收缩量比截面尺寸小的铸坯的凝固收缩量大。因此,在为了降低截面尺寸大的铸坯的中心偏析而实施未凝固压下的情况下,需要增加向铸坯的压下量。因此,在未凝固压下时容易产生铸坯的内部裂纹。
[0033]为了解决上述问题,本发明人反复进行锐意研究,结果发现了以下知识。
[0034]( I)在矩形铸坯的压下时,在与压下辊接触的整个接触面作用压下应力,在不与压下辊接触的整个非接触面都会产生鼓胀(bulking)变形,从而向铸坯的中心部的压下浸透度(能够向铸坯的中心部集中压下的程度)降低。因此,为了抑制中心偏析和压紧中心疏松,需要大的压下量。另一方面,若是截面形状为圆形的圆铸坯,则在铸坯的压下时与压下辊接触的铸坯的圆弧面集中作用压下应力,因此,即使是小的压下量也能够提高向铸坯的中心部的压下浸透度。
[0035]( 2)在铸坯的中心部和表面部存在温度差,在连续铸造机内,与铸坯的表面部相t匕,中心部处于高温状态。因此,铸坯的中心部的变形阻力比铸坯的表面部的变形阻力小,即使是小的压下量也能够提高向中心部的压下浸透度。特别是,对从铸型拉拔出的铸坯进行向铸坯厚度方向的未凝固压下,并且反复进行来自铸坯厚度方向和宽度方向的多次完全凝固后压下,由此能够以良好的压下浸透度逐渐对铸坯进行压下。在该情况下,能够一边兼顾中心偏析、中心疏松的降低和内部裂纹的防止一边对铸坯进行压下。
[0036](3)在通常的初轧中,在初轧之前通过铸坯加热工序充分地对铸坯进行加热,因此,初轧时的铸坯的中心部温度与表面部温度的温度差比连续铸造机内的铸坯内的温度差小。因此,向铸坯的中心部的压下浸透度必然变小,有时会无法充分地压实中心疏松。另一方面,在通过连续铸造机对铸坯进行压下的情况下,如上所述,通过铸坯的中心部与表面部的温度差而使压下浸透度变得良好。因此,通过利用连续铸造机将铸坯压下至相当于初轧后的尺寸,能够得到一边兼顾降低中心偏析、中心疏松和防止内部裂纹一边能够直接应用于用于制造钢条的钢胚轧制的尺寸的铸坯。换言之,通过本实施方式涉及的连续铸造机铸造出的铸坯能够不进行初轧而直接提供给钢胚轧制来制造钢条。
[0037]以下,对本实施方式涉及的连续铸造方法的各工序进行说明。
[0038]<连续铸造方法>
[0039]图1概略表示用于实施本实施方式涉及的连续铸造方法的连续铸造机10。另外,图2概略表示本实施方式涉及的连续铸造方法的铸坯的压下形态。如图1、2所示,本实施方式涉及的连续铸造方法包括:拉拔工序,从中间包I向铸型2供给钢液,从圆筒状(在与拉拔方向垂直的截面上进行观察时其截面形状为圆形)的上述铸型2拉拔未凝固(固液共存)状态的铸坯3 ;第一压下工序,在上述拉拔工序之后,使用水平辊(第一压下辊)5对从铸型2拉拔出并经过了连续铸造机辊(支撑辊)4的上述固液共存状态的上述铸坯3 (3a)实施向与铸坯3的长度方向垂直的第一压下方向的压下,所述水平辊5配置成辊轴方向与连续铸造机10的安装面7平行且与上述铸坯3的输送方向垂直;以及第二压下工序,在将在与铸坯3的长度方向垂直的截面上进行观察时与铸坯3的长度方向以及上述第一压下方向这两方垂直的压下方向设为第二压下方向时,在上述第一压下工序之后,一边对处于完全凝固且中心部的温度比表面部的温度高的状态的上述铸坯3 (3b,3c)交替地实施由水平辊(第一压下辊)6a进行的向上述第一压下方向的压下和由垂直辊(第二压下辊)6b进行的向上述第二压下方向的压下,一边将铸坯3成形为在与铸坯3的长度方向垂直的截面上进行观察时角部具有圆角的圆角矩形。[0040](拉拔工序)
