用于在涡轮发动机部件的金属基体上制造热障系统的方法与流程

文档序号:17531393发布日期:2019-04-29 13:32阅读:196来源:国知局
用于在涡轮发动机部件的金属基体上制造热障系统的方法与流程

本发明的领域涉及涡轮发动机,更具体地涉及这些涡轮发动机的经受高温的部件,诸如高压涡轮叶片。



背景技术:

诸如在航空领域中用于推进的涡轮发动机包括与一个或多个压缩机连通的大气空气入口,该一个或多个压缩机的风扇通常围绕同一轴线旋转驱动。该空气的主气流在被压缩后,供给围绕该轴线呈环形布置的燃烧室并与燃料混合以将热气体向下游供应给一个或多个涡轮,热气体通过该一个或多个涡轮膨胀,涡轮转子驱动压缩机的转子。马达在涡轮入口处的热气体的温度下工作,该温度要求尽可能高,因为该温度决定了涡轮发动机的性能。为此目的,热部分的材料被选择成耐受这些工作条件,并且被热气体掠过的部件(诸如分配器和移动涡轮叶片)的壁设置有冷却装置。此外,由于这些叶片是镍基或钴基高温合金基的金属结构,因此也有必要保护这些叶片免受这些温度下的热气体成分产生的侵蚀和腐蚀。

为使这些部件耐受这些极端条件而设计的保护措施之一是在这些部件的外部面上沉积一些材料,这些材料形成“热障系统”。热障系统通常由大约一百微米的陶瓷层组成,该陶瓷层沉积在金属层的表面上。在陶瓷和金属基体之间设置的几十微米的铝子层(称为粘合层)通过改善这两个组分之间的粘合以及保护底层金属不被氧化而完成热障。通常经由气相渗铝法沉积的这种铝子层经由金属间扩散被固定到基体上并在表面上形成保护氧化层。文献fr2928664描述了该技术的实施方案的示例。

至于由陶瓷制成的热障本身,根据热障的用途可以用几种方法来制造热障。大致有两种类型的热障结构:具有彼此并置且垂直于基体表面延伸的柱状结构的柱状障碍,以及在基体表面作为均匀层延伸的层状或各向同性的障碍。

柱状障碍通常由称为电子束物理气相沉积(electronbeamphysicalvapourdeposition,ebpvd)的方法制造,在该方法中,目标阳极在高真空中被负载钨丝发射的电子束轰击。电子束将目标分子转变成气相。因此,这些分子以固态形式沉淀,用阳极材料的薄层重新覆盖待保护部件。这些热障的特征在于具有良好的耐热性和较高的导热系数。

由于周期性氧化、侵蚀、暴露于富含通常称为cmas(钙、镁、铝和硅的氧化物)的一组氧化物微粒中的综合现象,热障系统会老化。老化导致系统迅速退化。

产生了多种机制,并且特别是:

-由于氧化增加导致粘合层的粗糙度增加,从而导致热障脱落;

-cmas氧化物渗透到陶瓷的柱间空间中,导致陶瓷弱化;

-由于陶瓷材料的低韧性,导致对异物冲击的抵抗力低。

由v.哈洛克(vharok)等人发表于“热喷涂技术杂志(elasticandinelasticeffectsincompressioninplasma-sprayedceramiccoatings)”中的文献:“等离子喷涂陶瓷涂层中压缩时的弹性效应和非弹性效应”(2001年3月第10卷第1期第126-132页),是对通过等离子燃烧器热喷涂获得的锆石涂层的压缩的研究。该文献没有描述对热障系统中的柱状陶瓷层的压缩。

文献ep1531232a2描述了一种用于修复受损热障系统的方法。该文献提到了通过使用玻璃珠的研磨方法去除热障的可能性,但没有公开对热障系统中的柱状陶瓷层的压缩喷丸处理。

