一种含有Ba2‑xSrxSmTaO6陶瓷的复合涂层及其制备方法与流程

文档序号:13728058阅读:348来源:国知局
一种含有Ba2‑xSrxSmTaO6陶瓷的复合涂层及其制备方法与流程

本发明具体涉及一种含有复杂钙钛矿结构的ba2-xsrxsmtao6陶瓷的复合涂层及其制备方法,属于陶瓷涂层材料领域。



背景技术:

随着激光技术的不断发展,特别是具有高功率密度的激光在医疗、制造业等领域的不断应用,针对激光的防护需求也迫在眉睫。就金属激光防护材料而言,如银、铝、铜等,它们的熔点低、热稳定性差且易氧化,在激光的热效应影响下,易发生熔化或者表面氧化,导致金属材料的反射率急剧下降,对激光能量的耗散能力降低,从而使其在高能量密度激光的防护应用中受到限制。而陶瓷材料具有熔点高,热稳定性好且密度轻的特点,在激光防护领域显示出其独特的优势。

ba2smtao6是一种双钙钛矿(即a2bb’o6)型氧化物陶瓷材料,具有良好的高温相稳定性,因此有望成为一种新型的防护陶瓷涂层。同时研究表明,sr元素在a位的引入可以增加sm4f电子在费米面附近的态密度,提高材料的反射性能,有助于提高激光防护能力。目前,ba2smtao6多以其良好的介电性能和磁性能以薄膜的形式在微波谐振器和滤波器中被广泛使用,而采用等离子喷涂技术以金属或合金为基体进行ba2-xsrxsmtao6陶瓷防护涂层制备目前尚无相关报道。

等离子喷涂技术是利用等离子体产生的热源,在一定的可控气氛中,将喷涂粉末颗粒加热至熔融状态,在等离子射流场的作用下将熔融粒子冲击并凝固在基体表面,制备出具有典型层状组织的涂层。由于双钙钛矿结构陶瓷材料具有成分和晶体结构复杂的特征,其在等离子焰流中受到高温和蒸汽压的双重作用时,b位离子易挥发造成涂层成分结构发生变化。因此,在喷涂过程中,需要调节工艺来保证喷涂材料沉积率高,不易发生高温氧化分解,使制备的涂层与粉体的物相组成保持一致。



技术实现要素:

针对现有技术中存在的不足,本发明的目的之一在于提供一种新型的含有ba2-xsrxsmtao6陶瓷的复合涂层,所述复合涂层中的陶瓷涂层对高能激光具有很好的防护效果;目的之二在于提供一种制备含有ba2-xsrxsmtao6陶瓷的复合涂层的方法,通过调控喷涂工艺的参数,将金属粘结层粉体、陶瓷层粉体先后依次喷涂在基体上,从而得到所述复合涂层,该方法具有工艺简单、易于控制、生产效率高和成本低等优点。

本发明的目的是通过以下技术方案实现的。

一种含有ba2-xsrxsmtao6陶瓷的复合涂层,所述复合涂层是由金属粘结层和陶瓷层组成的双层结构,金属粘结层直接沉积在基体上,陶瓷层沉积在金属粘结层上;

所述基体为纯金属或者合金;

所述金属粘结层的厚度为0.1mm~0.2mm,组成成分为nicrcoaly;

所述陶瓷层的厚度不小于0.05mm,组成成分为ba2-xsrxsmtao6,0≤x≤2。

一种本发明所述的含有ba2-xsrxsmtao6陶瓷的复合涂层的制备,具体步骤如下:

步骤1.对基体的待喷涂表面进行清洗,以去除基体表面附着的灰尘和油污等杂质,并对该表面进行粗糙化处理使粗糙度(ra)达到3μm~7μm;

步骤2.喷涂前,对待喷涂的基体进行预热处理,控制基体温度为100~200℃;

步骤3.将nicrcoaly合金粉体装入送粉器中,采用热喷涂工艺在基体的待喷涂表面进行金属粘结层喷涂;

步骤4.将ba2-xsrxsmtao6陶瓷粉体装入送粉器中,采用大气等离子喷涂工艺在已喷涂金属粘结层的基体上进行陶瓷层喷涂,且喷涂过程中采用压缩空气对基体进行冷却,陶瓷层喷涂结束后,在基体上形成所述复合涂层。

