具有改进机械性能的类金刚石碳涂覆的芳族聚酰胺纤维的制作方法

文档序号:3394994阅读:209来源:国知局
专利名称:具有改进机械性能的类金刚石碳涂覆的芳族聚酰胺纤维的制作方法
技术领域
本发明一般涉及一种改进芳族聚酰胺纤维机械性能的方法。具体地,本发明涉及一种通过在芳族聚酰胺纤维上沉积类金刚石碳涂层来改进该芳族聚酰胺纤维抗弯强度的方法。本发明是与美国能源部的合同的结果(合同号为W-7405-ENG-36)。
背景技术
至少自19世纪60年代早期就用液晶聚合物制造高强纤维。这类纤维的公知例子包括由高取向棒状的聚(对亚苯基对苯二酰胺)聚合物制造的纤维,公知的如可从杜邦公司(Wilmington,DE)商购的KEVLAR芳族聚酰胺纤维,或者可从AKZO Nobel NV(荷兰)商购的TWARON纤维。这些芳族聚酰胺纤维提供了意外的韧性和高的拉伸模量。这些纤维的断裂强度为2.3-3.4GPa,模量为55-143GPa。结合其低的比重和热稳定性,这在很多结构应用如飞机、船、体育用品、火箭和装甲中具有改善的性能。然而,这类纤维的主要缺点是其相当差的抗弯强度和抗压性能。该纤维于400MPa量级的低应力值屈服,形成弯折带。
为了减轻这种困难,已经作出了很多努力来试图交联该长丝中的聚合物,以改善机械性能,但是迄今几乎没有成功。其它的方法是用足够高模量的材料涂覆该纤维,实际上“围绕”该长丝以防止弯折。由McGarry等人的早期工作(见F.J.McGarry等人,SAMPE,季刊,第35页,1993,7月)表明了利用汽相沉积氧化铝涂层的作用。目前,已经报道了在KEVLAR芳族聚酰胺纤维上用微波等离子体辅助有机金属沉积TiN涂层,从而提高了性能。
芳族聚酰胺纤维已用薄、平滑、粘附的同位素碳涂层涂覆,用作医用缝合线,此时其生物适合性是重要的(见US 4,204,542,授予Bokros等人)。用真空汽相沉积法(VVD)将碳涂层沉积在纤维基体上。另外,通过用薄镍层预先涂覆以使其具有导电性而将类金刚石碳涂层沉积在芳族聚酰胺纤维上(见WO 95/22169,Blanchet-Fincher等人)。然而,尽管不是直接进行芳族聚酰胺纤维的直接涂覆,但希望直接涂覆这种纤维,而无需任何中间金属层,以改善该芳族聚酰胺纤维的机械性能。
为解决现有技术的不足和缺点,需要一种改进芳族聚酰胺纤维的机械性能的工艺方法,特别是改进其抗弯强度。通过参照附图以及下述对本发明的详述,本领域的技术人员会明了本发明的其他目的和优点。
发明概述本发明提供了一种用于改善芳族聚酰胺纤维的机械性能(尤其是抗弯强度)的方法,该方法包括用高模量、高强度材料如类金刚石碳直接涂覆芳族聚酰胺纤维。
本发明还提供了一种涂覆了类金刚石碳的芳族聚酰胺纤维,与未涂覆的芳族聚酰胺纤维相比,该纤维具有改善的机械性能(如抗弯强度)。当将类金刚石碳(DLC)涂层直接涂覆于芳族聚酰胺纤维上时,当将纤维进行试验以及评价其机械性能时,该纤维具有增加的抗弯强度并抑制低的屈服行为。
附图简述

图1说明了用于在芳族聚酰胺纤维上等离子体沉积类金刚石碳的阴极结构。
图2说明了用于试验芳族聚酰胺纤维机械性能的三点弯曲试验机。
图3是表明两种不同直径的NICALONSiC纤维的三点弯曲试验的结果的曲线图。
图4是表明对涂覆的和未涂覆的KEVLAR芳族聚酰胺纤维的三点弯曲试验的结果的曲线图。
图5是表明对类金刚石碳涂覆的KEVLAR芳族聚酰胺纤维(2μm厚的涂层)和未涂覆的KEVLAR芳族聚酰胺纤维的拉伸试验结果的曲线图。
图6是表明对涂覆有亚微米类金刚石碳涂层的KEVLAR芳族聚酰胺纤维的三点弯曲试验的结果的曲线图。
优选实施方案的详述已经发现用类金刚石碳(DLC)涂覆的芳族聚酰胺纤维具有比未涂覆的芳族聚酰胺纤维更改进的机械性能,特别是抗弯强度,所述芳族聚酰胺纤维例如可从杜邦公司商购的KEVLAR芳族聚酰胺纤维。
