用于在介电溅射期间减少工件中缺陷的等离子体腔室靶材的制作方法

文档序号:31950123发布日期:2022-10-26 08:18阅读:195来源:国知局
用于在介电溅射期间减少工件中缺陷的等离子体腔室靶材的制作方法

1.本公开内容的实施方式一般涉及半导体制造系统中使用的基板处理腔室。


背景技术:

2.溅射(也称为物理气相沉积(pvd))是一种形成集成电路中的特征的方法,通常在处理腔室中执行。溅射处理(sputtering)在工件(例如一个基板/基板)上沉积材料层(如介电材料)。源材料(诸如靶材)被电场强烈加速的离子所轰击。离子轰击使材料从靶材中射出(eject),并使材料聚集在或沉积在基板(例如工件)上。在沉积期间,射出的粒子也可能沉积在其他表面上,诸如处理腔室的其他内表面或屏蔽件(shield)。
3.屏蔽件的不想要的涂层可能导致正在处理的基板中出现缺陷,或者导致后续基板处理中的缺陷。例如,当屏蔽件上出现不想要的沉积物并且电荷在不想要的沉积物上累积导致形成电弧、或者屏蔽件上聚集的介电材料剥落时,可能会出现缺陷。
4.因此,发明人提供了用于减少介电溅射期间缺陷的改进靶材的实施方式。


技术实现要素:

5.本文提供用于用来减少介电溅射期间工件中的缺陷的等离子体腔室靶材的方法和设备。例如,在一些实施方式中,一种设备可以包括介电溅射沉积靶材,该介电溅射沉积靶材可以包含具有范围从约65μm到500μm的预定平均晶粒尺寸(predefined average grain size)的介电化合物,其中该介电化合物是氧化镁或氧化铝中的至少一种。
6.在至少一些实施方式中,一种处理腔室包括:腔室主体,该腔室主体界定内部空间;基板支撑件,该基板支撑件用以支撑该内部空间内的基板;和要溅射到该基板上的多个靶材,所述多个靶材包含至少一个介电靶材和至少一个金属靶材,其中该介电靶材包含介电化合物,该介电化合物具有范围从约65μm到500μm的预定平均晶粒尺寸。
7.在至少一些实施方式中,一种用于在处理腔室中执行物理气相沉积的方法可以包括以下步骤:在该处理腔室中选择第一靶材并且经由该第一靶材在工件上沉积介电化合物,其中该介电化合物具有范围从约65μm到500μm的预定平均晶粒尺寸;和在该处理腔室中选择第二靶材并且经由该第二靶材在该工件上的该介电化合物之上沉积金属。
8.下面描述本公开内容的其他和进一步的实施方式。
附图说明
9.本公开内容的实施方式已在前面简要概述,并在以下有更详细的讨论,可以通过参考附图中描绘的本公开内容的说明性实施方式来了解这些实施方式。然而,附图仅显示了本公开内容的典型实施方式,而由于本公开内容可允许其他等效的实施方式,因此附图并不应视为对范围的限制。
10.图1描绘了根据本文所述的示例性实施方式的多阴极处理腔室的示意图;
11.图2是根据本文所述的示例性实施方式的图1中腔室的空间构造图;
12.图3是具有特定晶粒尺寸的靶材的放大图像;
13.图4是根据本案所述的示例性实施方式的具有晶粒尺寸的靶材的放大图像;和
14.图5描绘了根据本文所述的示例性实施方式的用于减少工件上的缺陷的方法的流程图。
15.为便于理解,在可能的情况下,使用相同的参考数字代表各图中共有的相同的元件。为清楚起见,这些图未按比例绘制且可能被简化。一个实施方式中的元件与特征可有利地用于其他实施方式中而无需赘述。
具体实施方式
16.磁性随机存取内存(mram)需要将阻挡层(barrier layer)构建为存储器器件的一部分。阻挡层必须具有高纯度和低缺陷数才能正确工作。氧化镁(mgo)和/或氧化铝(al2o3)之一是可以用作阻挡层的介电材料。然而,把rf功率用来在基板表面上沉积mgo固有地(inherently)导致不好的缺陷性能。
