生产纸的方法

文档序号:3463016阅读:104来源:国知局
专利名称:生产纸的方法
本申请是2000年4月28日申请的发明名称为“硅石基溶胶”的中国专利申请00807147.0的分案申请。
本发明一般涉及一种生产纸的方法。
背景在造纸领域中,将称作原料的包含纤维素纤维和可有可无的填料和添加剂的水悬浮液加料到网前箱,然后将原料喷射到成型网上。水由原料排放经过该成型网,这样在该网上形成湿纸幅,然后将该纸幅进一步脱水并在造纸机的干燥段中干燥。通常将排水和留着助剂加入原料中以帮助排水和增加细颗粒在纤维素纤维上的吸附,这样它们与纤维留在网上。
硅石基颗粒与带电有机聚合物如阴离子和阳离子丙烯酰胺基聚合物和阳离子和两性淀粉结合而广泛用作排水和留着助剂。这些添加剂体系公开于美国专利4388150、4961825、4980025、5368833、5603805、5607552和5858174、以及国际专利申请WO97/18351。这些体系是目前使用的最有效的排水和留着助剂。
适用作排水和留着助剂的硅石基颗粒通常以含水胶态分散体,所谓溶胶的形式供给。商业上使用的硅石基溶胶通常具有约7-15%重量的硅石含量且包含比表面积至少为300米2/克的颗粒。具有较高比表面积的硅石基颗粒的溶胶通常太稀,不能提高储存稳定性和避免形成凝胶。
能够提供具有进一步改进的排水和留着性能以及甚至更好的稳定性的硅石基溶胶和颗粒是有利的。能够提供一种制备具有改进的排水、留着和稳定性性能的硅石基溶胶和颗粒也是有利的。能够提供一种具有改进的排水和/或留着作用的造纸工艺也是有利的。
本发明按照本发明,提供了适合在水纯化中用作絮凝剂和在造纸中用作排水和留着助剂的硅石基溶胶和颗粒。按照本发明的硅石基溶胶和颗粒具有良好的长期稳定性、明显高的表面积稳定性和高的胶凝稳定性,因此它们可以高比表面积和高硅石浓度进行制备和运输。硅石基溶胶和颗粒更能够在高硅石浓度下在储存时保持高比表面积。按照本发明的硅石基溶胶和颗粒在与阴离子、阳离子和/或两性有机聚合物结合使用时还具有非常好的或改进的排水和留着作用。这样,按照本发明的硅石基溶胶和颗粒可增加造纸机的速度并使用较低剂量的添加剂以获得相应的排水和/或留着效果,从而改进了造纸工艺和经济效益。本发明因此涉及硅石基颗粒和在本文中也称作硅石基溶胶的包含硅石基颗粒的水溶胶、及其生产方法,这进一步定义于所附的权利要求书。
本发明还涉及硅石基溶胶和颗粒,优选结合本文所述有机聚合物作为排水和留着助剂在造纸中的应用,这进一步定义于所附的权利要求书。本文所用的术语“排水和留着助剂”是指一种或多种在加入造纸原料中时得到比不加入这些组分时更好的排水和/或留着作用的组分(助剂、试剂或添加剂)。本发明进一步涉及一种由包含纤维素纤维和可有可无填料的水悬浮液来生产纸的方法,包括,向该悬浮液中加入硅石基颗粒和至少一种带电有机聚合物,将该悬浮液在网上成型和排水。本发明因此涉及一种进一步定义于所附权利要求书的方法。
按照本发明的硅石基溶胶是包含阴离子硅石基颗粒,即,基于硅石(SiO2)或硅酸的颗粒的水溶胶。该颗粒优选为胶态,即,处于胶态粒径范围。存在于溶胶中的硅石基颗粒的平均粒径低于约10纳米且优选为约10-2纳米。作为硅石基胶态颗粒化学中的常识,粒径是指可以聚集或未聚集的原生颗粒的平均尺寸。
硅石基溶胶的比表面积合适地至少为80米2/克水溶胶,即,基于水溶胶的重量,优选至少85米2/克水溶胶,更优选至少90米2/克水溶胶,最优选至少95米2/克水溶胶。在本发明的一个优选实施方案中,含水硅石基溶胶的比表面积合适地至少为115米2/克水溶胶,优选至少120米2/克水溶胶。一般来说,水溶胶的比表面积可以是最高约200米2/克水溶胶,合适地最高150米2/克水溶胶,优选最高130米2/克水溶胶。
