一种耐腐蚀的铜掺杂复合涂层的制备方法与流程

文档序号:15225044发布日期:2018-08-21 18:02阅读:198来源:国知局

本发明属于材料学领域,涉及一种金属表面的改性技术,具体来说是一种耐腐蚀的铜掺杂复合涂层的制备方法。



背景技术:

近年来,化学镀ni-p-ptfe涂层发展迅速,在国内外已有大量的研究论文发表,加入具有自润滑特性的ptfe粒子使得ni-p-ptfe复合涂层具有优异的减摩、不粘性、抗咬合等性能特点,化学镀ni-p-ptfe复合涂层以其优异的性能而广泛应用于化工、机械和电子等行业。董家梅等在抽油杆表面施镀ni-p-ptfe复合涂层,邱世洵等将ni-p-ptfe复合镀层应用于不锈钢勺拉伸模上。高红霞等在塑料模具上施镀ni-p-ptfe复合涂层,效果显著,使模具使用寿命延长。ni-p-ptfe复合镀层还被应用于磁盘上的齿轮,复印机和打印机的磨损部件,电子开关、铝制气动机、座椅安全带等。特别是在一些不允许或难添加润滑剂的场合,如食品机械、真空、太空机械等,这种镀层的自润滑功能更具优势性。

但是在ni-p-ptfe复合涂层实际使用过程中仍然存在一定的局限性,对于一些酸性、盐雾气氛工作环境下的零部件使用一段时间会出现ni-p-ptfe复合涂层腐蚀脱落的情况,ni-p-ptfe复合涂层不能起到相应的保护作用。最主要的原因是由于ptfe粒子的加入,ni-p合金涂层与基体之间的结合力降低,同时涂层孔隙率显著提高,从而降低了涂层的耐蚀性。



技术实现要素:

针对现有技术中的上述技术问题,本发明提供了一种耐腐蚀的铜掺杂复合涂层的制备方法,所述的这种耐腐蚀的铜掺杂复合涂层的制备方法要解决现有技术中的ni-p-ptfe复合涂层容易腐蚀脱落,降低了涂层的耐蚀性的技术问题。

本发明提供了一种耐腐蚀的铜掺杂复合涂层的制备方法,包括如下步骤:

1)将基材放入丙酮中,采用超声波清洗;

2)先对基体进行除油,然后再利用盐酸溶液进行酸洗活化;在对基体进行除油的过程中,采用化学除油的方法,除油溶液中含有naoh、na2co3、na3po4,在所述的除油溶液中,naoh的浓度为20g/l,na2co3的浓度为30g/l,na3po4的浓度为30g/l,溶液加热到70-80℃,然后将基体加入到除油溶液中,除油时间为10-15min,从而使得基体表面的油污被除尽;

3)通过化学镀在基材上镀一层ni-p,作为过渡层;ni-p镀液的ph值是4.8,施镀温度为90℃,沉积时间为20min;

4)通过化学镀在ni-p层上镀ni-cu-p-ptfe层,化学镀ni-cu-p-ptfe镀液的cu2+浓度为0.4g/l,pffe浓度为50ml/l,ph值是7.0,温度为85℃,沉积时间为15min,获得耐腐蚀的铜掺杂化学镀ni-cu-p-ptfe的复合涂层。

进一步的,在步骤1)中,在采用丙酮对基体表面进行超声波清洗的过程中,将基材放入含有丙酮溶液的容器中,浸没,再将容器放置于超声波清洗仪中,功率设置为90w,时间设置为30min,对基材进行有机除油,获得洁净的基体表面。

进一步的,在步骤2)中,盐酸溶液的体积分数为40-60%,将经过除油的基体浸泡盐酸溶液中进行酸洗活化,溶液温度为常温,浸泡时间为3-5min,使得基体表面的氧化层被除去,得到完全暴露的基材。