17.本文提供了溅射沉积靶材的实施方式,该溅射沉积靶材包括具有预定平均晶粒尺寸的介电化合物,用于在制造mram时减少工件(例如基板)中的缺陷。如本文所用的那样,晶粒尺寸是遍及(across)靶材的化合物的平均晶粒尺寸,其中尺寸本身具有宽的分布范围。在一些实施方式中,每个晶粒在预定晶粒尺寸的20%以内,而在其他实施方式中,每个晶粒在平均晶粒尺寸(例如预定晶粒尺寸)的30%以内。根据一些实施方式,靶材中的晶粒的至少80%或在其他实施方式中靶材中的晶粒的至少90%具有在优选晶粒尺寸的20%或30%以内的晶粒尺寸。优选的晶粒尺寸范围从约20μm、40μm和50μm到500μm,即使对于纯单晶也是如此。在另一个实施方式中,靶材中的晶粒的至少80%具有至少20μm的晶粒尺寸。
18.在进行处理腔室中的基板(例如基板)上介电膜的物理气相沉积期间,由于屏蔽件比工件更靠近靶材,因此在处理腔室中的屏蔽件上也可以形成介电粉末(dielectric powder)。之后,当rf功率施加到处理腔室时,由于屏蔽件上的高浓度正离子的缘故,屏蔽件与基板之间可能会产生电弧,例如鞘电压(sheath voltage)。换句话说,由于介电膜聚集在屏蔽件上,并且介电膜不导电,因此电荷积聚在屏蔽件上。屏蔽件上的电荷不易消散而引发产生电弧。此外,在处理腔室中处理多个后续基板后,更多的介电膜可能会堆积在屏蔽件上,并且由于膜对屏蔽件的粘着度差,所以膜可能会脱落(flake)或剥落(peel off)并沉积在基板上。发明人已经发现,修改靶材晶粒尺寸以及靶材和屏蔽件的构造,这就通过防止产生电弧和防止介电膜从屏蔽件剥离来减少了工件中的缺陷。
19.发明人已经观察到,如果在处理腔室中使用包含介电化合物(例如mgo、al2o3)的靶材,则工件上的大部分缺陷是介电颗粒缺陷。例如,发明人观察到,当金属靶材(例如钽)在具有屏蔽件的处理腔室中暴露时,ta缺陷的数量是微不足道的(insignificant)。然而,当介电靶材暴露在腔室中时,在工件上发现了介电颗粒的形式的大量缺陷。用实验(诸如能量色散x射线光谱法(energy dispersive x-ray spectrometry,edx))验证了这些缺陷的来源,但也可以使用其他方法。屏蔽件保持不变,因此确认了这些缺陷是源自介电靶材。
20.在一些实施方式中,多阴极pvd腔室(例如处理腔室100)包括多个阴极106,多个阴极106具有对应的多个靶材(至少一个介电靶材110和至少一个金属靶材112),多个阴极106(例如,以3rf
×
3dc交替构造的6个阴极)(例如,经由顶部适配器组件142)附接到腔室主体
140,腔室主体140界定内部空间。也可以使用其他rf/dc阴极构造,诸如1
×
1、2
×
2、4
×
4、5
×
5,等等。这些数字表示rf供电的阴极与dc供电的阴极的比例。在一些实施方式中,rf和dc阴极在顶部适配器组件142中交替。在其他实施方式中,rf阴极可以与其他rf阴极相邻并且对于dc阴极也是如此。在其他实施方式中,rf阴极与dc阴极的比例可以是不相等的比例(non-equal ratio),诸如1
×
2、2
×
1、1
×
3、3
×
1、2
×
3,等等。当使用多个rf阴极时,可使操作频率偏移(offset)以减少沉积处理期间的任何干扰。例如,在三个rf阴极的实施方式中,第一rf阴极可以工作于13.56mhz的频率,第二rf阴极工作于13.66mhz(+100khz)的频率,而第三rf阴极工作于13.46mhz(-100khz)的频率。可以基于针对给定数量阴极的串扰防止来选择偏移。
