氢氧化锂制备系统的制作方法

文档序号:11558550阅读:271来源:国知局
本发明属于电池材料制备领域,具体涉及一种氢氧化锂制备系统。
背景技术
:随着锂离子电池在新能源汽车上的应用,高镍、高能量密度正极材料成为发展趋势。目前,高镍正极材料一般都是采用氢氧化锂作为原料,相比于碳酸锂,氢氧化锂因其在晶体结构、溶解性等方面的优势,或更能满足未来锂电材料“以安全性为前提、不断提升能量密度”的大趋势。现在,制备电池级的氢氧化锂产品一般都是采用如下工艺流程和装置:1)原料除杂,采用原料除杂装置以粗碳酸锂、工业级碳酸锂、氯化锂、硫酸锂等作为原料,对其进行除杂提纯;2)苛化,将提纯后的原料加入苛化装置中,与氢氧化钙溶液或氢氧化钠溶液进行苛化反应得到氢氧化锂溶液;3)浓缩结晶,采用浓缩结晶装置对氢氧化锂溶液进行浓缩结晶得到氢氧化锂晶体和氢氧化锂母液;4)晶体干燥,采用晶体干燥装置对氢氧化锂晶体进行动态干燥;5)破碎,采用破碎装置对干燥后的氢氧化锂进行破碎;6)筛分包装,采用筛分包装装置对破碎后的氢氧化锂进行筛分和包装,制成成品。在上述生产过程中,制备的氢氧化锂极易吸收空气中的二氧化碳,而重新生成碳酸锂,为了避免与二氧化碳反应,保证产品中的碳酸根含量≤0.7wt.%以达到纯度标准,在苛化装置、浓缩结晶装置、晶体干燥装置、破碎装置以及筛分包装装置中都会通入惰性气体,如氮气、氩气等,作为保护气体,以防止空气中的二氧化碳进入,但是上述制备过程时间长、使用装置多,惰性气体的消耗量非常大,大大增加了氢氧化锂的制备成本。技术实现要素:本发明是为了解决上述课题而进行的,目的在于提供一种低成本制备氢氧化锂的氢氧化锂制备系统。本发明为了实现上述目的,采用了以下结构。本发明所涉及的氢氧化锂制备系统,包括:制备子系统,采用锂盐作为原料经原料除杂装置、苛化装置、浓缩结晶装置、晶体干燥装置、破碎装置以及筛分包装装置制备氢氧化锂产品,其特征在于,还包括:保护气体供给子系统,除去空气中的二氧化碳,从而为氢氧化锂的制备工艺提供无二氧化碳的空气作为保护气体,保护气体供给子系统,包括:过滤装置,具有:将外部空气引入的进气口部,与进气口部相连通、将引入的外部空气中的颗粒物过滤去除的过滤部,以及与过滤部相连通、将过滤后的空气导出的出气口部;母液储存装置,存储有浓缩结晶装置中析出晶体后余下的氢氧化锂母液;吸收塔,具有:气体入口部,与出气口部相连通,将过滤后空气引入;吸收剂入口部,与母液储存装置相连通,引入氢氧化锂母液作为吸收剂;塔体,与气体入口部相连通,并与吸收液入口部相连通,用吸收剂来对过滤后空气中的二氧化碳进行吸收以获得无二氧化碳气体;气体排出口部,与塔体相连通,将无二氧化碳气体排出;以及液体排出口部,与塔体相连通,将吸收了二氧化碳的吸收剂作为吸收溶液排出;气体干燥装置,与气体排出口部相连通,对无二氧化碳气体进行干燥,得到保护气体;以及供给装置,与气体干燥装置相连通,将保护气体提供给制备子系统,其中,过滤部包括至少一个过滤构件,每个过滤构件都包括多层过滤网,至少一个过滤构件中的至少一层过滤网为磁性过滤网。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:过滤装置具有:壳体,包括:壳本体,位于壳本体的一侧的进气口部,和位于壳本体的一侧的出气口部;过滤部,包括:至少两个过滤构件,安装在壳体内,位于进气口部和出气口部之间,对从进气口部进来的空气进行过滤;以及清洗构件,对过滤构件进行清洁,并将清洁出的颗粒物清洗后排出。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:清洗构件包括:至少一个清洗板单元,安装在壳体内,每个清洗板单元都位于相邻两个过滤构件之间,具有:转动板,可转动地安装在壳体内;多个喷气嘴,安装在转动板的正面上,能够向过滤构件喷气,将颗粒物从过滤构件喷出;以及第一清洗液分布管,安装在转动板的背面上,沿着该背面喷淋清洗液;吹气板单元,安装在壳体内,位于出气口部与最靠近该出气口部的过滤构件之间,具有:转动板和多个喷气嘴;第二清洗液分布管,安装在壳本体的内壁上,沿着与过滤构件的另一侧相对向的壳本体的内侧壁喷淋清洗液;清洗控制单元,与所有的转动板相连,控制每个转动板在过滤状态时都转动至与过滤构件相垂直,在清洗状态时都转动至使正面朝向过滤构件;以及清洗液排出单元,安装在壳本体底部,将附着有颗粒物的清洗液从壳本体内排出。