[0041]拉拔工序是以下工序:使从中间包I供给至铸型2的钢液的与铸型2接触的接触面凝固,然后从铸型2的底部连续地拉拔固液共存状态的铸坯3。从铸型2拉拔出的铸坯3由连续铸造机辊4支承,一边保持形状一边被输送至下一工序。
[0042]关于用于得到圆铸坯3的铸型2的截面尺寸,优选,在与拉拔方向垂直的截面上进行观察时铸型2的内径为400mm以上,进一步优选为400mm以上且600mm以下,最优选的为400mm以上且460mm以下。当铸型2的截面尺寸过小时,从弯月面到铸坯3成为完全凝固状态的位置的距离会变短,因此,为了对铸坯3 (3a)施加充分的未凝固压下,可能会需要特殊的铸坯压下装置、设备成本会增加。另一方面,当铸型2的截面尺寸过大时,铸坯3成为完全凝固状态的位置会超过连续铸造机10的机长,因此,为了充分地实施后述的完全凝固后压下(第二压下工序),恐怕不得不延长连续铸造机10的机长。
[0043]对铸坯3的铸造速度(拉拔速度)没有特别限定,但优选为0.35m/分钟以上且
0.65m/分钟以下,进一步优选为0.40m/分钟以上且0.60m/分钟以下。在铸造速度过慢的情况下,在铸坯3到达连续铸造机的未凝固压下带(水平辊5)之前铸坯内部会完全凝固,无法进行铸坯3的未凝固压下,从而恐怕无法得到中心偏析的抑制效果。另外,在铸造速度过慢的情况下,在完全凝固压下带(第二压下工序)中,铸坯3的中心部与铸坯3的表面部的温度差可能会变小,导致铸坯3的中心部与铸坯3的表面部的变形阻力差变小。因此,完全凝固后压下的向铸坯3的中心部的压下浸透度可能会降低,导致无法充分地压实中心疏松。另一方面,当铸坯3的铸造速度(拉拔速度)过快时,铸坯3成为完全凝固状态的位置会超过连续铸造机10的机长,因此,可能会无法得到中心偏析的抑制效果。另外,有时会变得无法进行完全凝固后压下(第二压下工序),从而无法充分地得到中心疏松的压实效果。
[0044]在图3中图示出使用拉拔后的截面形状为圆形且其直径为450mm的铸坯3进行调查所得到的铸坯3的拉拔速度与中心偏析的关系。在图3中,纵轴为碳浓度偏析度,横轴为铸造速度(拉拔速度)。在此,碳浓度偏析度是指铸坯3的中心部的碳浓度测定值除以从中间包I供给至铸型2的钢液的碳浓度测定值而得到的值。铸坯3的中心部的碳浓度例如使
用tp5mm钻头从铸坯3的中心部采取切屑并进行化学分析来得到即可。如该图3所示,在铸坯3的拉拔速度为0.35m/分钟以上且0.65m/分钟以下时,能够优选地得到中心偏析的抑制效果。
[0045](第一压下工序)
[0046]第一压下工序是以下工序:在拉拔工序之后,在连续铸造机10的未凝固压下带中,对从圆筒状的铸型2拉拔出的未凝固状态(固液共存状态)的铸坯3 (3a)实施使用了水平辊(第一压下辊)5的来自铸坯厚度方向(第一压下方向)的压下。通过压下未凝固状态且截面形状为圆形的铸坯3(3a),会在与水平辊5接触的铸坯3的圆弧面集中作用压下应力,因此,即使是小的压下量也能够提高向铸坯3的中心部的压下浸透度。而且,未凝固状态的铸坯3的中心部的变形阻力比铸坯3的表面部的变形阻力小,因此,即使是小的压下量也能够提高向中心部的压下浸透度。即,通过第一压下工序,能够以良好的压下浸透度压下铸坯3,能够一边兼顾降低中心偏析、中心疏松和防止产生内部裂纹一边压下铸坯3。
