一种超疏水自清洁防污纳米膜及PECVD制取方法与流程

文档序号:17247137发布日期:2019-03-30 08:52阅读:902来源:国知局
一种超疏水自清洁防污纳米膜及PECVD制取方法与流程

本发明涉及防水膜领域技术,尤其是指一种超疏水自清洁防污纳米膜及pecvd制取方法。



背景技术:

多功能布料泛指兼具如防水、透气、抗紫外线、抗冲击、耐磨、轻量等特定功能的布料,现今已广泛应用在运动、生活休闲或专业活动等领域。除考虑运动或日常活动时所产生汗水而需要的吸湿性,因应户外天候变化的防水性成为相当重要的指标。在发明专利公告twi391544b专利中,揭示一种吸湿排汗布料及用该布料制作的服装,该布料的一表面由疏水性材料的纤维制成,另一表面则由疏水性材料与亲水性纤维的混合物纤维制成,然而,此种布料仅具吸湿排汗,不具抵抗外来雨水的功能,故功能性欠佳。

常见可以抵抗外来雨水的布料,例如雨衣,防水效果极佳,但是材质较厚,质地硬,穿着不舒适。



技术实现要素:

有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种超疏水自清洁防污纳米膜及pecvd制取方法,可以兼容吸尘和防水,并同时达到自清洁防污、排汗效果。

为实现上述目的,本发明采用如下之技术方案:

一种超疏水自清洁防污纳米膜及pecvd制取方法,包括

一基材,

一拒水导湿层,该拒水导湿层复合于基材的表面上,该拒水导湿层是以正硅酸乙酯、乙烯基三乙氧基硅烷为基质,加入乙醇、盐酸、双蒸水,采用溶胶-凝胶法制备增透、高硬度防雾膜前体物;以前体物为基质,加入丙烯酸铵、甲基丙烯酸铵和过硫酸铵,并加入甲基丙烯酸β-羟乙酯、甲基丙烯酸甲酯等辅助官能团,采用加成聚合法制备成的纳米级拒水导湿膜;

一超疏水透明层,该超疏水透明层是通过等离子增强化学气相沉积结合于拒水导湿层的表面,所述超疏水透明层以纳米炭粉作为模板剂,通过正硅酸四乙酯等离子增强化学气相沉积并煅烧去除核层的模板剂,得到中空的sio2空心球,然后用十六烷基三甲氧基硅烷进行表面处理,从而制得超疏水透明层。

作为一种优选方案,所述拒水导湿层的表面有丰富的—si—oh基团,当真空镀膜结合于基材表面,水分蒸发以后,胶体粒子牢固地附着在物体表面形成—si—o—si—网状结构的涂层,与基材的接合度大于95%。

作为一种优选方案,所述拒水导湿层的表面有丰富的—si—oh基团,当真空镀膜结合于基材表面,水分蒸发以后,胶体粒子牢固地附着在物体表面形成—si—o—si—网状结构的涂层,与基材的接合度大于95%。

作为一种优选方案,所述sio2空心球的直径尺寸小于100nm。

作为一种优选方案,连续多个中空sio2壳层所堆叠形成的网络状结构,使得涂层表现出明显的微纳米粗糙结构,与水滴接触角可达166°,滑动角为2°,并且具有极高的透光性,在600nm波长处,透光率高达91%。

作为一种优选方案,所述基材为玻璃、金属、印刷电路板、陶瓷基板。

一种超疏水自清洁防污纳米膜的pecvd制取方法,包括以下步骤

一种超疏水自清洁防污纳米膜的pecvd制取方法,包括以下步骤

s1:基于c型聚对二甲苯气相真空沉积方法,使具有亲水性的纳米级拒水导湿膜沉积在基材的表面;

s2:在圆筒形真空室中,用四根平行的不锈钢滚筒作为放电电极,外加磁场在电极之间形成平行于电场的闭合磁路;采用交流电源作为等离子体产生电源,真空室本底真空度1.0×10-3pa,通过气体流量质量控制器来调节气体流量;采用正硅酸四乙酯和氧气作为沉积氧化硅薄膜的前驱气体,等离子增强化学气相沉积在基材表面,并煅烧去除核层的模板剂,得到中空的sio2空心球,然后用十六烷基三甲氧基硅烷进行表面处理,从而制得超疏水透明层复合于拒水导湿层表面。

作为一种优选方案,所述煅烧是将材料放入马弗炉中低温煅烧1h,去除模板剂。

作为一种优选方案,用十六烷基三甲氧基硅烷进行表面处理的方法是:分别称取1:1重量份的十六烷基三甲氧基硅烷和去离子水,与煅烧后的中空的sio2一起放入密闭容器中,等离子增强化学气相沉积6h即可制备超疏水透明层。

本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,本发明之超疏水透明层以纳米炭粉为模板剂,在常温常压下进行pecvd等离子增强化学气相沉积可以成功制备出。通过pecvd的等离子增强化学气相沉积,能够实现pecvd在涂层上的化学接枝,从而赋予涂层低表面能的结构。叠形成的网络状结构,使得涂层表现出明显的微纳米粗糙结构,使得涂层能够表现出超疏水性。超疏水透明层具有极好的耐潮性,当水珠掉落到超疏水透明层表面,随着水滴滑落将膜层表面的灰尘和污染物带走,使得织物的抗污染性得到了很大提高。另一方面,在基材的表面设置了拒水导湿层,使得织物兼具吸湿与防水的多种功能,拒水导湿层材质的柔软触感,不致产生闷热感,克服了现有布料因涂层较厚而具有质感僵硬等问题,此外,本发明的超疏水透明层和拒水导湿层与基材之间的键结较强,附着性强,从而可改善耐织物用度与使用寿命。