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:吸收塔为降膜吸收塔,吸收塔还具有:换向阀,安装在液体排出口部上,具有一个入口和两个出口,入口与液体排出口部相连通,一个出口作为第一出口与母液储存装置相连通,另一个出口作为第二出口与苛化装置相连通。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:吸收塔还具有:pH值检测控制器,与液体排出口部和换向阀都相连,检测位于液体排出口部中的吸收溶液的pH值,并在检测结果为pH值≤13时,控制换向阀转向至第二出口,使吸收溶液排向苛化装置;否则,控制换向阀转向至第一出口,使吸收溶液排向母液储存装置。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:从吸收剂入口部进入的吸收剂的流量为0.5~1m3/min,从气体入口部进入的过滤后空气的流量为1~20m3/min。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:气体干燥装置包括:气液旋风分离器,具有:气液入口部,与气体排出口部相连通,让无二氧化碳气体进入;分离部,与气液入口部相连通,对进入的无二氧化碳气体进行气液分离;以及出口部,与分离部相连通,将分离后的低含水量气体排出;和干燥器,与出口部相连通,对低含水量气体进行干燥。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:出口部包括第一出口单元和第二出口单元,第一出口单元与苛化装置、浓缩结晶装置和晶体干燥装置相连通,用于供给一部分的低含水量气体,第二出口单元与干燥器相连通,将另一部分的低含水量气体送往干燥器。本发明所涉及的氢氧化锂制备系统,还可以具有这样的特征:干燥器具有:至少两个干燥塔和第一转向阀,每个干燥塔都具有:导入部,与出口部相连通,将低含水量气体导入;干燥部,与导入部相连通,填装有干燥剂,吸收低含水量气体中的水分;导出部,与干燥部相连通,将干燥后得到的保护气体导出;以及加热部,安装在干燥部上,对干燥剂进行加热,除去吸附的水分,第一转向阀安装在所有的干燥塔与出口部之间,具有:一个第一进入口和至少两个第一排出口,第一进入口与出口部相连通,至少两个第一排出口分别与至少两个干燥塔的导入部相连通,气体干燥装置还包括干燥控制单元,干燥控制单元与第一转向阀和两个加热部相连,能够在至少一个干燥塔吸水达到饱和时,控制第一转向阀转向至与另外的至少一个干燥塔的导入部相连通,并控制达到饱和的至少一个干燥塔的加热部进行加热。本发明所涉及的氢氧化锂制备系统,还可以还包括:储气装置,与两个干燥塔的导出部都相连通,存储保护气体,干燥器还具有第二转向阀,该第二转向阀安装在两个干燥塔与储气装置之间,具有:两个第二进入口和一个第二排出口,两个第二进入口分别与两个干燥塔的导出部相连通,第二进入口与储气装置相连通,干燥控制单元还与第二转向阀相连,在一个干燥塔吸水达到饱和时,还控制第二转向阀转向至与另一个干燥塔的导出部相连通。发明的作用与效果根据本发明的氢氧化锂制备系统,因为保护气体供给子系统中,过滤装置能够滤除空气中的颗粒物,吸收塔能够利用浓缩结晶装置中析出晶体后余下的氢氧化锂母液作为吸收剂来对过滤后空气中的二氧化碳进行吸收,由于氢氧化锂母液中氢氧根浓度非常高,因此能够充分吸收空气中的二氧化碳,从而达到有效地去除二氧化碳的目的,进一步,再由气体干燥装置来对无二氧化碳气体进行干燥得到保护气体,并且供给装置能够将这些保护气体提供给制备子系统,从而能够采用空气这种廉价的气体作为制备子系统中大量使用的保护气体,有效地降低了氢氧化锂的制备成本。并且,由于至少一个过滤构件中的至少一层过滤网为磁性过滤网,所以能够对磁性异物进行吸附,从而有效地除去磁性异物。