本发明的一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,是在基材上先镀ni-p层作为过渡层,再在ni-p层上镀上ni-cu-p-ptfe层来提高涂层耐蚀性。所述的双涂层制备首先将基体表面抛光,经超声波清洗后,对基体进行适当的化学除油、酸洗活化的前处理工艺,然后在基体上面先施镀一层ni-p层,并通过控制ni-cu-p-ptfe镀液中cu2+的浓度,最终获得cu含量不同的ni-cu-p-ptfe复合涂层,得到的ni-cu-p-ptfe复合涂层相对ni-p-ptfe复合涂层其的耐蚀性得到显著提升。特别是当ni-cu-p-ptfe镀液中cu2+的浓度为0.4g/l时得到的ni-cu-p-ptfe复合涂层耐蚀性最好。

本发明和已有技术相比,其技术进步是显著的。本发明采用化学镀制备ni-cu-p-ptfe复合涂层,通过优化制备工艺参数,制备出具有优良耐蚀性能和表面均匀的ni-cu-p-ptfe复合涂层。且相对于传统工艺,本发明工艺简单,成本低、沉积速度快、所得ni-cu-p-ptfe复合涂层结合强度好,能够得到性能优良,表面质量较高的ni-cu-p-ptfe复合涂层,镀液性能稳定,施镀时间长,能极大降低生产成本,同时涂层的耐蚀性能得到显著提高。相信本发明对扩大ni-p-ptfe涂层在工业生产中的应用具有重要意义。

附图说明

图1是实施例1-7在化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的成分;

图2是实施例1-7在化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的xrd谱图;

图3a是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.0g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3b是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.1g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3c是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.2g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3d是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.3g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3e是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.4g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3f是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.5g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图3g是化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.6g/l时,所得的化学镀ni-cu-p-ptfe复合涂层截面sem图;

图4是实施例1-7化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层在3.5%nacl溶液中的动电位极化曲线;

图5是实施例1-7化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的硬度和摩擦系数曲线图。

具体实施方式

下面通过具体实施例和附图对本发明作进一步的详细说明,但并不限制本发明。

本发明所用的制备、表征和测量仪器:

本发明的各实施例中所得的ni-cu-p-ptfe复合涂层采用bruker公司的d8advance型x射线衍射(xrd)仪分析薄膜的晶相结构;

采用附带有能谱仪(eds)的quantafeg450型场发射环境扫描电子显微镜(美国fei公司)分析ni-cu-p-ptfe复合涂层的成分及微观形貌;

采用chi66oe型电化学工作站(上海辰华仪器有限公司)测量ni-cu-p-ptfe复合涂层的动电位极化曲线;

采用美国agilent公司生产nanoindenterg200型纳米压痕仪测量ni-cu-p-ptfe复合涂层的硬度;

采用兰州中科华凯科技有限公司的hsr-2m往复摩擦磨损仪测量复合涂层的摩擦系数;

实施例1

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,其制备过程包括如下步骤:

(1).将基体放入转装有100ml丙酮的烧杯中,采用超声波清洗10min,功率设置为90w;

(2).接着采用化学法对基体进行除油,除油温度为70-80℃,时间为10-15min,再利用体积分数40-60%的盐酸对基材进行酸洗活化3-5min;

(3).利用化学镀在基体上镀上ni-p层,作为过渡层,镀液温度为90℃,化学镀过程中镀液的ph值控制在4.8;接着在ni-p层上镀ni-p-ptfe层,镀液温度为80℃,化学镀过程中镀液的ph值控制在4.8。

采用基材是h70黄铜试样,长为30mm,宽为25mm,厚度为0.3mm。

在上述的化学镀过程中,控制ni-p镀液温度为90℃,ph值为4.8,施镀20min得到ni-p层;控制ni-cu-p-ptfe镀液温度为80℃,ph值为4.8,在ni-p层上继续施镀15min得到ni-p-ptfe层,完成后得到ni-p-ptfe复合涂层。包括基体、ni-p层和ni-p-ptfe复合涂层,其自下而上依次为基体、ni-p层和ni-p-ptfe复合涂层。

