本发明属于碳纳米材料技术领域,具体涉及碳纳米材料技术领域,更具体的涉及一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法。
背景技术:
在碳纳米材料行业,石墨烯以其独特的柔韧性、光学和电学性质,在柔性电子元件、高频晶体管和逻辑器件等光电子和微电子器件具有广泛的应用前景。目前,工业生产中主要采用化学气相沉积(CVD)在过渡金属基板上制备生长大面积单层石墨烯薄膜,并在聚合物涂层的协助下转移到其它基板上,该方法具有成本低、产物质量好、可控性高等优点,被认为是最有前途的合成途径。然而,在转移过程所采用的聚合物涂层因不能彻底清除而残留在石墨烯表面,导致石墨烯的电性能显著下降。此外,大面积单层石墨烯由于具有多晶特性,其表面容易产生裂缝,因此改善单层石墨烯的机械强度也是研究的重点,采用过渡金属纳米颗粒负载石墨烯表面有利于材料的机械强度进一步提高。然而,过渡金属纳米颗粒在大面积单层石墨烯的负载仍是目前石墨烯研究的难点之一。
专利201310588254.5采用原位金属催化分解、转移制备石墨烯薄膜。该发明没有使用其它的辅助转移物质,不会引入新的杂质污染或破坏石墨烯的结构,且操作简便省时,但是石墨烯多晶的特性,容易导致产生裂缝,使得材料的机械强度降低。
在这里,我们采用两步化学气相沉积法将碳纳米洋葱包裹纳米铁磁金属颗粒原位生长在石墨烯纳米带与石墨烯复合薄膜的表面上,该复合薄膜无需聚合物涂层就能转移至目标基体,具有较高的光学透明度,优异的导电性和良好的空穴、电子迁移率。纳米铁磁金属颗粒由碳纳米洋葱外壳包裹而避免被空气氧化,并利用石墨烯衬层和碳纳米洋葱之间的共价键牢牢地固定在石墨烯纳米带增韧石墨烯的表面,使得复合薄膜具有较高的机械强度和良好的稳定性。本发明采用两步化学气相沉积法原位制备得到复合薄膜的原料来源广、成本低、工艺流程简单、可控性强,在基于透明和柔韧纳米碳基薄膜的光电子产品和微电子器件具有大规模工业化的应用前景。
技术实现要素:
本发明的目的在于提供一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,本发明采用两步法制备出碳纳米洋葱包裹纳米铁磁颗粒,并原位生长在由石墨烯纳米带增韧石墨烯薄膜 的表面上。作为基底的石墨烯薄膜,由于具有石墨烯纳米带在二维平面内原位增韧的作用效果,具有机械强度高、导电导热性强,在转移过程中无需聚合物的辅助等特点;同时,纳米铁磁金属颗粒由于碳纳米洋葱的包裹,可以有效防止纳米铁磁金属的氧化、酸化以及脱落,另外,碳纳米洋葱通过共价键与石墨烯复合薄膜结合,使得纳米铁磁颗粒牢固地负载在石墨烯薄膜上,使得所制备得到的磁性石墨烯纳米带/石墨烯复合薄膜具有较高的机械强度、较高的透光性、导电导热性和磁性。
实现本发明目的的技术方案是:一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,其特征在于,首先,在金属箔上负载石墨烯纳米带,通过CVD热解CH4制备得到石墨烯纳米带增韧石墨烯;然后,在石墨烯纳米带增韧石墨烯上负载纳米金属氧化物,然后通过CVD热解含碳气源,经刻蚀、转移、水洗后得到磁性石墨烯纳米带/石墨烯复合薄膜。所述方法的具体步骤如下:
1)负载石墨烯纳米带
将一定量的表面活性剂放入水中,搅拌均匀后得到表面活性剂物质的量浓度为0.001~0.01mol/L的溶液A;将一定量的石墨烯纳米带加入溶液A中,并超声分散均匀后得到石墨烯纳米带物质的量浓度为0.01~0.1mol/L的混合溶液B,将混合溶液B中的石墨烯纳米带均匀地负载在金属箔C上,石墨烯纳米带在金属箔C上的负载量为0.1~10mg/cm2。其中,超声功率为30~100W,超声时间为0.1~1h。
2)化学气相沉积(CVD)生长石墨烯纳米带原位增韧石墨烯
在惰性气氛中,将步骤1)所述的金属箔C放置于CVD炉的恒温区。抽真空至-0.1MPa,在气氛炉中持续通入H2,并将气氛炉的恒温区升温至900~1100℃,使得金属箔在该条件下热还原10~30min;然后通入CH4,将金属箔在H2和CH4的混合气氛中于900~1100℃下化学气相生长0.1~1h;最后,将金属箔从CVD炉的恒温区迅速移出,待冷却至室温后通入惰性气体,并从CVD炉中取出得到表面长有石墨烯/石墨烯纳米带薄膜的金属箔C1。其中,H2和CH4的气体流量比为20/1~200/1。
3)负载金属氧化物
将一定量的平均粒径为10~50nm的纳米金属氧化物均匀分散于分散剂中,得到溶液D,然后将溶液D中的纳米金属氧化物负载在步骤2)所述的金属箔C1上,得到负载纳米金属氧化物的金属箔C2。
4)CVD制备磁性石墨烯/石墨烯纳米带复合薄膜
4.1)在惰性气氛中,将步骤3)所述的金属箔C2放置于CVD炉的恒温区,抽真空至 -0.1MPa,将恒温区升至750~850℃,通入H2、含碳气源和气态H2O的混合气氛,在该气氛下化学气相生长0.1~0.5h;之后,关闭H2、含碳气源和气态H2O,通入惰性气体,将上述金属箔移出恒温区,直至降至室温,然后从CVD炉中取出金属箔,得到金属箔C3。其中,H2和含碳气源的气体流量比为20/1~700/1,气态H2O和含碳气源的气体流量比为100/1~600/1。
4.2)将化学计量比的(NH4)2S2O3和正丁醇均匀混合在水中,并得到刻蚀溶液E,其中,(NH4)2S2O3∶正丁醇∶水=1g∶1~10ml∶100~1000ml。