[0047]在第一压下工序中,优选,各水平辊5向铸坯3的压下率相对于即将进入各水平辊5之前的铸还3的厚度(第一压下方向的厚度)为0.3%以上且7.0%以下。S卩,优选,第一压下工序中向第一压下方向的每次压下的压下率为0.3%以上且7.0%以下。在本实施方式中,也能够在第一压下工序中采用从轻压下到大压下的任一种压下。当在本实施方式中应用大压下时,在铸坯3的中心部的固相率为0.7附近的区域中,能够通过施加与铸坯3的中心部的未凝固部(固液共存部)的直径相等的量的压下来防止残留内部裂纹。在第一压下工序中,当各水平辊5向铸坯3的压下率过小时,可能会无法充分地得到中心偏析的抑制效果。另外,当各水平辊5向铸坯3的压下率过大时,可能会在铸坯3的表面产生裂纹。此外,在为了优选地限制内部裂纹的产生而将第一压下工序中的压下限定为轻压下的情况下,优选使各水平辊5的压下率为0.3%以上且2.2%以下。
[0048]另外,在第一压下工序中,优选,各水平辊5向铸坯3的累积压下率为3.6%以上且10%以下。在各水平辊5的累积压下率为3.6%以上且10%以下时,能够优选地兼顾降低铸坯3的中心偏析、中心疏松和防止铸坯3产生内部裂纹。此外,在图1所示的连续铸造机10中使用六对水平辊5。
[0049]在被提供给第一压下工序之前中心部为未凝固状态(中心部的固相率为0.3以上且0.8以下)的铸坯3 (3a),在通过上述条件被提供给第一压下工序之后,中心部成为完全凝固(中心部的固相率超过0.8)的状态。在本实施方式中,在第二压下工序中,对中心部处于完全凝固且中心部的温度比表面部的温度高的状态的铸坯3 (3b、3c)交替地进行向铸坯厚度方向(第一压下方向)的压下和向铸坯宽度方向(第二压下方向)的压下。
[0050](第二压下工序)
[0051]第二压下工序是以下工序:在第一压下工序之后,在连续铸造机10的完全凝固压下带中,对处于完全凝固且中心部的温度比表面部的温度高的状态的铸坯3 (3b,3c)交替地实施使用了水平辊(第一压下辊)6a的来自铸坯厚度方向(第一压下方向)的压下和使用了垂直辊(第二压下辊)6b的来自铸坯宽度方向(第二压下方向)的压下。在本实施方式中,通过交替地实施使用了水平辊6a的来自铸坯厚度方向的压下和使用了垂直辊6b的来自铸还宽度方向的压下,能够一边防止铸还3 (3b, 3c)的内部裂纹一边降低中心偏析和中心疏松。另外,能够得到在连续铸造机10的出口(下游侧机端)在与铸坯3的长度方向垂直的截面上进行观察时、截面尺寸缩小后的不具有角部的矩形铸坯(角部具有圆角的圆角矩形)。
[0052]在处于铸坯3的中心部的温度比表面部的温度高的状态的情况下,铸坯3的中心部的变形阻力比铸坯3的表面部的变形阻力小,因此,即使是小的压下量也能够提高向中心部的压下浸透度。在本实施方式中,优选,铸坯3的中心部的温度比表面部的温度高150°C以上,进一步优选高200°C以上。另外,对铸坯3的中心部的温度的上限没有特别限定,但也可以设为由铸坯3的钢组成所决定的液相线温度。
[0053]此外,铸坯3的中心部和表面部的温度例如如下求出即可。由于通过实测来求出铸坯3的中心部的温度并不容易,所以可以通过进行热传导解析的冷却模拟(传热计算模型)来求出上述温度。具体而言,基于钢液温度、拉拔速度、铸坯3的截面尺寸、铸坯3与连续铸造机10的热交换热量、铸坯3的放热量、铸坯3的加工发热量等各制造条件,通过冷却模拟来求出铸坯3的表面部的温度和中心部的温度即可。或者,也可以事先通过冷却模拟求出上述各制造条件下的铸坯3的周面温度(表面温度)、表面部的温度和中心部的温度的关系,然后对铸坯3的周面温度(表面温度)进行实测,从而类推出该制造条件下的该时刻的铸坯3的表面部的温度和中心部的温度。在该情况下,能够更加准确地求出铸坯3的表面部的温度和中心部的温度。