用于本文的类金刚石碳或DLC意指具有合适短程有序的碳,即在任何方向上的原子的有序排列均小于约10纳米(nm)。类金刚石碳(DLC)是一种由高度交联的具有基本上为sp3键合程度的碳网络组成的平滑非晶固体。该sp3键合使机械性能接近于金刚石本身的性能。sp3键合所占份额可以从所产生的膜的10%至90%变化,这取决于方法和方法的工艺条件,其性能也从类似聚合物至类金刚石的范围内变化。该硬质涂层的模量值一般为约20-约177GPa范围。结合低密度、低摩擦系数、高硬度和低沉积温度这使DLC成为用于涂覆芳族聚酰胺纤维的理想的选择物。某些DLC和KEVLAR芳族聚酰胺纤维的典型性能列于下面表1中。
表1E GPa σGPaQg/ccKEVLAR83 3.2 1.44DLC 20-177 -1.8-2.8DLC可用多种技术沉积,这些技术集中在高能离子轰击,例如等离子体化学汽相沉积(CVD)、离子束辅助溅射,碳靶的阴极弧和激光的烧蚀。下面的描述集中于用射频(RF)等离子体辅助CVD技术将DLC沉积在芳族聚酰胺纤维上,以及描述评价单根长丝的抗弯性能,尽管本发明并不限于该实施方案。
在下面的非限定实施例中,用平板13.56MHz RF等离子体技术涂覆芳族聚酰胺纤维。一般地,该芳族聚酰胺纤维涂覆约5-约100μm厚的DLC,优选约10-约40μm。所用设备包括具有扩散泵抽真空的高真空室,该真空室装有质流控制器和用于在减压下操作的传导阀。基本方法需要在接地阳极和供电的阴极之间形成等离子体。该阳极-阴极系统不是精密对称的,因而在阴极产生负DC自偏压。该等离子体由烃气体如甲烷组成,它们在等离子体中离解并离子化。离子被加速穿过等离子体层而移向阴极,这是自偏压的结果。对于沉积具有所需性能的DLC来说,对离子轰击方式是严格的。需要压力范围为50-100微米,偏压为几百伏至1千伏。低的偏压会导致聚合物状性能,而太高的偏压会产生玻璃态或石墨态碳膜。
与常规热CVD不同,该工艺的离子轰击方式产生视线沉积。通过仔细设计阳极-阴极结构可以实现保形涂覆。为了围绕纤维进行全面涂覆,在展开的纤维束上进行沉积,并且一次涂覆一侧。
如图1所示,通过将纤维8安装在两块钢板10之间而沉积高达2微米的厚涂层,在这两块板的中心处移去了尺寸为2×5厘米的部分。该钢板安装在阴极12上,并能取下并翻转以涂覆纤维的两面。在表2所列条件下将DLC沉积在纤维上。
表2涂层厚度压力 功率 偏压 处理时间(微米) 气体 (Pa) (瓦) (伏) (分钟)预处理 - Ar 4.765-500 15DLC涂覆 2.3 CH411.3 85-520 240为了改善涂层与纤维的粘结性,在沉积前用相同的实验配置进行氩气轰击清洗。在完成初始的DLC沉积后,将包括有纤维的板翻转并用相同的步骤涂覆纤维的另一侧。用此工艺步骤可得到高达2微米厚的粘结性好的涂层。
评价单根纤维的轴向抗压性能一般是个难题。已经提出了一些方法,最引人注意的是由Allen研究的拉伸反冲试验(见S.R.Allen,J.Mat.Sci.22,853(1987))。另一种方法,通过测量抗弯性能可得到关于涂层性能的信息。为此,研制了一种由于单根纤维的使用毫微压痕计(可从NanoInstruments公司(Knoxville,TN)购得)的三点弯曲试验。该方法和装置在图2中说明。更详细的内容提供在与此同时申请的美国临时专利申请号60/007,849(由Devlin等人,题目为“用于小直径纤维的弯曲试验”)中,将该60/007,849专利申请中的内容引入本文以供参考。
