一种低氧高纯钛锭的电子束熔炼装置的制作方法

文档序号:16545843发布日期:2019-01-08 20:50阅读:525来源:国知局
一种低氧高纯钛锭的电子束熔炼装置的制作方法

本实用新型属于高熔点金属提纯加工技术领域,进一步属于电子束熔炼技术领域,具体涉及一种低氧高纯钛锭的电子束熔炼装置。



背景技术:

随着电子工业和航空航天工业的蓬勃发展,对高纯钛的需求与日剧增。所谓高纯钛是指杂质含量较低、纯度为99.99%的钛材,纯度在99.995%以上的称为超高纯钛。由于微电子行业的特殊用途,需要氧等间隙杂质元素尽可能低,因为含氧量增加,会使用高纯钛制备的集成电路电阻明显增大,线路变脆、变硬,发生短路、断路,导致集成电路失效、报废。在高纯钛的制备工艺流程中,每个环节都可能增氧,均需要严格的工艺控制条件。目前高纯钛的制备方法有很多,传统的碘化法、熔盐电解法、电子束精练、电子束区域精炼仍是工业高纯钛的主要生产方法。制备高纯钛的各种方法中,去除杂质元素的能力各不相同,电子束熔练法产品呈铸锭,该法除铝、锌、锰等元素效果好,但除铁、镍等重金属和氧等间隙元素效果差;碘化法、熔盐电解法产品呈枝晶状,该法除铁、镍和氧效果好。其他方法还处于实验室摸索阶段,尚不成熟。

随着半导体器件对重金属、碱金属、放射性元素、间隙杂质含量提出了愈来愈高的要求,开发应用复合工艺是经济的方法,它将多种单一提纯工艺的优点集于一身,并克服各单一提纯工艺的不足,但复合工艺没有从本质上发生改变。在生产实际中,熔盐电解法加上电子束熔练法是典型的联合工艺。熔盐电解法应用了杂质元素和钛电位差不同的原理除去电子束熔练法难除的铁、镍和氧元素,所得的枝晶状高纯钛,纯度可达99.995%以上,氧含量低于70ppm,但枝晶状高纯钛不能直接应用在电子行业中,还需要用电子束熔练法在除去铝、锌、锰等元素的同时铸成相应尺寸的铸锭。电子束熔练法应用了杂质元素和钛饱和蒸汽压有差异的原理除去杂质元素。熔盐电解法制备的枝晶状高纯钛晶体在进电子束熔练前,需要进行晶体收集、预热脱气处理、锭坯压制等工序,这些工序可导致氧含量增加,另外,电子束熔练时的真空度不高,一般为10-2Pa级,熔练过程中钛和氧反应的几率增高。所以,从高纯钛晶体到高纯钛锭制备过程是一个增氧过程,电子束熔炼后的高纯钛锭氧会达到500ppm以上,较难保证高纯钛锭中氧含量控制在标准允许的300ppm以下。

在现有的技术条件下,虽然可以填充高纯氩气等惰性气体来减缓熔炼过程中的增氧情况,但是一方面成本过高,另一方面控氧情况较差,因此综合以上,有必要发明一种有效解决上述问题的低氧高纯钛锭的电子束熔炼装置。



技术实现要素:

本实用新型的目的在于提供一种低氧高纯钛锭的电子束熔炼装置。

本实用新型的目的是这样实现的,所述的低氧高纯钛锭的电子束熔炼装置包括进料真空室,待熔料柱,熔炼真空室,水冷铜坩埚,吸氧剂放置装置,电子束铸锭熔池,真空抽口,所述的电子束铸锭熔池设置在水冷铜坩埚的中心,所述的吸氧剂放置装置设置在电子束铸锭熔池和真空抽口之间,所述的吸氧剂放置装置内放置有吸氧剂颗粒,且所述的吸氧剂放置装置四周设置有通气小孔。

与现有技术相比,本实用新型的有益效果:

1、本实用新型在电子束滴熔熔炼钛锭时,当铝、锌、锰等金属元素及氧、氢等气体间隙元素挥发时,放置在吸氧剂放置装置中的比钛夺氧能力更强的高纯金属颗粒作为吸氧剂与逸出的氧反应;既不影响高纯钛锭的纯净度,又能达到抑氧、降氧作用,能够有效提高钛锭品质、降低加工成本。

2、本实用新型通过吸氧剂放置装置的合理设置,使得吸氧剂既不加在待熔原料中,也不加入熔炼熔体中,避免了吸氧剂中的杂质元素和吸氧剂主体元素进入到熔体中,从而避免了增加电子束熔练提纯难度和提纯时间的问题;使用本实用新型进行熔炼,吸氧剂将钛晶体后处理过程中带入的氧和抽真空剩余的氧一起吸收,从而大大降低高纯钛锭中的氧含量,使其值不仅低于300ppm,甚至有可能达到100ppm以下。

附图说明

图1为本实用新型的结构示意图。

图2为图1中A-A向剖示图。

图3为图2抽真空时吸氧剂颗粒的状态图,其中B向为真空抽向。

图中:1-进料真空室,2-待熔料柱,3-熔炼真空室,4-水冷铜坩埚,5-吸氧剂放置装置,6-电子束铸锭熔池,7-压盘螺栓,8-支撑板,9-上盖,10-放置盘, 11-吸氧剂颗粒,12-联接螺栓,13-真空抽口,14-通气小孔。