附图说明图1是本发明涉及的保护气体供给子系统在实施例中的结构示意图;图2是本发明涉及的保护气体供给子系统实施例中的结构框图;图3是本发明涉及的过滤装置在实施例中的结构示意图;图4是本发明的涉及的清洗构件在实施例中的结构框图;图5(a)是本发明的涉及的清洗板单元在实施例中从正面看的结构示意图;图5(b)是本发明的涉及的清洗板单元在实施例中从背面看的结构示意图;图6是本发明涉及的清洗控制单元在实施例中的控制流程图;图7是本发明涉及的pH值检测控制器在实施例中的控制流程图;图8是本发明涉及的气液旋风分离器在实施例中的结构示意图;以及图9是本发明涉及的干燥控制单元在实施例中的控制流程图。具体实施方式以下参照附图对本发明所涉及的氢氧化锂制备系统作详细阐述。<实施例>本实施例中,氢氧化锂制备系统用于制备电池级的氢氧化锂产品,它包括制备子系统和保护气体供给子系统。制备子系统采用粗碳酸锂、工业级碳酸锂、氯化锂、硫酸锂等锂盐作为原料来制备氢氧化锂产品,它包括:原料除杂装置、苛化装置、浓缩结晶装置、晶体干燥装置、破碎装置以及筛分包装装置。保护气体供给子系统用于除去空气中的二氧化碳,从而为氢氧化锂的制备工艺提供无二氧化碳的空气作为保护气体。图1是本发明涉及的保护气体供给子系统在实施例中的结构示意图;图2是本发明涉及的保护气体供给子系统实施例中的结构框图。如图1和2所示,保护气体供给子系统1000包括过滤装置100、母液储存装置200、吸收塔300、气体干燥装置400、供给装置500以及储气装置600。图3是本发明涉及的过滤装置在实施例中的结构示意图。如图1和3所示,过滤装置100用于滤除空气中的颗粒物,它包括:壳体11、三个过滤构件12和清洗构件13。壳体11用不锈钢(表面喷四氟材质)或塑料材料制成,并且不具有磁性。它包括壳本体111、进气口部112和出气口部113。壳本体111为中空结构。进气口部112位于壳本体111的右侧,它包括进气口112a和密封盖(图中未显示)。进气口112a用于让空气进入壳体11,密封盖与进气口112a相匹配,用于在清洗状态时将进气口112a盖合封闭。出气口部113位于壳本体111的左侧,它包括风机113a和出口部分113b。风机113a的进风端朝向过滤构件12,风机113a的出风端朝向出口部分113b送风,即、在图1中,空气从右向左进入壳体11进行过滤。出口部分113b具有一个空气出口113b-1,让过滤后的空气排出。本实施例中,风机113a的进气量为15-20m3/min,过滤构件12的透气量为20-30m3/min。三个过滤构件12都安装在壳本体111内,位于进气口部112和出气口部113之间,对从进气口部112进来的空气进行过滤。每个过滤构件12都包括数层过滤网和固定这些过滤网的固定框。将这三个过滤构件12沿着从右至左的空气进入方向,依次记为:第一过滤构件121、第二过滤构件122和第三过滤构件123。第一过滤构件121过滤颗粒较大的杂物和粉尘;第二过滤构件122过滤较细的花粉等小颗粒物;第三过滤构件123过滤0.1微米至0.5微米的微小颗粒物。本实施例中,第一过滤构件121和第二过滤构件122的位于最外层的过滤网都为磁性过滤网,即、一共设有四层磁性过滤网。该磁性过滤网为电磁铁过滤网,通电后具有吸磁性,磁能10000高斯,能够吸附空气中的磁性异物。图4是本发明的涉及的清洗构件在实施例中的结构框图。如图3和4所示,清洗构件13用于对三个过滤构件12进行清洁,并将清洁出的颗粒物清洗出壳体11,它包括:两个清洗板单元131、吹气板单元132、第二清洗液分布管133、供气单元134、供水单元135、三个超声振动件136、清洗液排出单元137、以及清洗控制单元138。两个清洗板单元131都安装在壳本体111内,每个清洗板单元131都位于相邻两个过滤构件12之间,如图1所示,一个清洗板单元131位于第一过滤构件121和第二过滤构件122之间,另一个清洗板单元131位于第二过滤构件122和第三过滤构件123之间。图5(a)是本发明的涉及的清洗板单元在实施例中从正面看的结构示意图;图5(b)是本发明的涉及的清洗板单元在实施例中从背面看的结构示意图。如图5所示,每个清洗板单元131都具有转动板131a、多个喷气嘴131b以及第一清洗液分布管131c。转动板131a可转动地安装在壳本体111内,转动板131a包括板主体131a-1和转动轴131a-2。