4.3)将步骤4.1)所述的金属箔C3正面向上平放于刻蚀溶液的液面上,刻蚀5~12h,使得金属箔C3被刻蚀溶解,然后将刻蚀后剩下的薄膜转移至正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。其中,正丁醇溶液的配比为正丁醇的水溶液的配比为正丁醇∶水=1ml∶100ml。
所述石墨烯纳米带(GNRs)的宽度为5~50nm,长径比为50~300。
所述的表面活性剂为聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(F127)等聚合物表面活性剂、十二烷基苯磺酸钠(SDBS)等阴离子表面活性剂及十六烷基三基基溴化铵(CTAB)、十二烷基硫酸钠(SDS)等阳离子表面活性剂。
所述水为蒸馏水、去离子水或纯度更高的水。
所用金属箔为铜箔、镍箔或金箔。
所述金属氧化物为Fe3O4、NiO、Ni2O3、Co2O3及其合金氧化物中的一种或多种。
所述分散剂为溴代烃、碘代烃、氯代烃、液态卤代烃、1-烷基苯、环己烷或正己烷等烷烃。
所述含碳气源为CH4、C2H4或C2H2。
本发明采用上述技术方案后,主要有以下效果:
1.本发明采用两步化学气相沉积法原位制备得到复合薄膜的原料来源广、成本低、工艺流程简单、可控性强,有利于实现大规模化生产,便于推广应用;
2.本发明在生产过程工序少、生产安全性好、成本低,可广泛用于制备磁性石墨烯纳米带/石墨烯复合薄膜;
3.本发明制备出的磁性石墨烯纳米带/石墨烯复合薄膜具有低成本、高纯度、较高的机械强度、良好的柔韧性、优异的光学和电学性质等特点,在基于透明和柔韧纳米碳基薄膜的光电子产品和微电子器件具有大规模工业化的应用前景。
附图说明
图1为本实施例1制备出的磁性石墨烯纳米带/石墨烯复合薄膜的TEM图。
图2为本实施例1制备出的磁性石墨烯纳米带/石墨烯复合薄膜的TEM放大图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法的具体步骤如下:
1)负载石墨烯纳米带
将9.2mg F127放入10ml去离子水中,搅拌均匀后得到F127物质的量浓度为0.009mol/L的溶液A;将8.4mg GNRs加入溶液A中,并在冰浴中超声分散均匀后得到GNRs物质的量浓度为0.07mol/L的混合溶液B,将混合溶液B中的石墨烯纳米带均匀地负载在铜箔C上,石墨烯纳米带在金属箔C上的负载量为6mg/cm2。其中,超声功率为85W,超声时间为20min。
2)化学气相沉积(CVD)制备石墨烯纳米带增韧石墨烯
打开Ar,将步骤1)所述的铜箔C放置于CVD炉的恒温区,然后关闭Ar。抽真空至-0.1MPa,在气氛炉中持续通H2,H2的流量为600sccm,并将气氛炉的恒温区升温至950℃,使得铜箔在该条件下热还原25min;然后通CH4,将金属箔在600sccm H2和10sccm CH4的混合气氛中于1000℃下化学气相生长30min;最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
3)负载Fe3O4
将平均粒径为37nm的Fe3O4在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载Fe3O4的铜箔C2。
4)CVD制备磁性石墨烯纳米带/石墨烯复合薄膜
4.1)打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的恒温区,然后关闭Ar。抽真空至-0.1MPa,将恒温区升至800℃,然后通入500sccm H2、15sccm CH4和1500sccm气态H2O的混合气氛,在该气氛下化学气相生长10min;之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。
4.2)将化学计量比的(NH4)2S2O3和正丁醇均匀混合在水中,并得到刻蚀溶液E,其中,(NH4)2S2O3∶正丁醇∶水=1g∶1ml∶100ml。
4.3)将步骤4.1)所述的金属箔C3正面向上平放于刻蚀溶液E的液面上,刻蚀8h,使得金属箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。其中,正丁醇溶液的 配比为正丁醇的水溶液的配比为正丁醇∶水=1ml∶100ml。
实施例2
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将41.8mg SDBS放入60ml去离子水中,搅拌均匀后得到SDBS物质的量浓度为0.002mol/L的溶液A;将61.2mg GNRs加入溶液A中,并在冰浴中60W超声30min分散均匀后得到GNRs物质的量浓度为0.085mol/L的混合溶液B,将混合溶液B均匀地旋涂在铜箔C上,石墨烯纳米带在铜箔C上的负载量为9.2mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在450sccm H2于1100℃热还原10min,然后在450sccm H2和8sccm CH4混合气体氛围下化学气相生长15min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为38nm的Ni2O3在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载Ni2O3的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至850℃,然后在480sccm H2、10sccm C2H4和1100sccm气态H2O的混合气体氛围下化学气相生长15min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀10h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例3