具体实施方式

下面结合实施例和附图对本实用新型作进一步的说明,但不得以任何方式对本实用新型加以限制,基于本实用新型教导所作的任何变更或改进,均属于本实用新型的保护范围。

如图1~3所述的低氧高纯钛锭的电子束熔炼装置,包括进料真空室1,待熔料柱2,熔炼真空室3,水冷铜坩埚4,吸氧剂放置装置5,电子束铸锭熔池6,真空抽口13,所述的电子束铸锭熔池6设置在水冷铜坩埚4的中心,所述的吸氧剂放置装置5设置在电子束铸锭熔池6和真空抽口13之间,所述的吸氧剂放置装置5内放置有吸氧剂颗粒11,且所述的吸氧剂放置装置5四周设置有通气小孔14。

所述的吸氧剂放置装置5通过支撑板8、压盘螺栓7固接在水冷铜坩埚4靠近真空抽口13的一侧。

所述的吸氧剂放置装置5包括上盖9和放置盘10,所述的放置盘和上盖之间通过联接螺栓12活动连接。

所述的通气小孔14的孔径小于吸氧剂颗粒11的粒径。

所述的吸氧剂颗粒11的粒径为1~4mm。

所述的吸氧剂颗粒11为镁粒、钙粒、锂粒中的一种或多种。

本实用新型的工作原理和工作过程:在进料真空室1、熔炼真空室3、水冷铜坩埚4等整个熔炼腔体清理干净后,将压成坯料的料柱2由进料机构推送到水冷铜坩埚4附近,料柱2中心和电子束铸锭熔池6中心基本一致,在水冷铜坩埚4和熔炼真空室3抽口之间安装吸氧剂托盘5,该盘呈扇形,分为紧密相扣的上托盘9和下托盘10,整个托盘四周布满2mm小孔,上下托盘用联接螺栓12固结。拆开高纯金属吸氧剂真空包装,迅速将500g吸氧剂颗粒11均匀播撒在托盘5中,上、下托盘扣紧并用联接螺栓12固结以防真空将吸氧剂颗粒吸入真空系统中,迅速关闭炉门,按操作规程开启真空系统,进行熔炼前准备。待扩散泵油温为150℃,熔炼真空室真空达到10-2Pa,接上电子枪电源,开始启枪熔炼。熔炼采用滴熔方式,以功率为70kW、拉速为30mm/min的低功率、慢拉速进行,目的就是让杂质元素充分逸出并经真空抽送,间隙元素氧和吸氧剂充分反应,在保证熔炼物料纯净度的同时保证氧含量较低。

熔炼完毕后,关闭枪室电源,继续保持真空系统和水冷系统处于工作状态,待扩散泵油温降到30℃,关闭真空系统和水冷系统,开炉取料,得到低氧高纯钛铸锭。

实施例1

一种使用本实用新型的装置进行低氧高纯钛铸锭的电子束熔炼的方法,所述的低氧高纯钛锭,含氧量为100~300ppm,钛锭纯度为99.995%~99.999%。

所述的吸氧剂为高纯镁颗粒,纯度为99.9%,颗粒粒径为1~4 m。

所述的低氧高纯钛铸锭的电子束熔炼方法,包括以下步骤:

1)原料准备:选择高纯镁颗粒为吸氧剂,所述的高纯镁颗粒粒径为3mm,纯度为99.9%,真空密封包装。

2)吸氧剂托盘安装:将扇形吸氧剂托盘用螺栓固接在水冷铜坩锅上,位置以不影响熔炼时摆料操作为宜,安装方向与熔炼真空室的真空抽向一致,所述吸氧剂托盘用厚度为2mm的不锈钢制作,吸氧剂托盘长宽高尺寸为4500x60x40(扇形),分为上盖和下盖,四周密布2mm小孔,上盖和下盖紧扣并用螺栓连接,以防抽真空时高纯镁颗粒被抽走。

3)进料准备:将所熔料柱安装在进料真空室位置。

4)吸氧剂放置:拆开高纯镁颗粒真空包装,迅速将500g镁颗粒均匀播布在吸氧剂托盘中,上、下盖扣紧并用螺栓固接。

5)真空操作:迅速关闭炉门,按操作规程开启真空系统,进入熔炼前准备状态。

6)待扩散泵油温为150℃,熔炼真空室真空达到10-2Pa时,接上电子枪电源,开始启枪熔炼。

7)熔炼采用滴熔方式,以功率为70kW、拉速为30mm/min的低功率、慢拉速进行。

8)熔炼完毕后,关闭枪室电源,继续保持真空系统和水冷系统处于工作状态,待扩散泵油温降到30℃,关闭真空系统和水冷系统,开炉取料,得到氧含量为200ppm高纯钛铸锭。

9)将低氧高纯钛铸锭外圆、端头、尾部各车去10mm,按端头、尾部、中心顺序取样送检,取样环境注意清洁、干净,尽量手工取样,避免铸锭二次氧化影响分析结果。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1