文献wo2009/127725a1描述了一种经由超声波对金属表面进行喷丸处理的方法,该金属表面包括难以接近的表面。该文献也没有描述对热障系统中的柱状陶瓷层的压缩。

本发明旨在通过提出一种制造热障系统的方法来克服这些缺点,该热障系统能够防止系统的老化。



技术实现要素:

因此,本发明的目的是提出一种制造涡轮发动机部件(诸如高压涡轮叶片)的金属基体上的热障系统,该热障系统包括至少一个柱状陶瓷层。

根据本发明,该方法包括对所述至少一个柱状陶瓷层中的至少一个进行压缩的步骤。压缩可以是部分的或全部的。因此,被压缩的陶瓷层包括至少一个被压缩的部分。

由t.弗雷(t.frey)和w.法伊弗(w.pfeiffer)于2002年在喷丸处理国际会议上发表的文献“陶瓷的喷丸处理:有害或有益?”(第1-10页)指出,通过喷丸处理在陶瓷中引入压缩应力是可能的并且不会对陶瓷造成损害。

在本发明中,压缩步骤用于特定的陶瓷中,并且用于非常特定的目的(这是现有技术未考虑到的):收缩一个或多个柱状陶瓷层的柱之间的空间,该柱之间的空间具有限制cmas氧化物的渗透、增加热障系统的使用寿命并改善热障系统的机械性能的效应。

压缩能够减小一个或多个压缩柱状陶瓷层的柱之间的空间。压缩引起压缩层的表面处的变形效应,所述变形导致柱之间的空间减小。

压缩例如可以是喷丸处理、喷砂处理或由激光冲击喷丸的压缩。

对所述柱状陶瓷层中的至少一个进行压缩可以是进行喷丸处理并且所述喷丸处理的阿尔明强度有利地在f10a至f42a之间。

这是由阿尔明(美国通用汽车公司)开发的并普遍采用的技术基准(afnornfl06-832标准)。使用由xc65型的调制碳钢制成的试件,该试件被夹紧到支撑件上并暴露在紧邻待喷丸处理的部件的喷射流中。当试件被从试件夹具中释放时,因为经喷丸处理的面被延长,所以试件会变形。因此观察到称为阿尔明弯曲的典型的弯曲。标准定义了三种类型的试件n、a、c。通过示例,阿尔明强度为f15a的喷丸处理的含义是f:法国标准,15:弧高为0.15mm,a:a型试件。

为获得该强度,可以单独或优选地结合使用以下参数:

-球形微珠(喷丸处理是一种利用喷丸处理机将微珠投射到物体表面以改变物体的表面结构并引入压缩应力的技术);

-微珠材料:wc、zro2、sio2、al2o3、钢;

-对于用喷嘴进行的喷丸处理,珠的尺寸在300μm至1mm之间,对于用超声波进行的喷丸处理,珠的尺寸在0.8mm至3mm之间,并且对于振动喷丸处理,珠的尺寸在1mm至6mm之间;

-对于用喷嘴进行的喷丸处理,入射角度在60°至90°之间。

所述基体通常是镍基或钴基高温合金基体。

所述至少一个柱状陶瓷层可以是氧化钇稳定的氧化锆层。

所述至少一个柱状陶瓷层可以通过物理气相沉积获得。

该物理气相沉积可以是电子束物理气相沉积(ebpvd)。

该热障系统可包括一个或多个柱状陶瓷层,并且该方法可包括对一个或所有柱状陶瓷层进行压缩。

该方法可特别地包括压缩上陶瓷层或压缩直接位于所述上层下方的陶瓷层。

该热障系统可进一步包括布置在所述金属基体和所述至少一个柱状陶瓷层之间的粘合层。

所述粘合层可以是一层材料,特别是一层铝形成材料,其在表面上包括氧化铝层。

该方法可包括对所述粘合层进行压缩的步骤。当通过喷丸处理来压缩所述粘合层时,该喷丸处理的阿尔明强度有利地在f9n至f30a之间。

该方法可依次包括:

-在金属基体上形成粘合层,该粘合层能够被压缩;

-在粘合层上形成一个或多个陶瓷层,所述一个或多个陶瓷层中的至少一个能够被压缩。

本发明的另一目的是提出一种涡轮发动机部件,诸如高压涡轮叶片。所述涡轮发动机部件包括由上文所述的方法制造的热障系统。叶片可以是例如高压涡轮固定叶片或移动叶片。

附图说明

通过阅读作为非限制性示例并参考附图提供的以下描述,将更好地理解本发明,并且本发明的其他细节、特征和优点将显现,在附图中:

-图1是现有技术的涡轮发动机叶片的热障系统的示意性横截面图;

-图2和图3是根据第一实施例的两个替代方案的、根据本发明的方法制造的热障系统的示意性横截面图;

-图4是根据第二实施例的、根据本发明的方法制造的热障系统的示意性横截面图;

-图5和图6是根据第三实施例的两个替代方案的、根据本发明的方法制造的热障系统的示意性横截面图;

-图7是根据第四实施例的、根据本发明的方法制造的热障系统的示意性横截面图;

-图8是根据第五实施例的、根据本发明的方法制造的热障系统的示意性横截面图。

具体实施方式

图1示出了布置在涡轮叶片表面上的热障系统的组分的横截面图,其中,涡轮叶片由指向该图左侧的箭头表示的热气流笼罩。形成叶片的通常为镍基或钴基高温合金的金属形成基体1,在该基体上沉积有铝制子层2,该铝制子层称为粘合层,夹在基体1和陶瓷层3之间。粘合层2的作用是保持陶瓷层3并为整体提供一定弹性,以使整体能够吸收高膨胀的基体1和低膨胀的陶瓷3之间存在的由相反方向的两个箭头表示的膨胀差异。

粘合层2可以具有mcraiy配方,其中,m表示铁(fe)、镍(ni)、钴(co)及其混合物。该粘合层可通过例如为空气等离子喷涂(airplasmaspraying,aps)型的传统等离子喷涂法获得。mcraly型粘合层2可以用铝化镍(nickelaluminide)代替,或用铂(platinum)或伽马(gamma)/伽马’-mcraly型层改性。

在此所示的陶瓷3具有柱状结构,由于柱之间出现裂缝,因此该柱状结构能够横向移动并且使陶瓷具有良好的使用寿命。然后使铝与由在涡轮发动机的气流中流通的气体输送的氧气进行接触,这导致障碍的低劣导热性和对涡轮发动机的逐渐损坏。

陶瓷涂层可以由一个或多个层叠加形成,例如通过电子束物理气相沉积(ebpvd)制造。第一陶瓷层优选地具有部分稳定的氧化钇稳定的氧化锆(yttriatedzirconia,ysz)基。对于其他陶瓷层,可以考虑以下不同类型的层:

-诸如为al2o3或y2o3的单氧化物;

-掺杂有一种或多种稀土氧化物(rare-earthoxides)的氧化锆;

-诸如为gd2zr2o7、sm2zr2o7或yb4zr3o12的稀土锆酸盐(rare-earthzirconate);

-诸如为ba(mg1/3ta2/3)o3、la(al1/4mg1/2ta1/4)o3的钙钛矿(perovskite);

-例如具有通式remal11o19的六铝酸盐(hexaaluminate),其中,re表示元素周期表中从la到gd的元素,m表示选自mg、mn至zn、cr和sm的元素;

-镧系元素正磷酸盐(lanthanideorthophosphates)。

热障系统的作用是延长叶片的使用寿命并增加气体的温度,从而提高发动机的输出。在使用中,系统的各种化学成分的结构和组分在陶瓷层的烧结作用、粘合层的氧化作用和与基体的相互扩散现象的作用下发生变化,从而改变了各层的性能并改变了界面区的电阻。与外部热机械应力相关联的这些改变是粘合层粗糙的原因,粘合层粗糙导致粘合层/陶瓷层界面处的分层,并最终导致热障系统的剥落。通过与外部环境相互作用可以加速这些退化过程。