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将23.1mg SDS放入10ml去离子水中,搅拌均匀后得到SDS物质的量浓度为0.008mol/L的溶液A;将6.24mg GNRs加入溶液A中,并在冰浴中30W超声60min分散均匀后得到GNRs物质的量浓度为0.052mol/L的混合溶液B,将混合溶液B均匀地喷涂在铜箔C上,石墨烯纳米带在铜箔C上的负载量为6mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在300sccm H2于900℃热还原30min,然后在300sccm H2和15sccm CH4混合气体氛围下化学气相生长50min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为50nm的Co2O3在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行喷涂,得到负载Co2O3的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至750℃,然后在400sccm H2、10sccm CH4和1300sccm气态H2O的混合气体氛围下化学气相生长25min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀12h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例4
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将45.5mg CTAB放入25ml去离子水中,搅拌均匀后得到CTAB物质的量浓度为0.005mol/L的溶液A;将30mg GNRs加入溶液A中,并在冰浴中75W超声25min分散均匀后得到GNRs物质的量浓度为0.1mol/L的混合溶液B,将混合溶液B均匀地涂覆在铜箔C上,石墨烯纳米带在铜箔C上的负载量为10mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在500sccm H2于1050℃热还原20min,然后在500sccm H2和20sccm CH4混合气体氛围下化学气相生长20min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为25nm的Fe3O4在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行涂覆,得到负载Fe3O4的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至800℃,然后在350sccm H2、10sccm CH4和1200sccm气态H2O的混合气体氛围下化学气相生长6min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀5h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例5
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中, 将3.06mg F127放入30ml去离子水中,搅拌均匀后得到F127物质的量浓度为0.001mol/L的溶液A;将5.4mg GNRs加入溶液A中,并在冰浴中45W超声45min分散均匀后得到GNRs物质的量浓度为0.015mol/L的混合溶液B,将混合溶液B均匀地负载在铜箔C上,石墨烯纳米带在铜箔C上的负载量为0.5mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在650sccm H2于950℃热还原20min,然后在650sccm H2和4sccm CH4混合气体氛围下化学气相生长28min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为10nm的NiO在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载NiO的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至780℃,然后在700sccm H2、1sccm C2H2和600sccm气态H2O的混合气体氛围下化学气相生长30min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀8h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例6