[0054]图4表示铸坯3完全凝固之后以20%的累积压下率施加了压下时的中心部与表面部的温度差与对该铸坯进行钢胚轧制之后的超声波探伤检查(UST:Ultra Sonic Test)的合格率的关系。在图4中,纵轴为钢胚中的超声波探伤检查(UST)的合格率,横轴为铸坯3的中心部与表面部的温度差。如该图4所示,可知在铸坯3的中心部的温度比表面部的温度高150°C以上时,超声波探伤检查的合格率高,因此,优选地得到了中心部疏松压接的效果O
[0055]在第二压下工序中,优选,各水平辊6a向铸坯3 (3b)的压下率相对于即将进入各水平辊6a之前的铸坯3(3b)的厚度(第一压下方向的厚度)为1.5%以上且7.0%以下。即,优选,向第一压下方向的每次压下的压下率为1.5%以上且7.0%以下。另外,优选,各垂直辊6b向铸坯3 (3c)的压下率相对于即将进入各垂直辊6b之前的铸坯3 (3c)的宽度(第二压下方向的厚度)为1.5%以上且7.0%以下。S卩,优选,向第二压下方向的每次压下的压下率为1.5%以上且7.0%以下。在本实施方式中,在第二压下工序中,也能够与第一压下工序同样地采用从轻压下到大压下的任一种压下。在本实施方式的第二压下工序中,因为是向完全凝固后状态的铸坯施加的压下,因此,即使通过大压下进行压下也难以产生内部裂纹。在第二压下工序中,当各水平辊6a向铸坯3 (3b)的压下率和各垂直辊6b向铸坯3 (3c)的压下率过小时,可能会无法得到对中心疏松残留的抑制效果。另外,当各水平辊6a向铸坯3(3b)的压下率和各垂直辊6b向铸坯3 (3c)的压下率过大时,可能会遍布不与压下辊接触的整个非接触面产生鼓胀(bulging)变形,导致在不与压下辊接触的铸坯3的表面产生裂纹。此外,在为了一边优选地抑制内部裂纹的产生一边优选地得到上述效果而将第二压下工序中的压下限定为轻压下的情况下,优选使各水平辊6a和各垂直辊6b的压下率为1.5%以上3.3%以下。
[0056]图5表示第二压下工序中的累积压下率与钢胚轧制后的超声波探伤检查中的合格率的关系。在图5中,纵轴为钢胚轧制后的超声波探伤检查(UST)中的合格率,横轴为各辊的压下率的累积值。
[0057]在第二压下工序中的累积压下率为75%以上时,能够优选地降低铸坯3的中心偏析和中心疏松。此外,在图1所示的连续铸造机10中,使用七对水平辊6a和七对垂直辊
6b ο
[0058]优选,第二压下工序后的铸坯3的形状在与长度方向垂直的截面上进行观察为角部具有圆角的圆角矩形。通过使第二压下工序后的铸坯3的形状角部具有圆角,能够优选地抑制在钢胚轧制时以角部为起点的裂纹的生成。
[0059]另外,优选,第二压下工序后的铸坯3在与长度方向垂直的截面上进行观察是角部的曲率半径为5mm以上的圆角矩形。在角部的曲率半径为5mm以上时,能够进一步优选地抑制在钢胚轧制时以角部为起点的裂纹的生成。另外,对角部的曲率半径的上限没有特别限定,但优选为50mm以下。
[0060]另外,优选,第二压下工序后的铸坯3在与长度方向垂直的截面上进行观察、与第一压下工序前的铸坯3的上述截面(相当于铸型2的截面尺寸)相比面积百分比为58%以下,进一步优选为44%以下。具体而言,优选,第二压下工序后的铸坯3的长边为235mm以上且270mm以下。在连续铸造机10内在铸坯3的长边小于235mm期间进行压下,在这样的情况下表面部的延展性可能会伴随铸坯3的表面部的温度降低而降低,导致产生表面裂纹。另一方面,在铸坯3的长边超过270mm的情况下,在后述的钢条的制造方法中,钢胚轧制时的辊磨机载荷变得过大,可能需要大规模的轧制辊装置。另外,可能会无法省略初轧工序。