硅石基颗粒的比表面积合适地至少为300米2/克SiO2,即,基于SiO2的重量,优选至少400米2/克SiO2,最优选至少550米2/克SiO2。一般来说,颗粒的比表面积可以是最高约1200米2/克SiO2,合适地低于1000米2/克SiO2,优选最高950米2/克SiO2。在本发明的一个优选实施方案中,颗粒的比表面积在550-725米2/克SiO2,优选575-700米2/克SiO2的范围内。在本发明的另一优选实施方案中,颗粒的比表面积在775-1200米2/克SiO2,优选800至低于1000米2/克SiO2的范围内。
在适当去除或调节存在于样品中的任何可能扰乱滴定的化合物,如铝和硼物质之后,比表面积可以一种例如描述于Sears的分析化学28(1956)12,1981-1983和美国专利5176891的已知方式,通过用氢氧化钠滴定来测定。如果以每克水溶胶的平方米数表示,比表面积表示每克含水硅石基溶胶所具有的比表面积。如果以每克硅石的平方米数表示,比表面积表示存在于溶胶中的硅石基颗粒的平均比表面积。
硅石基溶胶通常具有10-45%,合适地20-40%,优选25-35%范围内的S值。S值可按照Iler&Dalton在物理化学杂志60(1956),955-957中所述进行测定和计算。S值表示聚集或微凝胶形成的程度且较低的S值表示较高程度的聚集。
硅石基溶胶的SiO2与M2O的摩尔比通常至少为10∶1,合适地至少12∶1,优选至少15∶1,其中M是碱金属离子(如,Li、Na、K)和/或铵。SiO2与M2O的摩尔比一般可以是最高100∶1,合适地最高40∶1,优选最高30∶1。优选范围因此为10∶1-100∶1,尤其是15∶1-30∶1。硅石基溶胶的pH值通常至少为8.0,合适地至少为10.0,优选至少10.5,更优选至少10.6。pH值可以最高约11.5,合适地最高为11.0。
硅石基溶胶应该合适地具有至少3%重量的硅石含量,但更合适的是,硅石含量在10-30%重量,优选12-25%重量的范围内。为了简化运输和降低运输成本,一般优选运送高浓度的硅石基溶胶,当然,可以且通常优选在使用之前将硅石基溶胶和颗粒进行稀释并混合至基本上较低的硅石含量,例如0.05-5%重量范围内的硅石含量,这样可提高与配料组分的混合。硅石基溶胶的粘度可例如根据溶胶的硅石含量而变化。通常,该粘度至少为5厘泊,通常为5-40厘泊,合适地6-30厘泊,优选7-25厘泊。最好根据硅石含量至少为10%重量的溶胶测定的粘度可通过已知的技术,例如使用Brookfield LVDV II+粘度计来测定。
本发明的硅石基溶胶优选是稳定的。本文所用的术语“稳定的硅石基溶胶”是指在20℃下在黑暗和未搅动状态下储存或老化1个月时粘度增加低于100厘泊的硅石基溶胶。如果溶胶经受上述条件,粘度增加(如果有的话)最好低于50厘泊,优选低于30厘泊。
在本发明的一个优选实施方案中,硅石基溶胶基本上没有铝,即,没有加入含铝的改性剂。在本发明的另一优选实施方案中,硅石基溶胶基本上没有硼,即,没有加入含硼的改性剂。但少量的这些元素可存在于用于制备硅石基溶胶和颗粒的起始原料中。在本发明的另一优选实施方案中,硅石基溶胶使用各种存在于水相和/或硅石基颗粒中的元素,如铝和/或硼进行改性。如果使用铝,该溶胶的Al2O3与SiO2的摩尔比在1∶4-1∶1500,合适地1∶8-1∶1000,优选1∶15-1∶500的范围内。如果使用硼,该溶胶的B与SiO2的摩尔比在1∶4-1∶1500,合适地1∶8-1∶1000,优选1∶15-1∶500的范围内。如果使用铝和硼两者,Al与B的摩尔比可以在100∶1-1∶100,合适地50∶1-1∶50的范围内。
