一种空间原位碳化材料增强陶瓷的材料模型及其制备方法与流程

文档序号:11398527阅读:389来源:国知局

本发明涉及一种空间原位碳化材料增强陶瓷的材料模型及其制备方法,属于复合材料加工成型领域。



背景技术:

目前,高性能陶瓷在航空航天、汽车、电子、国防等领域需求量巨大。陶瓷具有高强度、高硬度、耐高温、耐腐蚀等优异的力学、热学和化学性能,但脆性大却成为制约其发展与应用的一个重要因素。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中只能产生新的断裂表面吸收能量,这是陶瓷脆性的本质原因。陶瓷材料增韧补强方法以及结构功能化一体化的研究是其发展的必然趋势之一。

现有陶瓷制品大多通过注浆成型与压制成型等传统制造方法成型,其成型精度低、效率低、功能性差、很难成型复杂结构的陶瓷制品。为成型高性能、功能化、形状复杂的陶瓷制品,先进的工艺技术需要得到进一步的研究和发展。



技术实现要素:

本发明旨在提出一种空间原位碳化材料增强陶瓷的材料模型及其制备方法,材料主要成分是陶瓷,主要提供了一种空间原位碳化材料增强陶瓷的材料模型,并提出了基于增材制造3d打印技术的制备方法。

为实现上述目的,本发明采用的技术方案如下:一种空间原位碳化材料增强陶瓷的材料模型,主要由陶瓷基体和增强材料组成,陶瓷基体选择碳化硅,增强材料为pan碳化得到的碳材料,碳材料位于烧结得到的碳化硅的微孔隙中,碳材料在空间范围内填充在陶瓷基体的微孔隙结构中,碳材料对陶瓷颗粒的包覆作用且填充碳材料的微孔隙通道的相互交叉,形成碳材料复杂的空间网状结构。

本发明一种空间原位碳化材料增强陶瓷的材料模型,陶瓷基体占70%,碳材料占30%,按照此配比碳材料对于陶瓷基体的增强增韧效果明显且在微观结构中碳材料与陶瓷形成双连续相,同时,按此配比共混得到的浆料最适合3d打印成型。

本发明提出的一种空间原位碳化材料增强陶瓷的材料模型的制备方法,选用的制备材料构成质量百分比如下:

陶瓷基体:碳化硅(sic)粉体,55%~75%,采用hcl溶液在行星式球磨机上,球磨清洗碳化硅粉体颗粒,再用蒸馏水反复清洗过滤碳化硅粉体浆料直至ph=4~6,烘干粉体以备使用;

增强材料:聚丙烯腈(pan)粉体,15%~35%,聚丙烯腈粉末在使用前于真空干燥箱中干燥,再用研钵碾细后储存备用;

溶剂:二甲基亚砜(dmso)5%~15%;蒸馏水若干,其作为稀释溶剂不计入材料构成的质量中;

粘结剂:聚乙烯醇(pva)1%~2%;

烧结助剂:氧化物3%~5%;氧化物可选择氧化镁(mgo),三氧化二钇(y2o3)与三氧化二铝(al2o3)的混合物,三者的比例2:1:1,该比例可以使碳化硅烧结温度降低,并可实现液相烧结;

ph调节剂:hcl与氨水。

本发明一种空间原位碳化材料增强陶瓷的材料模型的制备方法,包括以下步骤:

第一步,按比例称量陶瓷基体、增强材料、溶剂、粘结剂和烧结助剂,比例如下:

陶瓷基体:碳化硅(sic)粉体,55%~75%;

增强材料:聚丙烯腈(pan)粉体,15%~35%;

溶剂:二甲基亚砜(dmso)5%~15%;蒸馏水若干;

粘结剂:聚乙烯醇(pva)1%~2%;

烧结助剂:氧化物(mgo,y2o3,al2o3比例2:1:1)3%~5%。

第二步,将称取的pan粉末与dmso简单混合装入烧杯中,将烧杯垂直固定在150℃~180℃油浴中预热,开启磁力搅拌或机械搅拌,均匀搅拌至烧杯中聚合物全部溶解,得到均一透明的pan/dmso溶液;将称取的sic粉体,加入到pan/dmso溶液中,加入一定量蒸馏水,将其搅拌均匀,在行星球磨机上球磨,使pan与sic充分共混包覆,加入的蒸馏水的量以便于球磨为准。