[0061]此外,在本实施方式涉及的连续铸造方法中,也可以在上述拉拔工序之后且在上述第一压工序之前,作为冷却工序对铸坯3进行由冷却水实现的二次冷却。关于二次冷却条件,优选,二次冷却比水量为0.10L/kg-铁?0.55L/kg-铁I的范围。在二次冷却比水量小于0.10L/kg-铁的情况下,二次冷却水量变得过小,难以维持冷却喷雾形状。另一方面,在二次冷却比水量超过0.55L/kg-铁的情况下,对于铸坯3的冷却强度局部变得过大,冷却时和复热时的热振宽度变大,其结果,可能会在铸坯3产生表面裂纹。
[0062]本实施方式涉及的连续铸造方法能够作为对于碳钢或合金钢等各种钢种的连续铸造方法来应用。通过本实施方式涉及的连续铸造方法得到的铸坯3是截面的形状为没有角部的大致矩形状(角部具有圆角的圆角矩形)的铸坯,是中心偏析少和中心疏松少并且内部裂纹也受到了抑制的内部品质优异的铸坯3。另外,通过本实施方式涉及的连续铸造方法,能够将铸坯3的与长度方向垂直的截面缩小至相当于初轧后的尺寸。S卩,如以下说明的那样,在使用通过本实施方式涉及的连续铸造方法得到的铸坯3来制造钢条的情况下,能够省略初轧工序。
[0063]另外,在上述连续铸造方法中,作为一例,将实施向第一压下方向的压下第一压下辊5 (6a)配置成与连续铸造机10的安装面7水平,将实施向第二压下方向的压下的第二压下辊6b配置成与连续铸造机10的安装面7垂直。但是,只要在铸坯3的与长度方向垂直的截面上进行观察、第一压下方向与第二压下方向垂直,则对第一压下辊5 (6a)和第二压下辊6b相对于连续铸造机10的配置没有特别限定。不过,在如图1所示的连续铸造机10那样铸坯3的输送方向(前进方向)在一部分弯曲的情况下,优选,将实施向第一压下方向的压下的第一压下辊5 (6a)配置成辊轴方向与连续铸造机10的安装面7平行且与铸坯3的输送方向垂直,将实施向第二压下方向的压下的第二压下辊6b配置成与连续铸造机10的安装面7垂直。
[0064]以下,对以上说明的本实施方式涉及的连续铸造方法进行总结。
[0065]本实施方式涉及的连续铸造方法包括:拉拔工序,从圆筒状的铸型2拉拔出固液共存状态的铸坯3 ;第一压下工序,在上述拉拔工序之后,对上述固液共存状态的上述铸坯3实施向与上述铸坯3的长度方向垂直的第一压下方向的压下;以及第二压下工序,在将与上述铸坯3的上述长度方向以及上述第一压下方向这两方垂直的压下方向设为第二压下方向时,在上述第一压下工序之后,对处于完全凝固且中心部的温度比表面部的温度高的状态的上述铸坯3—边交替地实施向上述第一压下方向和上述第二压下方向的压下,一边将其成形为在上述铸坯3的与上述长度方向垂直的截面上进行观察角部具有圆角的圆角矩形。
[0066]并且,在本实施方式涉及的连续铸造方法中,优选,上述铸型2的内径为400mm以上且600mm以下;优选,上述铸坯3的拉拔速度为0.35m/分钟以上且0.65m/分钟以下;优选,在上述拉拔工序之后且在上述第一压下工序之前,上述铸坯3的上述中心部的固相率为0.3以上且0.8以下;优选,上述第一压下工序中的向上述第一压下方向的每次压下的压下率为0.3%以上且7.0%以下;优选,在上述第一压下工序之后且在上述第二压下工序之前,上述铸坯3的上述中心部的固相率超过0.8,并且上述铸坯3的上述中心部的上述温度比上述表面部的上述温度高150°C以上;优选,在上述第二压下工序中向上述第一压下方向的每次压下的压下率为1.5%以上且7.0%以下,并且向上述第二压下方向的每次压下的压下率为1.5%以上且7.0%以下;优选,上述第二压下工序之后上述铸坯3的与上述长度方向垂直的上述截面的形状为:长边为235mm以上且270mm以下,上述角部的曲率半径为5mm以上且50mm以下。