优选的,采用等离子喷涂工艺喷涂金属粘结层,具体的工艺参数:主气流量为45l/min~60l/min,辅气流量为5l/min~7l/min,载气流量为4l/min~6l/min,电流为600a~750a,喷涂距离为70mm~100mm,送粉量35g/min~60g/min,主气和载气均为氩气,辅气为氦气,nicrcoaly合金粉体的粒径优选20μm~80μm。

采用大气等离子喷涂工艺喷涂陶瓷层的工艺参数:主气流量为40l/min~55l/min,辅气流量为10l/min~15l/min,载气流量为4l/min~6l/min,电流为700a~800a,喷涂距离为85mm~100mm,送粉量45g/min~65g/min,主气和载气均为氩气,辅气为氦气,ba2-xsrxsmtao6陶瓷粉体的粒径优选30μm~80μm。

进行金属粘结层和陶瓷层的喷涂时,喷枪的喷涂角度为80o~90o

有益效果:

(1)ba2-xsrxsmtao6是由高价大质量稀土离子组成的双钙钛矿型陶瓷材料,本身具有熔点及反射率较高的特点;同时,等离子喷涂涂层具有层片状结构,有利于激光局域性能量的横向疏散,有助于保护基体材料;

(2)本发明通过调控大气等离子喷涂工艺的参数,使ba2-xsrxsmtao6粉体材料在喷涂过程中充分熔融且不发生分解,成功实现ba2-xsrxsmtao6陶瓷涂层的制备;本发明所述方法具有工艺简单、易于控制、生产效率高和成本低等优点。

附图说明

图1为实施例1所制备的复合涂层中ba2smtao6陶瓷层与ba2smtao6陶瓷粉体的x射线衍射(xrd)谱图的对比图。

图2为实施例1所制备的复合涂层中ba2smtao6陶瓷层表面的扫描电子显微镜(sem)图。

图3为实施例2所制备的复合涂层中ba0.5sr1.5smtao6陶瓷层与ba0.5sr1.5smtao6陶瓷粉体的x射线衍射谱图的对比图。

图4为实施例2所制备的复合涂层中ba0.5sr1.5smtao6陶瓷层表面的扫描电子显微镜图。

具体实施方式

下面结合具体实施例对本发明作进一步的阐述。所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径获得。

以下实施例中:

45#钢:gb/t699-1999,北京京福湾商贸有限公司;

光纤连续激光器:ysl-2000,ipg光子公司;

喷枪:sg100,美国普莱克斯有限公司;

送粉器:model1264,美国普莱克斯有限公司。

实施例1

步骤1.用分析纯的丙酮对45#钢的待喷涂表面进行清洗,以去除45#钢表面附着的灰尘和油污等杂质;再采用20目~60目的白刚玉砂对待喷涂表面进行喷砂处理,并采用压缩空气将45#钢表面残留的白刚玉砂粒吹干净,使待喷涂表面粗糙度(ra)达到6μm;

步骤2.将45#钢用相应的卡具装夹在工作台上,并为安装喷枪的机械手设定喷涂行走路线程序,喷枪喷涂的角度保持90o;喷涂前,对45#钢进行预热处理,控制45#钢的温度为130℃;

步骤3.将粒径为20μm~80μm的nicrcoaly合金粉体装入送粉器中,采用等离子喷涂工艺在45#钢的待喷涂表面进行金属粘结层喷涂;

其中,等离子喷涂的工艺参数:喷枪sg100,主气流量为60l/min,辅气流量为5l/min,载气流量为6l/min,电流为600a,喷涂距离为70mm,送粉量35g/min,主气和载气均为氩气,辅气为氦气,粘结层厚度为0.15mm;

步骤4.将粒径为30μm~80μm的ba2smtao6陶瓷粉体装入送粉器中,采用大气等离子喷涂工艺在已喷涂金属粘结层的45#钢上进行陶瓷层喷涂,且喷涂过程中采用压缩空气对45#钢进行冷却,陶瓷层喷涂结束后,在45#钢上得到含有ba2smtao6陶瓷的复合涂层;

大气等离子喷涂的工艺参数:喷枪sg100,主气流量为40l/min,辅气流量为15l/min,载气流量为4l/min,电流为800a,喷涂距离为100mm,送粉量65g/min,主气和载气均为氩气,辅气为氦气,陶瓷层厚度0.15mm。