一组2.5cm长、140微米直径的蓝宝石纤维平行放置并彼此相邻,并且粘到(epoxied)一蓝宝石平面上。将第三根纤维置于这两根纤维之间的顶部并在一端粘住(epoxied at one end)。用200微米直径的平面(钝的)触头代替压痕计的金刚石触头。将试验纤维(即芳族聚酰胺纤维)穿过位于平面上的两根蓝宝石纤维并在第三根纤维下面放置。通过用钝触头压第三根蓝宝石纤维,试验纤维在两根支撑纤维间弯曲。选择蓝宝石纤维的长度和间距以使第三根蓝宝石纤维的弯曲的力小于试验弯曲的力,并且可以忽略。通过简单地在蓝宝石纤维间滑动试验纤维并在压痕计试样夹具中安装卡具可方便地将试验纤维安装。使用压痕计的标准操作可以获得载荷和移距数据,这些数据包括任何测量纤维弯曲所需的力。所有试验均进行至最大移距为4.0微米。用标准弯曲公式分析所得结果,该公式根据移距和纤维间距或计量长度的误差进行了修正,这种移距和误差是由于绕蓝宝石纤维支撑组件旋转而造成的。对于如图2所示组件,计量长度为平面中的空隙或凹处的距离,而不是两根纤维之间的间隙。对于小移距来说,公式变为下面的公式,该公式基本上与标准弯曲公式等同P=48EID3λ]]>其中P是由压痕计测量的施加载荷(单位牛顿),D是蓝宝石支撑纤维的直径(单位米),E是试验纤维的模量(单位帕斯卡),I是试验纤维的惯性矩(单位米的四次方,m4),λ是由压痕计测量的移距(单位米)。
用扫描电镜(SEM)测量纤维的直径。用已知模量的碳化硅(SiC)纤维(可从Dow Corning Corporation of Auburn(Michigan)购得的“NICALON”SiC纤维)来评价该方法。用由Petrovic所述的显微拉伸试验机来进行单根纤维拉伸试验(见J.J.Petrovic等人的J.Mat.Sci.20,1167(1985))。典型的计量长度为1厘米量级。
该DLC涂层是平滑的且粘结的很好。对于一次涂覆一侧的纤维,有时在某些区域可观察到结合线(Knit line)。厚涂覆的纤维发生卷曲,假定这是由于与DLC涂层相关的残余压应力所致。对于薄涂覆的纤维,这种作用是不显著的。
图3表示用改造的微米压痕机对不同直径的NICALON碳化硅(SiC)纤维进行的弯曲试验的结果。计算出的这些纤维的模量值为187GPa,这与193GPa的报道值吻合的很好,说明了该试验方法是有效的。图4表明了对未涂覆的KEVLAR芳族聚酰胺纤维和涂有2.3μm DLC的KEVLAR芳族聚酰胺纤维的测量结果。
对于未涂覆的KEVLAR芳族聚酰胺纤维,其在低载荷下的屈服行为和移距是明显的。在相应于1.2%最大应变的3.2微米移距时发生屈服。对于涂有2.3微米DLC的KEVLAR芳族聚酰胺纤维,在高达4微米的移距时没有断裂的证据说明其抗弯强度的增加是明显的。
在图5中示出了未涂覆的和涂覆的(2μm DLC涂层)KEVLAR芳族聚酰胺纤维的拉伸数据。对于涂覆的KEVLAR芳族聚酰胺纤维,其断裂应力为1.6GPa,模量为48GPa,而对于未涂覆的KEVLAR芳族聚酰胺纤维,其断裂应力为2.93GPa,模量为90.4GPa。机械性能试验结果汇总于下面表3中。
表3直径计量长度断裂载量σ E(μm) (μm) (mN) (GPa)(GPa)KEVLAR(弯曲) 11.6 140 - - 63.5KEVLAR(拉伸) 12.0 5138331 2.93 90.4DLC/KEVLAR(弯曲) 17.2 140 - - 32.5DLC/KEVLAR(拉伸) 16.8 5641358 1.62 48.5对于涂覆的KEVLAR芳族聚酰胺纤维来说,尽管其增加了直径,但拉伸数据表明断裂强度基本上与未涂覆的KEVLAR芳族聚酰胺纤维的相同。然而,基于原始的纤维直径的总模值93.1GPa和拉伸屈服强度值3.16GPa,得到了总模量和拉伸屈服强度值分别为48.5GPa和1.62GPa的计算值。由于DLC和KEVLAR芳族聚酰胺纤维的模量是可比的,不会期望拉伸性能有明显的增加。总量的降低或者说明涂层的模量较低,或者是涂层不连续。如果DLC模量明显较高时,由于在该涂层中的裂纹或预先存在的裂缝使涂层过早破裂,这会消除其在拉伸中承载载荷的能力。
