一种激光辅助机械喷丸形成梯度纳米结构的复合方法与流程

文档序号:16680231发布日期:2019-01-19 00:20阅读:472来源:国知局
一种激光辅助机械喷丸形成梯度纳米结构的复合方法与流程

本发明涉及表面工程技术与激光加工技术领域,具体涉及一种激光辅助机械喷丸形成梯度纳米结构的复合方法。



背景技术:

纳米金属材料具有强度和硬度高、物理性能、磨损性能和热加工性能好等优势。但是伴随着强度和硬度的显著提高,纳米结构材料的塑性和韧性明显降低、加工硬化能力消失、结构稳定性变差,上述不足制约了纳米结构材料的应用和发展。随着工程结构向高强度和轻量化的发展,传统的均一材料,比如粗晶材料和纳米晶材料,都已无法满足工程结构件在极端服役环境下的性能要求。中科院金属研究所卢柯院士的研究表明:金属材料的强度增加是以牺牲粗晶或者纳米晶的塑性为代价,纳米晶–粗晶混合材料的强度–塑性综合性能不高。但梯度纳米材料表现出优良的强度–塑性综合性能。显然,基于塑性变形构筑的梯度纳米结构,具有细晶与粗晶的综合特征,能有效克服纳米结构低塑性和低韧性的缺陷,明显提升金属工件的强度、耐磨性以及热稳定性,最大程度上提升了金属工件的综合性能。

机械喷丸(shotpeening,sp)是一种是工厂广泛采用的一种表面强化工艺,即使用球丸轰击工件表面并植入残余压应力,提升工件疲劳强度的冷加工工艺。广泛用于提高零件机械强度以及耐磨性、抗疲劳和耐腐蚀性等。喷丸处理的优点是设备简单、成本低廉,不受工件形状和位置限制,操作方便。但是机械喷丸所诱导的塑性变形层较浅,残余压应力无法深入材料内部,不能有效消除疲劳源的萌生。

通过增加变形温度可以有效提高金属工件的塑性,同时,高温也能产生有益的微结构变化,高温使纳米级析出相在金属工件中生成,从而达到析出强化的效果;当温度达到金属工件的动态再结晶温度时,金属工件表面发生动态再结晶,从而使晶粒细化,达到细晶强化的效果。但是对与大型的金属工件,加热整个金属工件既困难又浪费能源,而且在整个长时间的加工过程中都对金属工件进行加热,会导致金属工件材料的晶粒长大,适得其反。

激光辅助加热技术已广泛应用于工业中的高效局部加热,激光束可以在短时间内迅速将局部区域加热到非常高的温度,通过局部加热可以有效提高金属工件材料表面的塑性。相较于传统工艺对整个金属工件进行加热,激光辅助加热只是针对金属工件的目标部位进行局部加热,既节约能源又绿色环保,而且快速加热时间短,无法提供金属工件晶粒长大所需的时间,从而有效抑制了金属工件晶粒的长大。



技术实现要素:

针对现有技术中存在的不足之处,为了解决上述问题,本发明提出了一种激光辅助机械喷丸形成梯度纳米结构的复合方法。即采用连续的激光束对金属工件表面进行局部加热至动态再结晶温度范围,保持动态再结晶温度范围的同时,采用机械喷丸工艺大面积强化金属工件,获得较深深度的梯度纳米结构。

所述金属工件材料为铝合金、钛合金、镁合金、不锈钢、镍基高温合金等应用于航空航天、汽车轮船、化工等行业的关键重要部件的金属材料。

所述激光辅助机械喷丸形成梯度纳米结构的复合方法为:先将金属工件待处理表面依次用400#,600#,800#,1000#,1200#,1500#和2000#砂纸进行打磨并抛光,去除金属工件表面的氧化层,然后用去离子水进行超声清洗,去除金属工件表面的磨屑及污垢;确定与金属工件材料相关的机械喷丸工艺的喷丸压力、球丸直径、球丸粗糙度和扫描速度,当激光辅助加热使得金属工件表面温度处于动态再结晶温度范围时,保持金属工件表面温度处于动态再结晶温度范围,同时对金属工件的待处理区域进行大面积机械喷丸处理。

所述机械喷丸处理过程中,所述球丸为铸钢丸,所述喷丸压力为0.2~0.5mpa,钢丸直径为0.2~1mm,所述钢丸粗糙度为ra1.0~2.0,所述扫描速度为100~500mm/min,所述扫描路径为往复直线型或弓字形。

所述机械喷丸处理的同时,对金属工件表面进行激光辅助加热,使得金属工件表面温度保持在动态再结晶温度范围,两者协同同时工作,路径一致。

所述激光辅助加热过程为:根据金属工件的动态再结晶温度确定激光束的功率,使金属工件的温达到动态再结晶温度,并根据机械喷丸工艺的球丸直径和扫描速度确定激光束的直径扫描速度,使激光束的直径大于或等于球丸直径,两者的扫描速度保持一致。

所述激光辅助加热过程中,所述激光束功率为10~70w,所述激光束直径为0.2~2mm,所述激光束扫描速度为100~500mm/min,所述扫描路径为往复直线型或弓字形。

所述激光辅助加热机械喷丸处理后,在金属工件表层获得梯度纳米结构层,所述激光辅助加热加深了所述机械喷丸诱导的塑性变形层深度,并且提高了金属工件表层的塑性,从而在金属工件表层获得更深深度的梯度纳米结构层及更优的纳米量级-亚微米量级-微米量级梯度结构层。