21.rf阴极通常与介电靶材110一起使用,以用于在基板上沉积介电膜。dc阴极通常与金属靶材112一起使用,以用于在基板上沉积介电膜之后粘涂(pasting)。粘涂减少沉积膜中的缺陷和颗粒形成的机会。使处理腔室带有rf和dc阴极就允许更快地生产基板,因为粘涂和介电沉积能够在一个腔室中完成。此外,具有多个相同类型的阴极,这允许更高的粘涂和沉积速率。更高的沉积速率意味着基板在腔室中花费更少的时间来达到一定的膜厚度。在腔室中减少的时间或停留时间(dwell time)减少导致更少的基板缺陷。
22.在一些实施方式中,金属靶材112可由金属形成,诸如,例如钽、铝、钛、钼、钨和/或镁。介电靶材110可由金属氧化物形成,诸如,例如氧化钛、氧化钛镁和/或氧化钽镁。然而,可替代地使用其他金属和/或金属氧化物。
23.介电靶材110包括具有预定晶粒尺寸的介电化合物,并且晶粒在整个介电靶材110上总的来说是均匀的,有少量的尺寸变化,例如20-30%。预定的晶粒尺寸在不同的实施方式中不同。在一些实施方式中,晶粒尺寸选自约20μm至500μm的范围。在一些实施方式中,靶材中的晶粒的至少80%,或在一些实施方式中靶材中的晶粒的至少90%具有等于优选晶粒尺寸(例如20μm、40μm、50μm和高达约500μm或者甚至更大)的晶粒尺寸。
24.图3表示一种示例性靶材,该示例性靶材具有8μm的晶粒尺寸,这种情况下,基板含有218个颗粒尺寸大于40nm的缺陷。然而,当靶材晶粒尺寸增加到约30μm时,如图4所示,颗粒(缺陷)的数量减少到例如96个。在一些实施方式中,晶粒尺寸增加到约40μm,这种情况下,缺陷在数量上估计为约50-60个颗粒,比218个缺陷显著减少。其他实施方式具有晶粒尺寸约为80μm、120μm、400μm、500μm或甚至更大的靶材。虽然未示出本实施方式中预期的所有晶粒尺寸的分别的结果,但图3和图4举例说明了例如通过减小介电靶材110的靶材晶粒尺寸而获得的基板上的颗粒缺陷的减少。虽然本文所述的一些实施方式针对上述晶粒尺寸,但也可使用约等于或大于20μm的其他晶粒尺寸来减少基板上的缺陷数量。
25.随着晶粒尺寸从8μm增加到至少20μm,颗粒缺陷的数量显著减少,因为在较大的晶粒尺寸时会显著增加表面积与体积之比,而较小的晶粒具有更大的表面积与体积之比。晶粒尺寸的增加减少了颗粒边界区域,如能够在图4中所看到的那样。由于晶粒尺寸较大,所以晶粒边界面积较小,产生更少的缺陷。在其他实施方式中,修改介电靶靶材110的抛光(finish)。例如,靶材可具有溅射表面,该溅射表面的表面粗糙度的范围从约6μm的表面粗糙度到具有镜面抛光(mirror finish)的经抛光的表面(几乎没有表面粗糙度)。发明人已经发现,越接近镜面抛光,则工件上检测到的颗粒就越少。在一些实施方式中,介电靶材110具有至少99.7%的纯单晶mgo的密度以减少工件中的缺陷,或者在一些情况下,具有至少
99.98%的纯单晶mgo的密度以减少工件中的缺陷。如本文所用的那样,靶材密度是指靶材相对于理论上能够提供的理论纯单晶密度的百分比。
26.处理腔室100也包括基板支撑件130以支撑基板132。处理腔室100包括开口(未图示)(例如狭缝阀),终端受动器(end effector)(未图示)可穿过该开口延伸以将基板132放置在升降杆(未图示)上,以用于将基板132降低至基板支撑件130的支撑表面131上。在图1所示的实施方式中,介电靶材110和金属靶材112实质相对于支撑表面131平行地设置。基板支撑件130包括偏压源136,偏压源136经由匹配网络134耦接到设置在基板支撑件130中的偏压电极138。顶部适配器组件142耦接到处理腔室100的腔室主体140的上部并且接地。每个阴极106可以具有dc功率源108或rf功率源102和相关联的磁控管。在rf功率源102的情况中,rf功率源102经由rf匹配网络104耦接到阴极106。