板主体131a-1通过转动轴131a-2安装在壳本体111中,转动轴131a-2固定在板主体131a-1的中间,转动轴131a-2可转动地安装在壳本体111的两个侧壁上。另外,在转动板131a的内部设有与所有的喷气嘴131b相连通的供气通道(图中未显示),该供气通道的入口A从转动轴131a-2的内部延伸出至与供气单元134相连通。并且,转动板131a的内部还设有与第一清洗液分布管131c相连通的第一供水通道(图中未显示),该第一供水通道的入口B从转动轴131a-2的内部延伸出至与供水单元135相连通。多个喷气嘴131b分成八排均匀安装在转动板131a的正面(即、朝向进气口112a的一面)上,以转动轴131a-2为中线,上下各四排,用于向位于其右侧的过滤构件12喷气,从而将颗粒物从过滤构件12的过滤网中喷出。本实施例中,喷气嘴131b喷出的是高压气体,这样将颗粒物喷出的效果会更加好,气体压强为0.1-0.5Mpa,喷气嘴到过滤构件的距离在10-50cm范围内,喷气嘴131b按照1-10次/秒的速度间歇性地向过滤构件12喷气,间歇性喷气不仅能够提高将颗粒物喷出的效果,而且还能够节省用气量。喷气嘴131b从左向右对过滤构件12进行喷气后,过滤构件12内积存的颗粒物就会从过滤构件12的过滤网中喷出,并且大部分的颗粒物会被喷向另一个转动板131a的背面,例如,位于第二过滤构件122左侧的转动板131a的喷气嘴131b向第二过滤构件122喷气后,大部分的颗粒物会被喷向位于第二过滤构件122右侧的转动板131a的背面。第一清洗液分布管131c安装在转动板131a的背面上,并位于背面的上部,能够沿着转动板131a的背面喷淋清洗液,处于清洗状态时,清洗液自上而下喷淋,吸收高压气吹出来的颗粒物,将喷到背面上的颗粒物淋洗下来,并将背面近旁的空气中的一部分颗粒也连带着淋洗下来,然后附着有颗粒物的清洗液沿着转动板131a的背面流下。第一清洗液分布管131c的长度与转动板131a的长度相当,第一清洗液分布管131c沿着径向方向均匀分布有出液孔。这里,采用的清洗液优选为对颗粒物有粘性的,这样可以增加颗粒被清洗液吸附和粘着的效率。例如,采用具有粘性的泡沫除尘剂,泡沫除尘剂的成分可以为:添加有1~5%(体积分数)的十二烷基硫酸钠、脂肪醇聚氧乙烯醚硫酸钠、松香皂类发泡剂的水溶液。吹气板单元132安装在壳本体111内,位于出气口部112与第三过滤构件123之间。吹气板单元132具有转动板132a和多个喷气嘴132b。转动板132a和喷气嘴132b的结构与上述转动板131a和喷气嘴131b的结构和相应的功能都一样,喷气嘴132b的数量也与清洗板单元131中的喷气嘴131b数量一样,故不再赘述。同样的,吹气板单元132也能够通过喷气嘴132b对向位于其右侧的第三过滤构件123喷气,从而将颗粒物从过滤构件12的过滤网中喷出。第二清洗液分布管133安装在壳本体111的最右侧的右侧壁的顶部,顺着壳本体111的右侧壁喷淋清洗液,该第二清洗液分布管133的结构和相应的功能都与第一清洗液分布管131c一样,即、第二清洗液分布管133的长度与安装该第二清洗液分布管133的右侧壁的长度相当,第二清洗液分布管133沿着径向方向均匀分布有出液孔,喷淋的清洗液也跟第一清洗液分布管131c一样。另外,第二清洗液分布管133的进液口(图中未显示)延伸出壳本体111,并与供水单元135相连通。供气单元134与三个转动板131a和132a的三个供气通道的入口A都相连,通过供气通道为喷气嘴131b供气。供水单元135与第一供水通道的入口B和第二清洗液分布管133的进液口相连,为第一清洗液分布管131c和第二清洗液分布管133供水。三个超声振动件136分别安装在三个过滤构件12的三个固定框上,在清洗状态时,通过超声振动件136带动过滤构件12振动,在超声波的作用下,过滤网上的粉尘会加速脱离,从而可以提高清洗效果。如图3所示,清洗液排出单元137安装在壳本体111的底部,将附着有颗粒物的清洗液从壳本体111内排出。本实施例中,清洗液排出单元137包括三个清洗液排出阀137a,清洗液排出阀137a的数量正好与第一清洗液分布管131c和第二清洗液分布管133的总数量相等。