按照本发明的硅石基溶胶和颗粒可由常规的硅酸盐水溶液如碱性水玻璃,如钾或钠水玻璃,优选钠水玻璃开始制备。在硅酸盐溶液或水玻璃中,SiO2与M2O的摩尔比合适地在1.5∶1-4.5∶1,优选2.5∶1-3.9∶1的范围内,其中M是碱金属如钠、钾、铵或其混合物。最好使用一种稀释的硅酸盐溶液或水玻璃,其SiO2含量可以是约3-12%重量,优选约5-10%重量。将pH值通常为约13或高于13的硅酸盐溶液或水玻璃酸化至pH值为约1-4。酸化可以已知方式通过加入无机酸如硫酸、氢氯酸和磷酸,或视需要使用其它适合水玻璃酸化的化学品如硫酸铵和二氧化碳来进行。如果加入无机酸,酸化最好分两步进行,第一步至pH值约8-9,在此进行一定的熟化,即,颗粒生长,然后进一步酸化至pH值约1-4。但优选的是,酸化利用一种除了别的之外还导致产物更稳定的酸阳离子交换剂来进行。酸化优选利用强酸阳离子交换树脂,例如磺酸型树脂来进行。优选的是,酸化进行至pH值为约2-4,最优选约2.2-3.0。所得产物(酸溶胶或聚硅酸)包含具有高比表面积,一般超过1000米2/克SiO2且通常为约1300-1500米2/克SiO2的硅石基颗粒。
酸溶胶随后进行碱化,在本文中称作第一碱化步骤。第一碱化可通过加入常规碱,例如氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铵及其混合物、和/或定义如上的硅酸盐水溶液来进行。SiO2与M2O的摩尔比定义如上的钾和钠水玻璃,尤其是钠水玻璃适用于该碱化步骤。用于第一碱化的水玻璃溶液的SiO2含量合适地在约3-35%重量,优选5-30%重量的范围内。第一碱化通常进行至pH值至少为6,合适地至少为7,优选至少为7.5,且pH值通常最高为10.5,合适地最高为10.0。第一碱化进一步合适地进行至SiO2与M2O的最终摩尔比低于100∶1,合适地在约20∶1-80∶1,优选30∶1-70∶1的范围内,其中M定义如上。在制备如上所述具有低S值的溶胶时,微凝胶程度可以几种方式受影响且控制至所需值。微凝胶程度通过调节在制备酸溶胶时和在第一碱化步骤中的浓度而受盐含量的影响,因为在该步骤中,微凝胶程度当该溶胶在约5的pH值下通过最低稳定性时受影响。特别合适地通过在第一碱化步骤中调节干含量(SiO2含量)来控制微凝胶程度,这样较高的干含量得到较低的S值。通过在第一碱化步骤中将SiO2含量保持在4.5-8%重量的范围内,S值可控制至例如10-45%的所需值。为了得到S值在20-40%范围内的溶胶,第一碱化步骤中的SiO2含量合适地保持在5.0-7.5%重量的范围内。
存在于在第一碱化步骤中得到的碱化溶胶中的硅石基颗粒随后进行颗粒生长,这样得到具有较低比表面积和较高稳定性的颗粒。颗粒生长过程应该合适地进行,得到比表面积至少为300米2/克SiO2,优选至少400米2/克SiO2,最优选至少550米2/克SiO2,且最高约1200米2/克SiO2,合适地低于1000米2/克SiO2,尤其是最高950米2/克SiO2的硅石基颗粒。在本发明的一个优选实施方案中,颗粒生长过程进行以得到比表面积为550-725米2/克SiO2,优选575-700米2/克SiO2的颗粒。在本发明的另一优选实施方案中,颗粒生长过程进行以得到比表面积为775-1200米2/克SiO2,优选800-1000米2/克SiO2的颗粒。表面积的降低可通过在室温下储存稍微较长的时间(1日至最高约2个日夜)或优选通过热处理而实现。在热处理时,可以调节时间和温度,这样可在较高温度下使用较短时间。即使当然可以在非常短的时间内使用较高的温度,从实际考虑,更适合在稍微较长的时间内使用较低的温度。在热处理时,碱化溶胶应该合适地加热至至少30℃,合适地35-95℃,优选40-80℃的温度。热处理应该合适地进行至少10分钟,合适地15-600分钟,优选20-240分钟。