为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。

附图说明

图1是本发明之实施例的超疏水自清洁防污纳米膜层状结构示意图。

图2是本发明之实施例中超疏水透明层的制备反应式的示意图。

图3是本发明之实施例中超疏水透明层的sio2空心球示意图。

图4是本发明之实施例中拒水导湿层在显微镜下的微观示意图。

附图标识说明:

10、基材20、超疏水透明层

30、拒水导湿层。

具体实施方式

为了使本发明的目的和技术方案及优点更加清楚明白,以下结合实施例作详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

请参照图1所示,本发明的一种超疏水自清洁防污纳米膜,包括基材10、超疏水透明层20、拒水导湿层30。所述拒水导湿层30复合于基材10的表面上,该超疏水透明层是通过等离子增强化学气相沉积结合于拒水导湿层的表面。

其中,基材10为玻璃、金属、印刷电路板、陶瓷基板,或者为布料。例如,当选用合成纤维布时,是由复数个纤维单元织造而成,超疏水透明层20和拒水导湿层30的高分子材料覆盖于若干纤维单元的正反两面。作为一种优选方案,所述基材10为棉布、丝织布、以及麻布中的一种,且其为由单一材质织造而成的成品或半成品,或由多种材质织造而成的成品或半成品,基材10的组织结构为平织物、针织物中的任一种。

超疏水透明层20的制备反应式可以参见图2。本发明的超疏水透明层20以纳米炭粉作为模板剂,通过正硅酸四乙酯等离子增强化学气相沉积并煅烧去除核层的模板剂,得到中空的sio2空心球(参见图3),然后用十六烷基三甲氧基硅烷进行表面处理,从而制得超疏水透明层20。上述煅烧是将材料放入马弗炉中低温煅烧1h,去除模板剂。上述用十六烷基三甲氧基硅烷进行表面处理的方法是:分别称取1:1重量份的十六烷基三甲氧基硅烷和去离子水,与煅烧后的中空的sio2一起放入密闭容器中,等离子增强化学气相沉积6h即可制备超疏水透明层20。本发明方法形成的超疏水透明层20,其sio2空心球的直径尺寸小于100nm,从而导致极好的透光性。各个中空sio2壳层所堆叠形成的网络状结构,使得涂层表现出明显的微纳米粗糙结构,使得涂层能够表现出超疏水性。连续多个中空sio2壳层所堆叠形成的网络状结构,使得涂层表现出明显的微纳米粗糙结构,与水滴接触角可达166°,滑动角为2°,并且具有极高的透光性,在600nm波长处,透光率高达91%。

所述拒水导湿层30是以正硅酸乙酯、乙烯基三乙氧基硅烷为基质,加入乙醇、盐酸、双蒸水,采用溶胶-凝胶法制备增透、高硬度防雾膜前体物;以前体物为基质,加入丙烯酸铵、甲基丙烯酸铵和过硫酸铵,并加入甲基丙烯酸β-羟乙酯、甲基丙烯酸甲酯等辅助官能团,采用加成聚合法制备成的纳米级拒水导湿膜。此方法制得的拒水导湿层30具有优异的耐磨性、黏结性、透明性和持久性的防雾表面,尤其是,拒水导湿层30材质的柔软触感,不致产生闷热感,克服了现有布料因涂层较厚而具有质感僵硬等问题。

本实施例中,所述拒水导湿层30的表面有丰富的—si—oh基团,当真空镀膜结合于基材10表面,水分蒸发以后,胶体粒子牢固地附着在物体表面形成—si—o—si—网状结构的涂层,与基材10的接合度大于95%。

本发明基于上述超疏水自清洁防污纳米膜的一种pecvd制取方法,包括以下步骤

s1:基于c型聚对二甲苯气相真空沉积方法,使具有亲水性的纳米级拒水导湿膜沉积在基材的表面;

s2:在圆筒形真空室中,用四根平行的不锈钢滚筒作为放电电极,外加磁场在电极之间形成平行于电场的闭合磁路;采用交流电源作为等离子体产生电源,真空室本底真空度1.0×10-3pa,通过气体流量质量控制器来调节气体流量;采用正硅酸四乙酯和氧气作为沉积氧化硅薄膜的前驱气体,等离子增强化学气相沉积在基材表面,并煅烧去除核层的模板剂,得到中空的sio2空心球,然后用十六烷基三甲氧基硅烷进行表面处理,从而制得超疏水透明层复合于拒水导湿层表面。

本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,本发明之超疏水透明层20以纳米炭粉为模板剂,在常温常压下进行pecvd等离子增强化学气相沉积可以成功制备出。通过pecvd的等离子增强化学气相沉积,能够实现pecvd在涂层上的化学接枝,从而赋予涂层低表面能的结构。叠形成的网络状结构,使得涂层表现出明显的微纳米粗糙结构,使得涂层能够表现出超疏水性。超疏水透明层20具有极好的耐潮性,当水珠掉落到超疏水透明层20表面,随着水滴滑落将膜层表面的灰尘和污染物带走,使得织物的抗污染性得到了很大提高。另一方面,在基材10的第二表面设置了拒水导湿层30,使得织物兼具吸湿与防水的多种功能,拒水导湿层30材质的柔软触感,不致产生闷热感,克服了现有布料因涂层较厚而具有质感僵硬等问题,此外,本发明的超疏水透明层20和拒水导湿层30与基材10之间的键结较强,附着性强,从而可改善耐织物用度与使用寿命。

以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1