但是,在弯曲中的行为则不同,对于涂覆的KEVLAR芳族聚酰胺纤维可观察到明显改善的抗弯强度。在高达试验所用的4微米移距极限时,没有观察到屈服行为。在弯曲中,最大的应力发生在表面,机械性能主要由涂层决定。在这些条件下,该涂层的作用很好,对于未涂覆的KEVLAR芳族聚酰胺纤维,计算的弯曲模量为63.5,假定是各向同性的性能,这高于由McGarry等人所报道的值(见F.J.McGarry,SAMPE季刊,第35页(1992,7月))。对于涂覆的KEVLAR芳族聚酰胺纤维的相同计算,得出总模量为32.4GPa。当进行该计算时,假设全部载荷由涂层承担,则弯曲模量为63.1GPa。该值代表了DLC涂层的模量,并且基本上与测量的KEVLAR芳族聚酰胺纤维的拉伸模量相同。
DLC的压应力是高的,经常高至2GPa。这是可预期到的,是由围绕作用所产生的。但是,在刚性形式中,它对厚2μm涂层的纤维会造成过度的卷曲。改变工艺条件可以降低这些应力,但会牺牲所需的性能。对亚微米涂层的先前结果表明了最小的卷曲。图6表示了这种KEVLAR芳族聚酰胺纤维的弯曲性能。
该纤维表明在开始屈服后跟着出现回复。尽管没有完全理解这种行为,但认为是不连续涂层或裂痕的结果。长丝在裂纹中弯曲也是可能的,但由于裂纹的宽度有限而会被抑制。进一步的弯曲会被完整的涂层所抑制。
对于涂覆的KEVLAR芳族聚酰胺纤维可观察到总体增加的抗弯强度。尽管增加了纤维直径,但拉伸试验结果表明拉伸强度没有增加。断裂强度实际上与未涂覆的KEVLAR芳族聚酰胺纤维的相同。假设载荷由涂层承担,则计算的DLC涂层的弯曲模量为63.1GPa。这与测得的KEVLAR芳族聚酰胺纤维的拉伸模量相同。该材料的总拉伸模量没有增加,可能是由于涂层过早破裂或在涂层中存在裂纹所致。
亚微米涂层在弯曲中表现出异常的回复行为。再次,这可能是涂层破裂或预先存在裂纹所致。
实施例下面的非限制性实施例进一步说明和实施本发明。
实施例1用图1所示的平面靶13.56MHz RF等离子体方法,将从杜邦公司购得的未表面整理的KEVLAR49芳族聚酰胺纤维涂覆。该体系包括扩散泵抽空的高真空室,该真空室装有质流控制器和用于在减压下操作的传导阀。基本方法需要在接地阳极和供电的阴极之间形成等离子体。该阳极-阴极系统不是精密对称的,因而在阴极产生负DC自偏压。该等离子体包括甲烷的烃气体,它在等离子体中离解和离子化。离子被加速穿过等离子体层而移向阴极,这是自偏压的结果。对于沉积具有所需性能的DLC来说,对离子轰击方式是严格。需要压力范围为50-100微米,偏压为几百伏至1千伏。低的偏压会导致类似聚合物的性能,而太高的偏压会产生玻璃态或石墨态碳膜。
从丝束中切下长5cm的部分纤维束,并将2/3的纤维束去除。将纤维束的剩余部用手展开,并安装在约10×13cm的钢板上,该钢板的尺寸为2.5×5cm的中心部分已被去除。用焊接的金属夹子将纤维固定在板上。将带有纤维的板安装在第二块“阴极板”上,并用氧化铝垫片与该阴极板电绝缘。将这种结构置于真空室中并与地绝缘。该阴极板与匹配网的电源输出端电连接,该网再与RF,13.56MHz电源相连。
真空室抽真空至10-6托的本身压力,再充入氩气至压力为3.5×10-5托。将65瓦的RF电加到阴极上,产生约-500伏DC的负自偏压。使用这些条件来溅射清洗纤维表面15分钟以改善膜粘合力。在氩预处理后,将RF电源和氩气均关闭,并将体系抽空至10-6托。引入甲烷至85×10-6托压力。将65瓦RF电加到阴极上产生-520伏DC的负自偏压。沉积进行4小时。此时间结束时关闭RF电源和甲烷气流并将真空室再抽空,使试样冷却。将真空室再充入氩气并在空气中打开。从阴极上取下不锈钢板,翻面后再固定到阴极上以涂覆纤维的另一侧。如前将真空室抽真空,并引入甲烷气至85×10-6托压力。将65瓦RF电源加到阴极上产生-475伏DC负自偏压。再进行沉积4小时。
用前述的三点弯曲试验对所得材料即涂覆的芳族聚酰胺纤维进行试验,试验中使用从NanoInstrument,Inc(Knoxville,TN)购得的毫微压痕机。结果示于图5中。