在颗粒生长过程和可有可无的冷却之后,所得硅石基溶胶在此进行碱化,在此称作第二碱化步骤,以进一步增加pH值。第二碱化可通过加入常规碱,例如氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铵及其混合物、和/或定义如上的硅酸盐水溶液来进行。SiO2与M2O的摩尔比定义如上的钾和钠水玻璃,尤其是钠水玻璃适用于第二碱化步骤。用于第二碱化的水玻璃溶液的SiO2含量合适地在约3-35%重量,优选5-30%重量的范围内。第二碱化通常进行至pH值至少为8.0,合适地至少为10.0,优选至少为10.5,最优选至少10.6。pH值可以最高为11.5,合适地最高为11.0。第二碱化进一步合适地进行至SiO2与M2O的最终摩尔比为约10∶1-100∶1,合适地12∶1-40∶1,优选15∶1-30∶1的范围内,其中M定义如上。
在本发明的一个优选实施方案中,该过程还包括硅石基溶胶的浓缩。浓缩可在第二碱化之后进行。另外,在第一碱化之后但在颗粒生长或热处理步骤之后的所得碱化溶胶、或在颗粒生长或热处理步骤之后但在第二碱化之前的所得溶胶可进行浓缩。浓缩可通过已知方式,例如通过渗透法、蒸发或超滤来进行。浓缩合适地进行以得到至少为10%重量,优选10-30%重量,更优选12-25%重量的硅石含量。浓缩进一步合适地进行使得在该过程中得到的硅石基溶胶的比表面积至少为基于水溶胶重量的80米2/克水溶胶,优选至少85米2/克水溶胶,更优选至少90米2/克水溶胶,最优选至少95米2/克水溶胶。在本发明的一个优选实施方案中,所得合适硅石基溶胶的比表面积合适地至少为115米2/克水溶胶,优选至少120米2/克水溶胶。一般来说,所得水溶胶的比表面积可以最高为约200米2/克水溶胶,合适地最高为150米2/克水溶胶,优选最高为130米2/克水溶胶。
如果需要,硅石基溶胶和颗粒可通过加入包含例如铝和/或硼的化合物进行改性。合适地含铝化合物包括铝酸盐如铝酸钠和铝酸钾,合适地为铝酸钠。含铝化合物合适地以水溶液的形式使用。合适的含硼化合物包括硼酸、硼酸盐如硼酸钠和硼酸钾,合适地为硼酸钠,四硼酸盐如四硼酸钠和四硼酸钾,合适地为四硼酸钠,和偏硼酸盐如偏硼酸钠和偏硼酸钾。含硼化合物合适地以水溶液的形式使用。
如果在该工艺中使用含铝化合物,最好在第二碱化步骤之前或之后将它加入进行颗粒生长或热处理的溶胶中。另外,含铝化合物可在颗粒生长或热处理步骤之前加入被酸化的硅酸盐溶液中、酸溶胶中或在第一碱化步骤中得到的碱化溶胶中。含铝化合物可在酸化步骤中与酸混合加入或在任何碱化步骤中与碱或硅酸盐溶液混合加入。含铝化合物的合适加入量使得所得溶胶具有定义如上的Al2O3与SiO2的摩尔比。
如果在该工艺中使用含硼化合物,最好在第二碱化步骤之前或之后将它加入进行颗粒生长或热处理的溶胶中。另外,含硼化合物可在颗粒生长或热处理步骤之前加入待被酸化的硅酸盐溶液中、酸溶胶中或在第一碱化步骤中得到的碱化溶胶中。含硼化合物可在酸化步骤中与酸混合加入或在任何碱化步骤中与碱或硅酸盐溶液混合加入。含硼化合物的合适加入量使得所得溶胶具有定义如上的B与SiO2的摩尔比。如果使用含铝化合物和含硼化合物两者,它们的合适加入量使得所得溶胶具有定义如上的Al与B的摩尔比。