经测定,采用所述激光辅助机械喷丸形成梯度纳米结构的复合方法在tc4钛合金进行表面制备梯度纳米结构层,其纳米量级结构层厚为40~60μm,亚微米量级结构层厚为100~150μm,整个晶粒细化层厚为700~1000μm。

本发明有益效果:

(1)本发明有效实现了金属工件表面(铝合金、钛合金、镁合金、不锈钢和镍基高温合金等)梯度纳米结构层的制备,为航空航天、汽车轮船、化工等行业金属关键重要部件的强化、修复提供了一种新型有效、节能环保的方法。

(2)本发明可以在金属工件材料表层获得更深深度的梯度纳米结构层,同时优化微结构分布的表层梯度纳米结构,针对当前技术局限性,结合当前技术的可行性,创新地提出了一种切实可行的方法。

(3)本发明有效提高了金属工件材料的表面质量,有效降低了金属工件表面后处理的成本。

(4)本发明不仅可以提高金属工件材料表面的塑性,而且可以提高其表面强度,从而突破了“塑性-强度”倒置问题,大幅度提高金属工件的疲劳寿命、耐磨性能等综合力学性能,从而降低了金属工件的耗材。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实例或现有技术描述中所需要使用的附图作简单地介绍。

图1为激光辅助加热机械喷丸复合方法的工艺示意图。

图2为两个实施例试样尺寸示意图。

图3为tc4钛合金深度方向的显微硬度曲线。

图4为am50镁合金深度方向的显微硬度曲线。

图中:1-金属工件,2-激光束,3-机械喷丸喷嘴。

具体实施方式

下面结合附图和实施例对本发明的具体实施方式做详细的说明,但本发明不应仅限于实施例。

实施例一

一种使用上述方法制备tc4钛合金表层梯度纳米结构的实例,其步骤为:

(1)选用两个尺寸为15mm×15mm×5mm的tc4钛合金试样进行对比试验,分别记作试样1和试样2,其中,试样1为对比试样。

(2)将步骤(1)中的两个试样上表面依次用400#,600#,800#,1000#,1200#,1500#和2000#砂纸进行打磨并抛光,然后用去离子水进行超声清洗,处理区域a如图2所示。

(3)对试样1按照步骤(2)中确立的区域a进行机械喷丸处理,其中机械喷丸工艺参数如下:喷丸压力为0.4mpa,钢丸直径为1mm,钢丸粗糙度为ra1.6,扫描速度为200mm/min,扫描路径为弓字形。

(4)对试样2进行激光辅助机械喷丸处理,其中激光束的参数如下:激光束功率为68w,激光束直径为1.5mm,激光束扫描速度为200mm/min,扫描路径为弓字形,机械喷丸的参数与步骤(3)相同,当激光辅助加热使得金属表面温度处于动态再结晶温度范围时,保持金属表面温度处于动态再结晶温度范围,同时对金属的待处理区域进行大面积机械喷丸处理。

如图1所示,在激光辅助机械喷丸处理过程中,沿试样深度方向形成了纳米层-亚微米层-微米层-基体粗晶层的梯度结构,并且由于激光辅助加热,塑性变形层深度增加,材料达到动态再结晶温度,表面纳米化更加充分。

如图3所示,与传统的机械喷丸相比,激光辅助机械喷丸处理后的表面硬度提高了很多,达到了557.32hv。同时由于塑形变形层深度的增加,硬度影响层的深度也得到了增加,与传统机械喷丸的300μm相比,提高到了700μm。

实施例二

一种使用上述方法制备am50镁合金表层梯度纳米结构的实例,其步骤为:

(1)选用两个尺寸为15mm×15mm×5mm的am50镁合金试样进行对比试验,分别记作试样3和试样4,其中,试样3为对比试样。

(2)将步骤(1)中的两个试样上表面依次用400#,600#,800#,1000#,1200#,1500#和2000#砂纸进行打磨并抛光,然后用去离子水进行超声清洗,处理区域a如图2所示。

(3)对试样3按照步骤(2)中确立的区域a进行机械喷丸处理,其中机械喷丸工艺参数如下:喷丸压力为0.2mpa,钢丸直径为1mm,钢丸粗糙度为ra1.6,扫描速度为200mm/min,扫描路径为弓字形。

(4)对试样4进行激光辅助机械喷丸处理,其中激光束的参数如下:激光束功率为30w,激光束直径为1.5mm,激光束扫描速度为200mm/min,扫描路径为弓字形,机械喷丸的参数与步骤(3)相同,当激光辅助加热使得金属表面温度处于动态再结晶温度范围时,保持金属表面温度处于动态再结晶温度范围,同时对金属的待处理区域进行大面积机械喷丸处理。

如图1所示,在激光辅助机械喷丸处理过程中,沿试样深度方向形成了纳米层-亚微米层-微米层-基体粗晶层的梯度结构,并且由于激光辅助加热,塑性变形层深度增加,材料达到动态再结晶温度,表面纳米化更加充分。

如图4所示,与传统的机械喷丸相比,激光辅助机械喷丸处理后的表面硬度提高了很多,达到了94hv。同时由于塑形变形层深度的增加,硬度影响层的深度也得到了增加,与传统机械喷丸的250μm相比,提高到了600μm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1