实施例2为了连续和有效地涂覆芳族聚酰胺纤维,提出了一种同时涂覆纤维两侧的方法。该方法如图1所示。该阴极结构包括两个由不锈钢网构成的平面栅极。该两个栅极相隔3mm并形成阴极组件。将非导体纤维(即实施例1的KEVLAR49芳族聚酰胺纤维)在这两个栅极之间穿过,并且离子从两个方向穿过栅极而被加速以轰击纤维。通过保持栅极的间距小于阴极的暗区距离(约为1厘米的量极),可避免在两栅极间形成等离子体和虚阳极。尽管在优选实施方案中只是静态地进行沉积,该芳族聚酰胺纤维或若干纤维可以连续地在两栅极间输送,从而在纤维两侧形成均匀的涂层。用类似实施例1所述条件和预处理,得到高达0.1μm的均匀涂层。对于厚涂层,从栅极可观察到阴影效应。在连续体系中不存在阴影。
用手将十六根KEVLAR49芳族聚酰胺纤维散开并穿过1.5mm厚钢板的开口部分将纤维钉住。将与第一块板相同的第二块板安装上,因而将纤维夹在这两块板之间,并通过开口可从两侧看到纤维。将不锈钢网安在这两块板上并盖住开口。将整个组件作为阴极。两钢网栅极间的间距为3mm即满足需要,以避免在两栅极间离子化,同时由于自偏压使阴极外形成的离子加速穿过该组件两侧的暗区距离并穿过栅极而从两侧轰击纤维。当离子被加速而从两个方向穿过栅极时,将芳族聚酰胺纤维保持在两栅极之间,从而轰击纤维。
将组件安装在真空室中,该真空室与地绝缘。并与匹配网的电源输出端电连接,该网再与13.56MHz RF电源相连。真空室抽真空至10-6托,再充入氩气至35×10-6托压力。将65瓦RF电加到阴极组件上,产生约500伏DC的负自偏压。将这些条件保持15分钟,结束后将电源和气流关闭,再将真空室抽空至10-6托。在真空室中充入甲烷气至压力为85×10-6托。将85瓦RF电加到阴极组件上,产生480伏DC的负自偏压。沉积进行37分钟,结束后关闭电源和气流,并抽空真空室。
用三点弯曲试验测试这些试样,结果绘于图6中。
对于上述的实施例1和2,在汇总于下表4中的条件下进行DLC沉积。
表4涂层厚度压力功率偏压处理时间微米气体 10-6托 瓦 伏 (分钟)预处理- Ar 35 65 -500 15实施例1 2.3 CH485 65 -520 240实施例2 0.1 CH485 85 -480 37尽管上述已描述了本发明的特定实施方案,本领域技术人员应理解地是在不脱离本发明的精神或基本特征的条件下可以作出多种改变、替代和重组。Pt指明本发明的范围时,应参照所附的权利要求书,而不是上述的说明。
权利要求
1.一种用于改进芳族聚酰胺纤维的抗弯强度的方法,该方法包括在该纤维表面直接沉积类金刚石碳涂层。
2.权利要求1的方法,其中的芳族聚酰胺纤维是由聚(对亚苯基对苯二酰胺)构成。
3.权利要求1的方法,其中通过射频等离子体辅助化学汽相沉积法,将类金刚石碳涂层直接沉积在纤维表面上。
4.权利要求1的方法,其中与未涂覆芳族聚酰胺纤维相比,该纤维的抗弯强度提高。
5.一种类金刚石碳涂覆的芳族聚酰胺纤维,该纤维在最大应力为至少1GPa下基本上不发生屈服。
6.权利要求5的芳族聚酰胺纤维,其中该纤维由聚(对亚苯基对苯二酰胺)构成。
全文摘要
一种通过在芳族聚酰胺纤维表面上直接沉积类金钢石碳涂层而改进该纤维的机械性能特别是抗弯强度的方法。也公开了具有提高的抗弯强度的类金钢石碳(DLC)涂覆的芳族聚酰胺纤维。与未涂覆的芳族聚酰胺纤维相比,DLC涂覆的芳族聚酰胺纤维具有提高的抗弯强度并抑制低的屈服行为。
文档编号C23C16/50GK1203641SQ96198678
公开日1998年12月30日 申请日期1996年11月18日 优先权日1995年12月1日
发明者D·J·德维林, D·M·克特斯, T·A·阿楚勒塔 申请人:纳幕尔杜邦公司, 加州大学评议会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1