如果溶胶在任何铝和/或硼改性之前包含太多量的碱金属离子或铵离子,优选例如通过离子交换来去除至少一部分这些离子,得到SiO2与M2O的最终摩尔比在上述理想范围内的硅石基溶胶。
按照本发明的方法,可以制备具有上述特性的硅石基溶胶和颗粒,尤其是稳定的硅石基溶胶和颗粒,且所得溶胶具有良好的储存稳定性并可储存几个月,而比表面积没有任何显著的下降且没有胶凝。
按照本发明的硅石基溶胶和颗粒适合例如在纸浆和纸的制造中用作絮凝剂,尤其是用作排水和留着助剂,以及用于水纯化领域,用于纯化不同种类的废水和用于纯化尤其是来自纸浆和纸工业的白液。硅石基溶胶和颗粒可与选自阴离子、两性、非离子和阳离子聚合物及其混合物的在本文中也称作“主聚合物”的有机聚合物结合用作絮凝剂,尤其是用作排水和留着助剂。这些聚合物作为絮凝剂和作为排水和留着助剂的用途是本领域熟知的。聚合物可来自天然或合成来源,且它们可以是直链、或支链或交联的。一般合适的主聚合物的例子包括阴离子、两性和阳离子淀粉、阴离子、两性和阳离子瓜尔胶、以及阴离子、两性和阳离子丙烯酰胺基聚合物、以及阳离子聚(二烯丙基二甲基氯化铵)、阳离子聚亚乙基亚胺、阳离子聚胺、聚酰氨基胺和乙烯基酰胺基聚合物、蜜胺-甲醛和脲-甲醛树脂。合适地,硅石基溶胶与至少一种阳离子或两性聚合物,优选阳离子聚合物结合使用。阳离子淀粉和阳离子聚丙烯酰胺是特别优选的聚合物且它们可单独、相互一起或与其它聚合物如其它阳离子聚合物或阴离子聚丙烯酰胺一起使用。主聚合物的分子量合适地高于1000000,优选高于2000000。上限并不关键;它可以是约50000000,通常30000000,合适地约25000000。但天然来源的聚合物的分子量可以更高。
如果将本发明硅石基溶胶和颗粒与上述主聚合物结合使用,进一步优选使用至少一种通常称作和用作阴离子废物捕捉剂(ATC)的低分子量(以下LMW)阳离子有机聚合物。ATC是本领域已知用于存在于原料中的有害阴离子物质的中和和/或固定剂,而且它与排水和留着助剂的结合使用通常能够进一步改进排水和/或留着作用。LMW阳离子有机聚合物可来自天然或合成,且优选为LMW合成聚合物。合适的这种有机聚合物包括LMW高度带电的阳离子有机聚合物如聚胺、聚酰胺胺、聚亚乙基亚胺、基于二烯丙基二甲基氯化铵、(甲基)丙烯酰胺和(甲基)丙烯酸酯的均聚物和共聚物。关于主聚合物的分子量,LMW阳离子有机聚合物的分子量优选较低;它合适地至少为1000,优选至少为10000。分子量的上限通常为约700000,合适地约500000,通常约200000。可与本发明硅石基溶胶一起使用的聚合物的优选组合包括LMW阳离子有机聚合物与主聚合物例如阳离子淀粉和/或阳离子聚丙烯酰胺、阴离子聚丙烯酰胺的组合、以及阳离子淀粉和/或阳离子聚丙烯酰胺与阴离子聚丙烯酰胺的组合。
按照本发明的排水和留着助剂的组分可以常规方式和以任何顺序加入原料中。如果使用包含硅石基颗粒和有机聚合物如主聚合物的排水和留着助剂,优选在加入硅石基颗粒之前将聚合物加入原料中,甚至可以采用相反的加料顺序。进一步优选加入在选自泵送、混合、清洁等的剪切步骤之前加入主聚合物,并在该剪切步骤之后加入硅石基颗粒。如果使用,LMW阳离子有机聚合物优选在加入主聚合物之前加入原料中。另外,LMW阳离子有机聚合物和主聚合物可基本上同时(单独或混合形式)加入原料中,例如公开于美国专利5858174,在此将其作为参考并入本发明。LMW阳离子有机聚合物和主聚合物优选在加入硅石基颗粒之前加入原料中。