实施例2

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.1g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

实施例3

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.2g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

实施例4

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.3g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

实施例5

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.4g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

实施例6

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.5g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

实施例7

一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,只是制备过程的步骤(3)中化学镀过程中ni-cu-p-ptfe镀液中cu2+的浓度为0.6g/l,镀液温度为85℃,化学镀过程中镀液的ph值控制在7.0。

其它同实施例1。

综上所述,本发明通过化学镀技术获得ni-cu-p-ptfe复合涂层,并通过控制ni-cu-p-ptfe镀液中cu2+的浓度,获得cu含量不同的ni-cu-p-ptfe复合涂层,得到的ni-cu-p-ptfe复合涂层相对ni-p-ptfe复合涂层其的耐蚀性得到显著提升,且涂层结构致密、尺寸均匀,自润滑性能优异。

进一步,本发明的一种铜掺杂化学镀ni-cu-p-ptfe复合涂层的制备方法,易于工业化生产,施镀时间长,生产成本显著降低。

分别对实施例1-7即化学镀过程中,即ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的成分进行测定,结果如图1所示,从图1中可以看出,涂层中cu含量随镀液中cu2+浓度的增加呈现出先增加后下降的趋势,当ni-cu-p-ptfe镀液中cu2+的浓度在0.0-0.4g/l之间时,涂层中的cu含量随镀液中cu2+浓度的增加而增加,当镀液中cu2+浓度超过0.4g/l时,涂层中cu含量随镀液中cu2+浓度的增加而下降;涂层中ni,p,ptfe(根据f的含量确定)则呈现先减小后增加的趋势,当ni-cu-p-ptfe镀液中cu2+的浓度在0.0-0.4g/l之间时,涂层中的ni,p,ptfe含量随镀液中cu2+浓度的增加而下降,当镀液中cu2+浓度超过0.4g/l时,涂层中的ni,p,ptfe含量则随镀液中cu2+浓度的增加而增加。

分别对实施例1-7即化学镀过程中,即ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的xrd谱图进行测定,结果如图2所示,从图2中可以看出,不同cu2+浓度下制备的复合涂层的图谱形状相近,均在2θ=18.4°的位置出现ptfe的衍射峰,2θ=45°附近出现馒头包状ni(111)晶面的衍射峰,ptfe衍射峰强度随cu2+浓度增加几乎不发生变化,而ni(111)晶面的衍射峰强度随cu2+浓度增加呈现先略微增加后缓慢降低的趋势,在cu2+浓度为0.4g/l时,ni(111)晶面的衍射峰强度最高。这是由于镀镍涂层的结构取决于涂层中p的含量,当涂层中磷含量小于7%时镀层为微晶,而磷含量高于12%时则完全为非晶态,随着涂层中p含量的下降,涂层的晶态特征越明显,由图1易知,本研究中随cu2+浓度增加,p含量呈现先下降后增加的趋势,在cu2+浓度为0.4g/l,涂层p含量最低,故ni(111)晶面的衍射峰强度随cu2+浓度增加呈现先略微增加后缓慢降低的趋势。

分别对实施例1-7即化学镀过程中,即ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的截面形貌进行测定,截面形貌sem图分别如图3a、图3b、图3c、图3d、图3e、图3f和图3g所示,ptfe粒子(黑点)均匀分布在ni-cu-p-ptfe复合涂层中,涂层厚度较为均匀。随着镀液中cu2+浓度增加ni-p层与ni-cu-p-ptfe层之间界面间隙显著降低,两者之间结合越来越紧密,当cu2+浓度大于0.4g/l时,两者之间间隙又明显增加,这是因为涂层中cu含量的增加能使ni-cu-p-ptfe复合涂层晶粒细化,颗粒之间间隙变小,从而使二者之间间隙变小,结构更加致密。

从图3a、图3b、图3c、图3d、图3e、图3f和图3g的sem图的变化趋势可以看出,其与图1化学镀ni-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时得到的ni-cu-p-ptfe复合涂层的xrd谱图是一致的。