如图1所示,从右往左看,三个清洗液排出阀137a分别安装在壳本体111的右侧壁与第一过滤构件121之间的壳本体111的底壁安装部111a上、第一过滤构件121与第一块清洗板单元131之间的底壁安装部111a上、第二过滤构件122与第二块清洗板单元131之间的底壁安装部111a上。并且,每个底壁安装部111a都呈横截面从上至下递减的漏斗形,这种形状能够很好地引导清洗液流入清洗液排出阀137a,并从清洗液排出阀137a排出。如图4所示,清洗控制单元138与两个清洗板单元131、吹气板单元132、第二清洗液分布管133、供气单元134、供水单元135、三个超声振动件136以及清洗液排出单元137都相连,用于控制它们的运行。另外,清洗控制单元138还与四层电磁铁过滤网(图中未显示)和风机113a相连,能够控制四层电磁铁过滤网进行通电和断电,并控制风机113a的开启和关闭。具体地,在过滤状态时,清洗控制单元138能够控制所有的转动板131a和132a都转动至与对应的过滤构件12相垂直,并控制四层电磁铁过滤网通电使其具有磁性,然后控制风机113a启动抽气。通过将转动板131a和132a都转动至与对应的过滤构件12相垂直可以保证空气的正常流通,使得过滤过程顺利进行。在清洗状态时,清洗控制单元138能够控制风机113a停止运转,四层电磁铁过滤网断电消磁,并控制所有的转动板131a和132a都转动至正面平行朝向对应的过滤构件12,然后控制三个超声振动件136进行振动、供气单元134向喷气嘴131b供气、供水单元135向第一清洗液分布管131c和第二清洗液分布管供水,进一步控制所有的喷气嘴131b和132b进行喷气,并控制第一清洗液分布管131c和第二清洗液分布管133喷淋清洗液,还控制三个清洗液排出阀137a开启进行排液。在清洗状态结束后,清洗控制单元138控制所有的喷气嘴131b和132b停止喷气,并控制第一清洗液分布管131c和第二清洗液分布管133停止喷淋清洗液,还控制供气单元134停止供气、供水单元135停止供水,进一步在排液结束后控制三个清洗液排出阀137a关闭。这里所说的清洗状态是指:过滤装置10的通风量下降到90%,需要对过滤构件进行清洗的状态;或者是指:达到设定的清洗周期,例如,设定的清洗周期可以为每隔一天清洗一次。本实施例中,以清洗周期为例进行说明。图6是本发明涉及的清洗控制单元在实施例中的控制流程图。如图6所示,清洗控制单元138的工作流程包括如下步骤:步骤S1-1:控制所有的转动板131a和132a都转动至与对应的过滤构件12相垂直的水平状态,然后进入步骤S1-2;步骤S1-2:控制四层电磁铁过滤网通电,然后进入步骤S1-3;步骤S1-3:控制风机113a启动抽气,然后进入步骤S1-4;步骤S1-4:判断是否到达清洗周期,在判断为是进入步骤S1-5,否则返回步骤S1-2;步骤S1-5:控制风机113a停止运转,然后进入步骤S1-6;步骤S1-6:控制四层电磁铁过滤网断电消磁,然后进入步骤S1-7;步骤S1-7:控制所有的转动板131a和132a都转动至正面平行朝向对应的过滤构件12的竖直状态,然后进入步骤S1-8;步骤S1-8:控制三个超声振动件136进行振动,然后进入步骤S1-9;步骤S1-9:控制供气单元134向喷气嘴131b供气,供水单元135向第一清洗液分布管131c和第二清洗液分布管供水,然后进入步骤S1-10;步骤S1-10:控制所有的喷气嘴131b和132b进行喷气,然后进入步骤S1-11;步骤S1-11:控制第一清洗液分布管131c和第二清洗液分布管133喷淋清洗液,然后进入步骤S1-12;步骤S1-12:控制三个清洗液排出阀137a开启进行排液,然后进入步骤S1-13;步骤S1-13:判断是否完成设定的清洗时间,在判断为是进入步骤S1-14,否则返回步骤S1-10;步骤S1-14:控制所有的喷气嘴131b和132b停止喷气、第一清洗液分布管131c和第二清洗液分布管133停止喷淋清洗液、供气单元134停止供气、供水单元135停止供水,三个清洗液排出阀137a关闭,然后进入结束状态。另外,在本实施例中,过滤装置100还可以包括图中未显示的固液过滤装置和清洗液循环利用器。固液过滤装置与三个清洗液排出阀137a相连,用于对排出的吸附有颗粒物的清洗液进行固液分离,将颗粒物分离出清洗液,并将分离后的清洗液排向清洗液循环利用器。