在本发明的一个优选实施方案中,硅石基溶胶和颗粒与至少一种上述有机聚合物和至少一种铝化合物结合用作排水和留着助剂。铝化合物可用于进一步提高包含硅石基颗粒的原料添加剂的排水和/或留着性能。合适的铝盐包括明矾、铝酸盐、氯化铝、硝酸铝和聚铝化合物如聚氯化铝、聚硫酸铝、包含氯化物和硫酸盐离子两者的聚铝化合物、聚硅酸铝-硫酸铝、及其混合物。聚铝化合物也可包含其它阴离子,例如离子磷酸、有机酸如柠檬酸和草酸的离子。优选的铝盐包括铝酸钠、明矾和聚铝化合物。铝化合物可在加入硅石基颗粒之前或之后加入。另外,铝化合物可与硅石基溶胶基本上同时(单独地或与其混合)加入,例如公开于美国专利5846384,在此将其作为参考并入本发明。在许多情况下,通常适合在工艺早期,例如在其它添加剂之前将铝化合物加入原料。
按照本发明的排水和留着助剂的组分加入待脱水的原料中的量可在宽限度内变化,尤其取决于组分的种类和数目、配料的种类、填料含量、填料种类、加料点、等。一般来说,各组分的加入量得到比不加入这些组分时更好的排水和/或留着作用。硅石基溶胶和颗粒的加入量一般是至少0.001%重量,通常至少0.005%重量,以SiO2计算并基于干原料物质,即纤维素纤维和可有可无填料,且其上限一般是1.0%,合适地0.5%重量。主聚合物的加入量一般至少为基于干原料物质的0.001%,通常至少为0.005%重量,且其上限一般为3%,合适地1.5%重量。如果在该工艺中使用LMW阳离子有机聚合物,其加入量为基于待脱水原料的干物质的至少0.05%。合适地,该量为0.07-0.5%,优选0.1-0.35%。如果在该工艺中使用铝化合物,加入待脱水原料中的总量取决于所用铝化合物的种类和来自它的所需效果。例如,本领域熟知采用铝化合物作为松香基施胶剂的沉淀剂。加入的总量通常至少为0.05%,以Al2O3计算并基于干原料物质。该量合适地为0.1-3.0%,优选0.5-2.0%。
常用于造纸的其它添加剂当然可与按照本发明的添加剂结合使用,例如干强度剂、湿强度剂、荧光增白剂、染料、施胶剂如松香施胶剂和纤维素反应性施胶剂,如烷基和链烯基乙烯酮二聚体和乙烯酮多聚体、烷基和链烯基琥珀酸酐、等。纤维素悬浮液或原料还可包含常用种类的矿填料,例如高岭土、瓷土、二氧化钛、石膏、滑石以及天然和合成碳酸钙如白垩、碎大理石和沉淀碳酸钙。
本发明方法可用于生产纸。本文所用的术语“纸”当然不仅包括纸及其生产,而且还包括其它的含纤维素纤维的片材或纸幅状产品如板和纸板、及其生产。该方法可用于由不同种类的含纤维素纤维悬浮液生产纸,且该悬浮液应该合适地包含基于干物质至少25%重量,优选至少50%重量的这些纤维。该悬浮液可基于来自化学浆如硫酸盐浆、亚硫酸盐浆和有机溶胶浆、机械浆如热力学浆、化学-热力学浆、精炼浆和软木浆的纤维,而且也可基于视需要来自脱墨纸浆的回收纤维、及其混合物。悬浮液、原料的pH值可在约3-10的范围内。pH值合适地超过3.5,且优选4-9。
本发明通过以下实施例进一步说明,但无意于就此限定。除非另有所指,份数和%分别涉及重量份和%重量。
实施例1标准硅石溶胶制备如下SiO2与Na2O的摩尔比为3.3且SiO2含量为27.1%的762.7克钠水玻璃用水稀释至3000克,得到一种SiO2含量为6.9%重量的硅酸盐溶液(I)。将2800克该硅酸盐或水玻璃溶液经过一个填充有用氢离子饱和的强酸阳离子交换树脂的柱。从来自交换剂中收集SiO2含量为6.5%重量且pH值为2.4的2450克离子交换水玻璃或聚硅酸(II)。将1988克聚硅酸(II)加料到反应器中并用12.3克水稀释。随后在剧烈搅拌下加入173.9克的6.9%硅酸盐溶液(I)。所得溶液随后在85℃下加热60分钟并随后冷却至20℃。所得硅石溶胶(1a)具有以下特性溶胶1a(参考)SiO2含量=7.3%重量,摩尔比SiO2/Na2O=40,pH值=10.2,S值=29%,粘度=2.2厘泊,比表面积=530米2/克SiO2和39米2/克水溶胶。