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将18.2mg CTAB放入10ml去离子水中,搅拌均匀后得到CTAB物质的量浓度为0.005mol/L的溶液A;将7.2mg GNRs加入溶液A中,并在冰浴中100W超声10min分散均匀后得到GNRs物质的量浓度为0.06mol/L的混合溶液B,将混合溶液B均匀地负载在铜箔C上,石墨烯纳米带在铜箔C上的负载量为2.3mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在450sccm H2于900℃热还原30min,然后在450sccm H2和2.5sccm CH4混合气体氛围下化学气相生长60min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为25nm的Ni2O3在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载Ni2O3的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭 Ar,抽真空后升温至750℃,然后在350sccm H2、9sccm C2H4和950sccm气态H2O的混合气体氛围下化学气相生长30min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀6h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例7
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将21.8mg SDBS放入25ml去离子水中,搅拌均匀后得到SDBS物质的量浓度为0.0025mol/L的溶液A;将3mg GNRs加入溶液A中,并在冰浴中80W超声25min分散均匀后得到GNRs物质的量浓度为0.01mol/L的混合溶液B,将混合溶液B均匀地负载在铜箔C上,石墨烯纳米带在铜箔C上的负载量为0.1mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在300sccm H2于950℃热还原10min,然后在300sccm H2和10sccm CH4混合气体氛围下化学气相生长25min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为39nm的Fe3O4在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载Fe3O4的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至850℃,然后在300sccm H2、4sccm CH4和500sccm气态H2O的混合气体氛围下化学气相生长17min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀12h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
实施例8
一种磁性石墨烯纳米带/石墨烯复合薄膜的制备方法,同实施例1,其中:第1)步中,将4.08mg F127放入10ml去离子水中,搅拌均匀后得到F127物质的量浓度为0.004mol/L的溶液A;将6mg GNRs加入溶液A中,并在冰浴中75W超声40min分散均匀后得到GNRs物质的量浓度为0.05mol/L的混合溶液B,将混合溶液B均匀地负载在铜箔C上,石墨烯纳 米带在铜箔C上的负载量为5.7mg/cm2。
第2)步中,打开Ar,将步骤1)所述的铜箔C放置于CVD炉的中心腔室,然后关闭Ar。抽真空后打开H2,在500sccm H2于1000℃热还原20min,然后在500sccm H2和9sccm CH4混合气体氛围下化学气相生长10min,最后,将铜箔从CVD炉的恒温区迅速移出,待冷却至室温后通入Ar,并从CVD炉中取出得到表面长有石墨烯纳米带/石墨烯薄膜的铜箔C1。
第3)步中,将平均粒径为42nm的Fe3O4在己烷中超声分散均匀后得到溶液D,然后将溶液D在步骤2)所述的铜箔C1上进行旋涂,得到负载Fe3O4的铜箔C2。
第4)步中,打开Ar,将步骤3)所述的铜箔C2放置于CVD炉的中心腔室,然后关闭Ar,抽真空后升温至800℃,然后在400sccm H2、3sccm C2H4和1000sccm气态H2O的混合气体氛围下化学气相生长20min,之后,关闭混合气体,通入Ar,将上述铜箔移出恒温区,直至炉膛降至室温,然后从CVD炉中取出铜箔,得到铜箔C3。将铜箔C3正面向上平放于实施例1所述的刻蚀溶液的液面上,刻蚀10h,使得铜箔C3被完全刻蚀溶解,然后将刻蚀后剩下的薄膜转移至实施例1所述的正丁醇的水溶液中清洗,直至刻蚀溶液被清除干净,并最终得到磁性石墨烯纳米带/石墨烯复合薄膜。
试验结果
对实施例1,采用两步CVD法,制备得到一种磁性石墨烯纳米带/石墨烯复合薄膜。对实施例1制备出的磁性石墨烯复合薄膜进行电镜观察,其电镜照片如图1、图2所示。可以看出,在该复合薄膜中,5~15层碳纳米洋葱包裹平均粒径为37nm的纳米Fe颗粒形成了核壳结构,并原位生长在碳纳米管增韧石墨烯的表面。该复合膜表现出许多独特的性质,例如:转移过程无需聚合物的辅助,能够自由漂浮在水面上而不发生破碎,还具有较高的光学透明度。该磁性石墨烯纳米带/石墨烯复合薄膜在2.8%的拉伸/压缩压力下保持较高的空穴和电子迁移率,为基于透明和柔韧纳米碳基薄膜的光电子产品和微电子器件的广泛应用提供一个新的物质条件,具有大规模工业化的应用前景。