图1中,a为步骤4中所述ba2smtao6陶瓷粉体的xrd谱图,b为本实施例所制备的复合涂层中陶瓷层的xrd谱图,从图中可以看出,所制备的陶瓷层与ba2smtao6陶瓷粉体的xrd谱图呈现出高度一致性,说明在等离子喷涂过程中ba2smtao6陶瓷粉体充分熔融且未发生高温氧化分解,所制备的陶瓷层中的ba2smtao6与未喷涂前ba2smtao6陶瓷粉体的物相保持一致。图2为所制备的陶瓷层表面的sem图,从图中可以看到,ba2smtao6陶瓷粉体颗粒在涂层中熔化比较完全,熔化的粉末颗粒在碰到金属粘结层后产生形变,铺展较好,表现为较光滑的涂层表面形貌,测得所制备的陶瓷层表面的粗糙度ra为5μm。

采用ysl-2000型光纤连续激光器对所制备的复合材料表层的陶瓷层进行辐照损伤测试,其中,辐照波长为1070nm,辐照功率密度为500w/cm2,辐照时间10s;观察所制备的陶瓷层在辐照前后的表面宏观形貌可知,经激光辐照后涂层表面未见明显变化,且未产生损伤,达到了对高能激光的防护效果。

实施例2

步骤1.用分析纯的丙酮对45#钢的待喷涂表面进行清洗,以去除45#钢表面附着的灰尘和油污等杂质;再采用20目~60目的白刚玉砂对待喷涂表面进行喷砂处理,并采用压缩空气将45#钢表面残留的白刚玉砂粒吹干净,使待喷涂表面粗糙度(ra)达到4μm;

步骤2.将45#钢用相应的卡具装夹在工作台上,并为安装喷枪的机械手设定喷涂行走路线程序,喷枪喷涂的角度保持90o;喷涂前,对45#钢进行预热处理,控制45#钢的温度为180℃;

步骤3.将粒径为20μm~80μm的nicrcoaly合金粉体装入送粉器中,采用等离子喷涂工艺在45#钢的待喷涂表面进行金属粘结层喷涂;

其中,等离子喷涂的工艺参数:喷枪sg100,主气流量为45l/min,辅气流量为7l/min,载气流量为4l/min,电流为750a,喷涂距离为100mm,送粉量60g/min,主气和载气均为氩气,辅气为氦气,粘结层厚度为0.15mm;

步骤4.将粒径为30μm~80μm的ba0.5sr1.5smtao6陶瓷粉体装入送粉器中,采用大气等离子喷涂工艺在已喷涂金属粘结层的45#钢上进行陶瓷层喷涂,且喷涂过程中采用压缩空气对45#钢进行冷却,陶瓷层喷涂结束后,45#钢上得到含有ba0.5sr1.5smtao6陶瓷的复合涂层;

大气等离子喷涂的工艺参数:喷枪sg100,主气流量为55l/min,辅气流量为10l/min,载气流量为6l/min,电流为700a,喷涂距离为85mm,送粉量45g/min,主气和载气均为氩气,辅气为氦气,陶瓷层厚度0.15mm。

图3中,a为步骤4中所述ba0.5sr1.5smtao6陶瓷粉体的xrd谱图,b为本实施例所制备的复合涂层中陶瓷层的xrd谱图,从图中可以看出,所制备的陶瓷层与ba0.5sr1.5smtao6陶瓷粉体的xrd谱图呈现出高度一致性,说明在等离子喷涂过程中ba0.5sr1.5smtao6陶瓷粉体充分熔融且未发生高温氧化分解,所制备的陶瓷层中的ba0.5sr1.5smtao6与未喷涂前ba0.5sr1.5smtao6陶瓷粉体的物相保持一致。

图4为所制备的陶瓷层表面的sem图,从图中可以看到,ba0.5sr1.5smtao6陶瓷粉体颗粒在涂层中熔化比较完全,熔化的粉末颗粒在碰到金属粘结层后产生形变,铺展较好,表现为较光滑的涂层表面形貌,测得所制备的陶瓷层表面的粗糙度ra为6μm。

采用ysl-2000型光纤连续激光器对所制备的复合材料表层的陶瓷层进行辐照损伤测试,其中,辐照波长为1070nm,辐照功率密度为500w/cm2,辐照时间10s;观察所制备的陶瓷层在辐照前后的表面宏观形貌可知,经激光辐照后涂层表面未见明显变化,且未产生损伤,达到了对高能激光的防护效果。

本发明包括但不限于以上实施例,凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1