生产出具有以下特性的另外两种硅石溶胶(溶胶1b和溶胶1c)溶胶1b(参考)SiO2含量=7.3%重量,摩尔比SiO2/Na2O=63,pH值=10.0,S值=26%,粘度=2.7厘泊,比表面积=500米2/克SiO2和36.5米2/克水溶胶。
溶胶1c(参考)SiO2含量=5.4%重量,摩尔比SiO2/Na2O=35,pH值=9.8,S值=32%,粘度=1.6厘泊,比表面积=690米2/克SiO2和37米2/克水溶胶。
实施例2按照本发明的6种硅石基颗粒由类似于由相同离子交换工艺制成的聚硅酸(II)且SiO2含量为5.46%重量的聚硅酸制备。在剧烈搅拌下向102.0千克聚硅酸中加入1.46千克的SiO2/Na2O比为3.3的钠水玻璃,得到一种摩尔比SiO2/Na2O为54.0的溶液。将该溶液在60℃下热处理2小时20分钟并冷却至20℃,由此将产物浓缩至SiO2含量为15.6%重量。现将该中间体溶胶产物分为6个单独的样品a-f。样品a-c进一步用氢氧化钠碱化,样品d-f用水玻璃处理,得到SiO2/Na2O摩尔比为21.5-34.0且硅石含量为约15.0%重量的溶胶。所得的硅石基颗粒的溶胶具有表1给出的特性表1
实施例3将如同在实施例2中由上述离子交换工艺制成并用水玻璃碱化至摩尔比SiO2/Na2O为54.0的聚硅酸(II)在60℃下热处理1小时。向58千克该产物中加入7.25千克的摩尔比SiO2/Na2O为3.3且硅石含量为5.5%重量的稀释水玻璃。将所得的硅石基颗粒的溶胶浓缩至硅石含量为15.2%重量且摩尔比SiO2/Na2O=24,pH值=10.7,S值=34,粘度=9.0厘泊以及比表面积=760米2/克SiO2和115.5米2/克水溶胶。
实施例4将SiO2含量为5.5%重量的1000克聚硅酸(II)与14.5克的SiO2含量为27.1%重量且摩尔比SiO2/Na2O为3.3的水玻璃溶液在剧烈搅拌下混合,得到一种摩尔比SiO2/Na2O为51且硅石含量为5.8%重量的产物,然后在60℃下加热1.5小时并随后浓缩至硅石含量为16.7%重量SiO2。将283克的所得产物与33.0克氢氧化钠混合,得到硅石基颗粒的溶胶(溶胶4),其中SiO2含量=15.2%重量,摩尔比SiO2/Na2O=21,pH值=10.6,S值=32%,粘度=14.2厘泊以及比表面积=720米2/克SiO2和109.4米2/克水溶胶。
实施例5重复按照实施例3的一般步骤,只是热处理进行1.25小时且浓缩进行至较高的硅石含量。制备出两种硅石基颗粒溶胶;溶胶5a和溶胶5b。溶胶5a的SiO2含量=18%重量,摩尔比SiO2/Na2O=18,pH值=10.7,S值=36%,粘度=18厘泊以及比表面积=700米2/克SiO2和126米2/克水溶胶。溶胶5b的SiO2含量=20%重量,摩尔比SiO2/Na2O=18,pH值=10.7,S值=37%,粘度=31厘泊以及比表面积=700米2/克SiO2和140米2/克水溶胶。
实施例6利用得自Akribi,Sweden的动态排水分析仪(DDA)来评估排水性能,当去除塞子并向与存在原料的那侧相对的网侧施加真空时,测定设定体积的原料排放经过该网的时间。
所用的原料基于60%漂白桦木硫酸盐浆和40%漂白松木硫酸盐浆的共混物,其中加入了30%的研磨碳酸钙作为填料。原料体积为800毫升,稠度为0.25%且pH值约8.0。原料的导电率通过加入硫酸钠而调节至0.47mS/cm。