[0067]以下,对本发明的一个实施方式涉及的钢条的制造方法进行说明。
[0068]<钢条的制造方法>
[0069]本实施方式涉及的钢条的制造方法,其特征在于,具备:连续铸造工序,通过上述钢的连续铸造方法,得到形状为角部具有圆角的圆角矩形且内部品质也优异的铸坯;和轧制工序(钢胚轧制工序),在该连续铸造工序之后,为了不实施初轧而得到钢条即棒钢或线材,而对上述铸坯进行轧制。
[0070]这样,在本实施方式涉及的钢条的制造方法中,能够省略以往所需要的初轧工序,能够提高生产率。而且,所得到的钢条的品质也优异。即,通过上述钢的连续铸造方法,一边在适当地谋求降低中心偏析、中心疏松的同时也适当地防止内部裂纹,一边进行第一压下工序和第二压下工序来得到圆角矩形的铸坯,因此,通过钢胚轧制工序所得到的钢条的内部品质也变得优异。这样,本实施方式涉及的钢条的制造方法也能够充分地应用于高级(闻品质)钢条的制造。
[0071]实施例1
[0072]通过实施例,更具体地对本发明的一个实施方式的效果进行说明。但是,实施例中的条件是为了确认本发明的实施可能性和效果而采用的一个条件例,本发明不限于该一个条件例。只要不脱离本发明的主旨并达到本发明的目的,本发明就可采用各种条件。
[0073]下述的表1表示在实施例中使用的铸造钢种。钢种设为A、B这两个水准。
[0074][表 I]
[0075]
【权利要求】
1.一种连续铸造方法,其特征在于,包括: 拉拔工序,从圆筒状的铸型拉拔出固液共存状态的铸坯; 第一压下工序,在所述拉拔工序之后,对所述固液共存状态的所述铸坯施加向与所述铸坯的长度方向垂直的第一压下方向的压下;以及 第二压下工序,在将与所述铸坯的所述长度方向以及所述第一压下方向这两方都垂直的压下方向设为第二压下方向时,在所述第一压下工序之后,对为完全凝固状态且处于中心部的温度比表面部的温度高的状态的所述铸坯,一边交替地实施向所述第一压下方向和所述第二压下方向的压下,一边将其成形为在所述铸坯的与所述长度方向垂直的截面上进行观察的情况下的角部具有圆角的圆角矩形。
2.根据权利要求1所述的连续加工方法,其特征在于, 所述铸型的内径为400mm以上且600mm以下; 所述铸坯的拉拔速度为0.35m/分钟以上且0.65m/分钟以下; 在所述拉拔工序之后且所述第一压下工序之前的所述铸坯的所述中心部的固相率为0.3以上且0.8以下; 所述第一压下工序中向所述第一压下方向的每次压下的压下率为0.3%以上且7.0%以下; 在所述第一压下工序之后且所述第二压下工序之前的所述铸坯的所述中心部的固相率超过0.8,并且,所述铸坯的所述中心部的所述温度比所述表面部的所述温度高150°C以上; 所述第二压下工序中向所述第一压下方向的每次压下的压下率为1.5%以上且7.0%以下,并且,向所述第二压下方向的每次压下的压下率为1.5%以上且7.0%以下; 所述第二压下工序之后的所述铸坯的与所述长度方向垂直的所述截面的形状为:长边为235mm以上且270mm以下,所述角部的曲率半径为5mm以上且50mm以下。
3.一种钢条的制造方法,其特征在于,包括: 连续铸造工序,通过权利要求1或2所述的连续铸造方法得到所述铸坯;和 轧制工序,在所述连续铸造工序之后,对所述铸坯进行轧制。
【文档编号】B22D11/20GK103764316SQ201380002126
【公开日】2014年4月30日 申请日期:2013年8月22日 优先权日:2012年8月22日
【发明者】渡边信辅, 村上敏彦 申请人:新日铁住金株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1