为了克服这些缺点,根据本发明,执行对至少一个柱状陶瓷层的压缩。

在第一实施例中,执行对上柱状陶瓷层的压缩。如图2所示,陶瓷涂层包括例如为ysz型的单个陶瓷层3。陶瓷层3受到压缩操作c3,以收缩表面处的柱间空间,这具有以下效果:

-限制cmas氧化物的渗透;

-增加热障系统的使用寿命;

-改善机械性能,诸如,改善表面硬度;

-增加耐侵蚀性;以及

-增加热障系统的韧性。

在图2中,对陶瓷层3的压缩由标记c3表示,该标记示出了被压缩的层部分。层3可以被部分地压缩或全部被压缩,即,压缩遍及层3的全部或部分高度。

在图3所示的替代方案中,陶瓷涂层包括n个陶瓷层。下层31位于粘合层2上。在热障系统的表面方向上,存在中间层3i和上层3n。在图2中,对上陶瓷层3n的压缩由附图标记c3n表示。层3n可以被部分地压缩或全部被压缩,即压缩遍及层3n的全部或部分高度。压缩c3n能够使热障系统的表面处的柱间空间收缩并实现与图2中提到的那些优点相同的优点。

在图4所示的第二实施例中,包含n个陶瓷层中的每一个都部分或全部地受到压缩。因此,例如为ysz型的第一层31受到压缩c31,每个中间层3i受到压缩c3i并且上层3n受到压缩c3n。

涡轮叶片的基体1预先用或不用mcraiy型的粘合层2(m表示fe、ni、co及其混合物)覆盖。粘合层2可通过例如为空气等离子喷涂(airplasmaspraying,aps)型的常规等离子喷涂获得。mcraiy型的粘合层2可以用铝化镍代替,或用铂或伽马/伽马’-mcraiy型层改性。

陶瓷涂层由n个层31,…,3i,…,3n叠加形成,由电子束物理气相沉积(ebpvd)制造。第一层3i优选地为部分稳定的氧化钇稳定的氧化锆基。

在通过ebpvd制造每一陶瓷层后,执行压缩操作,使得能够获得粗糙度较低的表面条件,这具有改善较小的柱和柱间空间的再生长的效果,该柱间空间随着上层的形成而逐渐变得更紧密。这些压缩导致:

-限制cmas氧化物的渗透;

-增加热障系统的使用寿命;以及

-增加热障系统的韧性。

在如图5和图6所示的第三实施例中,第一实施例的两个替代方案的热障系统的粘合层也部分或全部地受到压缩。因此,热障系统使其粘合层和上陶瓷层均处于压缩状态。图5示出了具有单个陶瓷层3的热障系统,而图6示出了具有n个陶瓷层31,…,3i,…,3n的热障系统。

涡轮叶片的基体1预先涂覆有mcraiy型的粘合层2(m表示fe、ni、co及其混合物)。粘合层2可通过例如为空气等离子喷涂(airplasmaspraying,aps)型的常规等离子喷涂获得。mcraly型的粘合层2可以用铝化镍代替,或用铂或伽马/伽马’-mcraiy型层改性。

粘合层2的压缩能够:

-使粘合层2的一部分或全部致密化并控制该粘合层的粗糙度,这有利于在热循环期间降低该层的动力学变形;

-产生残余应力,该残余应力具有增加层2的硬度的效果。

在如图7所示的第四实施例中,粘合层2和倒数第二个上陶瓷层3(n-1)分别部分或全部地受到压缩c2和c3(n-1)。

最后,在第五实施例中,粘合层2和所有陶瓷层31,...,3i,...,3n受到压缩(图8)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1