27.屏蔽件121可旋转地耦接到顶部适配器组件142并且由阴极106共享。在一些实施方式中,屏蔽件121包括屏蔽件主体122和屏蔽件顶部120。在其他实施方式中,屏蔽件121具有整合为一个单(unitary)件的屏蔽件主体122和屏蔽件顶部120的多个方面。在另外的实施方式中,屏蔽件121可以多于两件。根据同时所需要溅射的靶材的数量,屏蔽件121可以具有一个或多个孔,以暴露对应的一个或多个靶材。屏蔽件121有利地限制或消除了多个靶材(包括介电靶材110和金属靶材112)之间的交叉污染。屏蔽件121经由轴件123旋转地耦接到顶部适配器组件142。轴件123经由联轴器119附接到屏蔽件121。此外,由于屏蔽件121是可旋转的,因此屏蔽件121的通常(normally)不会受到粘涂的区域被移动,使得这些区域现在可以被粘涂,从而显著减少颗粒形成和集结的沉积物的脱落。处理腔室100也可包括至少一个分流器(shunt),该分流器设置在该屏蔽件121的顶侧以容纳和屏蔽不要被溅射的多个靶材中的至少另一个靶材。
28.致动器116与轴件123耦接,与屏蔽件121相对。致动器116被构造成用以如箭头144所示旋转屏蔽件121,以及如箭头145所示沿着处理腔室100的中心轴146在竖直方向上上下移动屏蔽件121。在处理期间,屏蔽件121被升高到向上的位置。屏蔽件121的升高位置(raised position)暴露了在处理期间使用的靶材并且还屏蔽了在处理期间未使用的靶材。该升高位置也将屏蔽件接地以用于rf处理。
29.在一些实施方式中,处理腔室100进一步包括处理气体供应器128,以将处理气体供应到处理腔室100的内部空间125。处理腔室100也可包括与内部空间125流体耦接的排气泵124,以从处理腔室100排出处理气体。在一些实施方式中,例如,在金属靶材112被溅射之后,处理气体供应器128可向内部空间125供应氧。
30.图2是根据本文所述的示例性实施方式的图1中处理腔室100的空间构造图。
31.根据一些实施方式,介电靶材110和金属靶材112(连同任何其他靶材)远离屏蔽件121的边缘设置,通常距屏蔽件121的边缘约0.5英寸到2.0英寸。当靶材设置在屏蔽件的边缘处时,沉积在那里的膜往往比其他区域受到更大的应力,导致颗粒脱落并且沉积在工件上。由于靶材朝向屏蔽件121的中心设置,膜上的应力量显著降低,因为在狭窄区域中膜的密集度(concentration)较低,使得减少了沉积在工件上的颗粒缺陷和脱落。
32.图5描绘了根据本文所述的示例性实施方式的用于在基板上沉积膜的方法500的流程图。
33.方法500开始于502并进行到504。在504,在处理腔室100中选择第一靶材,并且经
由第一介电靶材在工件(例如半导体基板)上沉积介电化合物(例如mgo、al2o3)。例如,在至少一些实施方式中,介电化合物可以是直径从约两英寸到约六英寸的单晶靶材。预定晶粒尺寸在不同的实施方式中不同。例如,在一些实施方式中,预定晶粒尺寸选自约20μm至500μm的范围。在一些实施方式中,预定晶粒尺寸可以为约65μm至约500μm。在一些实施方式中,靶材中的晶粒的至少80%,或在一些实施方式中靶材中的晶粒的至少90%具有等于优选晶粒尺寸(例如20μm、40μm、50μm、400μm、500μm或甚至更大)的晶粒尺寸。
34.接下来在506,在处理腔室100中选择第二靶材,并且经由第二靶材在工件上的介电材料之上沉积第二金属。第二靶材一般是金属靶材并且金属可以是例如钽。
35.此后,处理腔室100为下一个或后续工件做准备并且方法500在508结束。
36.虽然前面所述的内容针对本公开内容的实施方式,但在不背离本公开内容的基本范围下,可设计本公开内容的其他与进一步的实施方式。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1