在试验中,硅石基溶胶与阳离子聚合物Raisamyl 142结合使用,后者是一种常规的中-高阳离子化的淀粉,取代度为0.042,以12千克/吨的量(以干原料体系的干淀粉计)加入原料中。按照实施例1-4的硅石基溶胶在该实施例中进行试验。此外,为了比较,测试溶胶6a和6b。溶胶6a是一种市售硅石溶胶,其中S值=45%,SiO2含量=15.0%重量,摩尔比SiO2/Na2O=40,粘度=3.0厘泊,比表面积=500米2/克SiO2和75米2/克水溶胶。溶胶6b是另一种市售硅石溶胶,其中S值=36%,SiO2含量=10.0%重量,摩尔比SiO2/Na2O=10,粘度=2.5厘泊,比表面积=880米2/克SiO2和88米2/克水溶胶。硅石基溶胶的加入量为0.5千克/吨,以SiO2计算并基于干原料体系。
在整个试验中,将原料在隔板式罐中以1500rpm的速度搅拌,并如下加入化学品i)将阳离子淀粉加入原料中,然后搅拌30秒,ii)将硅石基溶胶加入原料中,然后搅拌15秒,iii)排干该原料,同时自动记录排水时间。
不同硅石基溶胶的排水时间在表2中给出表2
实施例7按照实施例6的一般步骤来评述评述性能,只是原料的稠度为0.3%且pH值为约8.5。留着性能利用浊度计通过测定滤液(通过排干原料而得到的白水)的浊度来评估。
按照本发明的实施例5的硅石基溶胶针对用于比较的溶胶6a进行试验。表3给出了硅石基颗粒在各种剂量(千克/吨)下得到的排水时间,以SiO2计并基于干原料体系。仅加入阳离子淀粉(12千克/吨,以基于干原料体系的干淀粉计算),结果排水时间为15.8秒。
权利要求
1.生产纸的方法,包括(a)提供一种包含纤维素纤维和可有可无的填料的水悬浮液;(b)提供一种包含硅石基颗粒的水溶胶,所述溶胶的比表面积至少为90米2/克水溶胶且所述硅石基颗粒的比表面积低于1000米2/克SiO2;(c)提供至少一种带电有机聚合物;(d)将所述带电有机聚合物和所述包含硅石基颗粒的水溶胶加入所述悬浮液中;(e)将所得悬浮液在网上成型和排水。
2.生产纸的方法,包括(a)提供一种包含纤维素纤维和可有可无的填料的水悬浮液;(b)提供一种比表面积至少为90米2/克水溶胶且S值为10-45%的包含硅石基颗粒的水溶胶;(c)提供至少一种带电有机聚合物;(d)将所述带电有机聚合物和所述包含硅石基颗粒的水溶胶加入所述悬浮液中;(e)将所得悬浮液在网上成型和排水。
3.根据权利要求1或2的方法,特征在于,所述溶胶的比表面积为95-150米2/克水溶胶。
4.根据权利要求1、2或3的方法,特征在于,所述硅石基颗粒的比表面积至少为550米2/克SiO2。
5.根据权利要求1-4任一项的方法,特征在于,所述带电有机聚合物是阳离子淀粉或阳离子聚丙烯酰胺。
6.根据权利要求1-5任一项的方法,特征在于,在将包含硅石基颗粒的水溶胶加入悬浮液之前,将所述水溶胶稀释至硅石含量为0.05-5%重量。
7.根据权利要求1-5任一项的方法,特征在于,将所述包含硅石基颗粒的水溶胶以0.005-0.5%重量的量加入所述悬浮液中,以SiO2计算并基于干的纤维素纤维和可有可无填料。
全文摘要
本发明涉及生产纸的方法,包括(a)提供一种包含纤维素纤维和可有可无的填料的水悬浮液;(b)提供一种包含硅石基颗粒的水溶胶,所述溶胶的比表面积至少为90米
文档编号C01B33/143GK1912242SQ20051012508
公开日2007年2月14日 申请日期2000年4月28日 优先权日1999年5月4日
发明者M·珀森, M·托克兹, M-L·达尔格仁, H·约翰逊-维斯廷 申请人:阿克佐诺贝尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1