清洗液循环利用器的入口与分离器固液连收集其排出的清洗液,出口与第一清洗液分布管131c和第二清洗液分布管133相连,将收集的清洗液再提供给第一清洗液分布管131c和第二清洗液分布管133。这样就可以循环利用清洗液,从而进一步降低成本。又如图1所示,母液储存装置200存储有浓缩结晶装置中析出晶体后余下的氢氧化锂母液,由于氢氧化锂母液中氢氧根含量非常高,因此能够高效地吸收空气中的二氧化碳。本实施例中,吸收塔300具有气体入口部31、吸收剂入口部32、塔体33、气体排出口部34、液体排出口部35、换向阀36、以及pH值检测控制器37。吸收塔300的主体部分为常见的降膜吸收塔,这里说的主体部分包括:气体入口部31、吸收剂入口部32、塔体33、气体排出口部34以及液体排出口部35。气体入口部31与过滤装置100中的出气口部113相连通,将过滤后空气引入。从气体入口部31进入的过滤后空气的流量为1~20m3/min。吸收剂入口部32与母液储存装置200相连通,引入氢氧化锂母液作为吸收剂。从吸收剂入口部32进入的吸收剂的流量为0.5~1m3/min。塔体33与气体入口部31相连通,并与吸收液入口部32相连通,用吸收剂来对过滤后空气中的二氧化碳进行吸收以获得无二氧化碳气体。塔体33内氢氧化锂母液吸收二氧化碳后生成的碳酸锂,碳酸锂因溶解度小会结晶出晶体,因此塔体33的下部还安装有固液分离器33-1,能够将晶体与吸收了二氧化碳的吸收剂溶液相分离,并通过管道将碳酸锂晶体送至苛化装置作为原料进行苛化反应,重新生成氢氧化锂。气体排出口部34与塔体33相连通,将无二氧化碳气体排出。液体排出口部35与塔体33相连通,将吸收了二氧化碳的吸收剂溶液作为吸收溶液排出。换向阀36安装在液体排出口部35上,具有一个入口和两个出口,入口与液体排出口部35相连通,一个出口作为第一出口与母液储存装置200相连通,另一个出口作为第二出口与苛化装置相连通。pH值检测控制器37与液体排出口部35和换向阀36都相连,检测位于液体排出口部35中的吸收溶液的pH值,并在检测结果为pH值≤13时,表明吸收溶液中存在大量的碳酸锂(氢氧化锂母液吸收二氧化碳后会生成碳酸锂),控制换向阀36转向至第二出口,使吸收溶液排向苛化装置,进行苛化反应,重新生成氢氧化锂;否则,表明吸收溶液还具有良好的吸收二氧化碳的性能,控制换向阀36转向至第一出口,使吸收溶液排向母液储存装置200继续循环使用。图7是本发明涉及的pH值检测控制器在实施例中的控制流程图。如图7所示,pH值检测控制器37的工作流程包括如下步骤:步骤S2-1:检测位于液体排出口部35中的吸收溶液的pH值,然后进入步骤S2-2;步骤S2-2:判断pH值≤13是否成立,如果是进入步骤S2-3,否则进入步骤S2-4;步骤S2-3:控制换向阀36转向至第二出口,使吸收溶液排向苛化装置,然后返回步骤S2-2;步骤S2-4:控制换向阀36转向至第一出口,使吸收溶液排向母液储存装置200,然后返回步骤S2-2。pH值检测控制器37不断重复上述过程,直到被关机。气体干燥装置400与气体排出口部34相连通,对无二氧化碳气体进行干燥,得到保护气体。气体干燥装置400包括气液旋风分离器41、干燥器42以及干燥控制单元43。图8是本发明涉及的气液旋风分离器在实施例中的结构示意图。如图1和8所示,气液旋风分离器41具有气液入口部411、分离部412、气出口部413以及液出口部414。气液入口部411与气体排出口部34相连通,让无二氧化碳气体进入气液旋风分离器41。气液入口部411中安装有雾化水喷头411-1,用于清洗空气中可能带入的微量碳酸锂溶液,并使空气中的微小液滴聚集,增加分离效果。分离部412与气液入口部411相连通,对进入的无二氧化碳气体进行气液分离。气出口部413与分离部412相连通,将分离后的低含水量气体排出。气出口部413包括第一出口单元413a和第二出口单元413b,第一出口单元413a与苛化装置、浓缩结晶装置和晶体干燥装置这些对保护气体中含水量要求不高的装置相连通,用于将一部分的低含水量气体直接供给这些装置。第二出口单元413b与干燥器42相连通,将另一部分的低含水量气体送往干燥器42。液出口部414安装在分离部412的底部,用于将分离后的液体排出。