分别对实施例1-7即化学镀过程中,即ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的动电位极化曲线进行测定,结果如图4所示,ni-cu-p-ptfe复合涂层腐蚀电位随镀液中cu2+浓度的增加呈先增加后降低的趋势,而腐蚀电流密度则呈现先降低后增加的趋势,当镀液中cu2+浓度为0.4g/l时,制备的ni-cu-p-ptfe复合涂层呈现最高腐蚀电位和最低腐蚀电流密度,说明ni-p-ptfe复合涂层中加入一定量的cu时,涂层的耐蚀性能增强。其原因有以下几个方面:(1)电极电位越低的金属越容易被腐蚀,cu的电极电位较ni的电极电位更正,所以cu的加入能提高ni-p-ptfe复合涂层的整体电极电位;(2)cu的电极电位高于ni的电极电位,容易形成腐蚀微电池,在镀层表面形成均匀的ni(oh)2膜层,这层钝化膜能有效阻滞腐蚀过程的进行;(3)cu的加入使涂层晶粒细化,粒子之间间隙变小,涂层空隙率显著下降,能有效抑制腐蚀介质与基体接触,从而显著提高耐腐蚀性能。

分别对实施例1-7即化学镀过程中,即ni-cu-p-ptfe镀液中cu2+的浓度分别为0.0g/l、0.1g/l、0.2g/l、0.3g/l、0.4g/l、0.5g/l和0.6g/l时所得到相对应ni-cu-p-ptfe复合涂层的摩擦系数和硬度进行测试进行测定,并拟合成硬度和摩擦系数曲线如图5所示,从图5的曲线中可以看出,随cu2+浓度增加涂层硬度呈先增加后降低的趋势,ni-cu-p-ptfe复合涂层的显微硬度与涂层中cu和ptfe粒子含量密切相关,随着镀层中ptfe粒子含量的增加,ni-cu-p-ptfe复合涂层抵抗塑性变形的有效承载面积显著下降,使其显微硬度值减小,而cu沉积进入涂层以后,一是会起到细化晶粒的作用,另外从镀层结构分析表明,铜能促进磷与镍形成化合物相ni3p形成,起到弥散强化的作用。由图1知,随镀液中cu2+浓度增加,涂层中ptfe的含量则先下降后增加,cu的含量先增加后下降,因而ni-cu-p-ptfe复合涂层显微硬度随cu2+浓度增加呈先增加后降低的趋势,cu2+浓度为0.4g/l时,其硬度达到最大值。在不同cu2+浓度镀液下制备的ni-cu-p-ptfe复合涂层摩擦系数变化量亦如图5所示,涂层摩擦系数随cu2+浓度增加先增加后下降,ni-cu-p-ptfe复合涂层摩擦系数主要取决于涂层中ptfe含量,因为ptfe粒子摩擦系数极低,具有良好减摩作用,在摩擦过程中ptfe粒子极易在涂层表面形成ptfe膜,摩擦面间的相对滑动逐渐由金属对金属转移至易滑动的ptfe膜间进行。图1显示,随镀液中cu2+浓度增加,ptfe先下降后增加,相应的ni-cu-p-ptfe复合涂层的摩擦系数随之变化而先增加后下降,cu2+浓度为0.4g/l时,其摩擦系数达到最大值。

由以上实例,实现了通过控制ni-cu-p-ptfe镀液中cu2+的浓度,最终获得cu含量不同的ni-cu-p-ptfe复合涂层,通过对比不同铜掺杂对化学镀ni-p-ptfe复合涂层的微观结构、耐蚀性和力学性能的影响,明确了ni-p-ptfe复合涂层的最优铜掺杂量为0.4g/l。在此掺杂量下制备的ni-cu-p-ptfe复合涂层结构致密,晶粒尺寸均匀,涂层与基体之间结合紧密,相对ni-p-ptfe复合涂层其的耐蚀性得到显著提升。

以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1