干燥器42与出口部413相连通,对低含水量气体进行干燥。它具有两个干燥塔421和一个第一转向阀422和第二转向阀423。每个干燥塔421都具有导入部421a、干燥部421b、导出部421c以及加热部421d。导入部421a与气出口部413相连通,将低含水量气体导入。干燥部421b与导入部421a相连通,填装有干燥剂,吸收低含水量气体中的水分,得到高度干燥的气体。采用的干燥剂为高吸水干燥剂,并且,该干燥剂吸水后,经加热,吸收的水分能够被蒸发出,恢复吸水性能,从而能够被重复使用。导出部421c与干燥部421b相连通,将干燥后得到的保护气体导出。加热部421d安装在干燥部421b上,对干燥剂进行加热,除去吸附的水分。第一转向阀422安装在两个干燥塔421与气出口部413之间,具有:一个第一进入口和两个第一排出口。第一进入口与气出口部413相连通,两个第一排出口分别与两个干燥塔42的导入部421a相连通,第二转向阀423安装在两个干燥塔42与储气装置40之间。第二转向阀423具有两个第二进入口和一个第二排出口,两个第二进入口分别与两个干燥塔42的导出部421c相连通,第二进入口与储气装置600相连通,干燥控制单元43与第一转向阀422和两个加热部421d以及第二转向阀423相连。它能够在一个干燥塔421吸水达到饱和时,控制第一转向阀422转向至与另一个干燥塔421的导入部421a相连通,并控制第二转向阀423转向至与另一个干燥塔42的导出部421c相连通,还控制达到饱和的干燥塔42的加热部421d进行加热,从而将吸收的水分蒸发出,并恢复吸水性能。图9是本发明涉及的干燥控制单元在实施例中的控制流程图。如图9所示,干燥控制单元43的工作流程包括如下步骤,为了便于描述,以下将两个干燥塔421分别记为第一干燥塔421和第二干燥塔421,并以第一干燥塔421吸水性能达到饱和为例进行说明:步骤S3-1:控制第一转向阀422和第二转向阀423分别与第一干燥塔421的导入部421a和导出部421c相连通,然后进入步骤S3-2;步骤S3-2:判断第一干燥塔421的吸水性能是否达到饱和(可以通过例如,吸水时间来判断),在判断为是时进入步骤S3-3,否则返回步骤S3-1;步骤S3-3:控制第一转向阀422和第二转向阀423分别转向至与第二干燥塔421的导入部421a和导出部421c相连通,然后进入步骤S3-4;步骤S3-4:控制第一干燥塔42的加热部421d进行加热,直到第一干燥塔42恢复吸水性能。第二干燥塔421达到饱和状态的控制过程也与第一干燥塔421一样,这里不再赘述。供给装置500与气体干燥装置400和储气装置600相连通,将保护气体提供给制备子系统。供给装置500包括:将第一出口单元413a与苛化装置、浓缩结晶装置和晶体干燥装置相连通并进行送气的管道和气体输送构件,和将储气装置600与破碎装置和筛分包装装置相连通并进行送气的管道和气体输送构件。储气装置600与第二转向阀423的第二排出口相连通,存储高度干燥后的保护气体。下面表1~3是以苛化装置和浓缩结晶装置中具体的苛化反应釜、LiOH溶液中转与存储装置,以及LiOH母液中,没有通保护气体、通氮气作为保护气体,以及通本发明的净化后空气作为保护气体分别做的实验数据表,表4是成本比较表,以这些数据为例来证明本方案的效果:表1、没有气氛保护下进行的实验表2、氮气保护下实验表3、净化空气保护下实验表4、氮气和净化空气成本对比气体产出单位成本投入成本氮气0.5~0.8元/m3大净化空气≤0.1元/m3小从以上表中可以看出,采用本发明的保护气体后,各个装置或者工序中碳酸根的含量得到了有效地抑制,效果与采用惰性气体的相当,但是投入的成本则远低于采用惰性气体作为保护气体的方案。实施例的作用与效果根据本实施例所描述的氢氧化锂制备系统,因为保护气体供给子系统中,过滤装置能够滤除空气中的颗粒物,吸收塔能够利用浓缩结晶装置中析出晶体后余下的氢氧化锂母液作为吸收剂来对过滤后空气中的二氧化碳进行吸收,由于氢氧化锂母液中氢氧根浓度非常高,因此能够充分吸收空气中的二氧化碳,从而达到有效地去除二氧化碳的目的,进一步,再由气体干燥装置来对无二氧化碳气体进行干燥得到保护气体,并且供给装置能够将这些保护气体提供给制备子系统,从而能够采用空气这种廉价的气体作为制备子系统中大量使用的保护气体,有效地降低了氢氧化锂的制备成本。进一步,由于干燥控制单元43能够在一个干燥塔421吸水达到饱和时,控制第一转向阀422转向至与另一个干燥塔421的导入部421a相连通,并控制第二转向阀423转向至与另一个干燥塔42的导出部421c相连通,还控制达到饱和的干燥塔42的加热部421d进行加热,从而将吸收的水分蒸发出,并恢复吸水性能。这样就可以保证气体干燥过程可以连续进行,从而使得整个保护气体供给子系统能够连续供气。另外,由于pH值检测控制器37能够检测位于液体排出口部35中的吸收溶液的pH值,并在检测结果为pH值≤13时,控制换向阀36转向至第二出口,使吸收溶液排向苛化装置,进行苛化反应,重新生成氢氧化锂;否则,控制换向阀36转向至第一出口,使吸收溶液排向母液储存装置200继续循环使用。这样就可以合理地循环使用吸收溶液,既能够保证二氧化碳被有效吸收,又能够将达到饱和的吸收溶液重新送回苛化装置进行反应。气体过滤过程可以连续进行,从而使得整个保护气体供给子系统能够连续供气。另外,在过滤装置中,由于两个过滤构件中一共有四层过滤网为磁性过滤网,所以能够对磁性异物进行吸附,从而有效地除去磁性异物。并且,由于在过滤状态时,控制单元能够将转动板转动至与过滤构件相垂直,从而确保过滤的正常进行,而在过滤构件积存了大量的粉尘等颗粒物、需要被进行清洗时(在清洗状态时),控制单元能够将转动板转动至使安装有喷气嘴的侧面朝向过滤构件,这样,喷气嘴就能够向过滤构件进行喷气,从而将颗粒物从过滤构件喷出,并将颗粒物喷向壳本体的与过滤构件的另一侧相对向的内侧壁上,再由清洗液分布管沿着该内侧壁喷淋清洗液,并通过清洗液排出阀将附着有颗粒物的清洗液从壳本体内排出。因此,本空气过滤装置能够在不直接对过滤构件进行喷淋的前提下,有效地对滤网构件进行清洁,切实避免了过滤构件吸水后导致的破碎破损和网孔阻塞等问题,确保了过滤构件的过滤效果和使用寿命。进一步,由于喷气嘴喷出的是高压气体,这样能够更好地将颗粒物从过滤构件中喷出;并且,由于喷气嘴是按照1-10次/秒的速度间歇性地向过滤构件喷气,这样不仅能够进一步提高将颗粒物喷出的效果,而且还能够节省用气量,从而降低成本。更进一步,由于在清洗状态时,超声振动件能够带动过滤构件振动,在超声波的作用下,过滤网上的粉尘会加速脱离,从而可以更近一步地提高清洗效果。以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的氢氧化锂制备系统并不仅仅限定于在以上实施例中所描述的结构,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。另外,在上述实施例中,保护气体供给子系统中还包括储气装置,并且干燥器的第二转向阀的第二进入口是与储气装置相连通,这样通过储气装置可以将用不完的高度干燥的保护气体存储起来。在本发明中,根据实际情况,例如,过滤装置进气量不大,导致干燥器干燥后的出气量不大,在这种情况下,保护气体供给子系统中就可以设置储气装置,并让供给装置直接与干燥器的第二转向阀的第二进入口相连通。另外,在上述实施例中,采用的都是转向阀来与两个进入连接管或者与两个送出连接管连。本发明还可以采用两个阀门开关与两个进入连接管连,并采用两个阀门开关与两个送出连接管连,然后控制单元通过对各个阀门开关进行控制来实现导通和关闭功能。另外,在上述实施例中,空气过滤装置是具有三个过滤构件,根据实际过滤情况的要求,作为本发明的空气过滤装置,也可以设置仅仅具有两个过滤构件,或者具有三个以上的过滤构件,并且过滤构件的过滤粒径也可以根据情况进行选择。过滤构件数量越多,粒径越细、过滤效果越好,但是过滤时间会变长并且成本也会增大。另外,在上述实施例中,为了过滤磁性异物,第一过滤构件和第二过滤构件的位于最外层的过滤网都为磁性过滤网,在本发明的空气过滤装置中,只要至少一个过滤构件中的至少一层过滤网为磁性过滤网,就可以对磁性异物进行过滤,同样的,磁性过滤网的数量越多除磁异的效果就越好,但是相应的成本会增加,所以可以根据实际情况的需要来确定磁性过滤网的数量。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1