第三步,将称取的pva和mgo、y2o3、al2o3加入蒸馏水中,均匀搅拌使pva溶解后加入到sic与pan/dmso的混合溶液中,在行星球磨机上球磨后得到共混浆料。

第四步,将共混浆料移至容器中,静置脱泡,得到pan/sic溶胶原料,即碳化硅/聚丙烯腈共混浆料,其中还含有dmso、pva、水、mgo、y2o3和al2o3。

第五步,碳化硅/聚丙烯腈共混浆料的粘度随ph值增大而减小。加入一定量的氨水或hcl,调节ph到合适值,使得共混浆料粘度适合3d打印成型设备加工。

第六步,取适量碳化硅/聚丙烯腈共混浆料加入3d打印成型设备中,调整设备工艺参数,打印陶坯。其中的设备工艺参数包括打印速度、打印压力、打印喷嘴直径及打印环境温度等。该步骤为常规的3d打印过程。

第七步,预烧结陶坯,在180℃~300℃温度范围内三段梯度升温,每个温区对应不同的升温速率和停留时间,使pan预氧化并发生环化反应同时dmso分解挥发;在氩气环境下,以一定的升温速度以及保温时间三段梯度升温至800℃~1000℃,使pva气化均匀溢出实现脱脂,并实现pan的低温碳化。pan高温碳化以及sic致密烧结过程需继续升高温度至1800℃~2000℃,三段梯度升温并保温,保护气为高纯氮气。最终实现sic致密烧结,pan完全碳化。

本发明提出一种空间原位碳化材料增强陶瓷的材料模型及其制备方法,提供了一种空间原位碳化材料增强陶瓷的材料模型。该模型在结构上具有陶瓷和碳材料双连续相、空间立体结构界面增强、微孔隙等特点。碳材料在空间范围内填充在陶瓷基体的微孔隙结构中,碳材料对陶瓷颗粒的包覆作用且填充碳材料的微孔隙通道的相互交叉,形成碳材料复杂的空间网状结构。碳材料通过裂纹偏转、相断裂和拔出等机理吸收能量增强材料的强度和韧性,同时可以促进材料导电性等性能的提升。陶瓷基体与碳材料网状结构的相互包覆作用,使碳材料表面避免因氧化而降低性能,同时增加了碳材料与陶瓷基体两相间界面滑移阻力,起到细微机构界面强化的作用。最终,实现聚丙烯腈碳化与陶瓷粉体一体化烧结过程。

本发明一种空间原位碳化材料增强陶瓷的材料模型及其制备方法,提出了基于增材制造3d打印技术的制备方法,实现了碳材料增强陶瓷基复合材料异型材、形状复杂制件的成型加工,并缩短了制备周期、提高加工精度、降低生产成本。

附图说明

图1是本发明一种空间原位碳化材料增强陶瓷的材料模型结构示意图。该示意图用于描述陶瓷颗粒与空间碳材料相互包覆形成双连续相的空间结构,并不能表明陶瓷基体和碳材料的最终物理形态。

图中:1-微孔隙,2-陶瓷颗粒,3-空间碳材料。

具体实施方式

本发明公开了一种空间原位碳化材料增强陶瓷材料及其制备方法,提供了空间原位碳化材料增强陶瓷材料,其模型结构如图1所示,材料组成包括微孔隙1、陶瓷颗粒2和空间碳材料3。

实施例1

本发明一种空间原位碳化材料增强陶瓷材料及其制备方法,陶瓷基体碳化硅(sic)粉体75%、增强材料聚丙烯腈(pan)粉体15%、溶剂二甲基亚砜(dmso)5%、粘结剂聚乙烯醇(pva)1.5%、烧结助剂氧化物(mgo、y2o3、al2o3)3.5%,蒸馏水若干。

实施例2

本发明一种空间原位碳化材料增强陶瓷材料及其制备方法,陶瓷基体碳化硅(sic)粉体55%、增强材料聚丙烯腈(pan)粉体30%、溶剂二甲基亚砜(dmso)10%、粘结剂聚乙烯醇(pva)1.5%、烧结助剂氧化物(mgo、y2o3、al2o3)3.5%,蒸馏水若干。

该种材料模型的制备如下:按实施1~2所对应的质量比称取各制备原料。将称取的pan粉末与dmso简单混合装入烧杯中,将烧杯垂直固定在160℃油浴中预热至基本熔融。开启磁力搅拌或机械搅拌,均匀搅拌至聚合物全部溶解,得到均一透明的溶液。将sic粉体加入到pan/dmso溶液中,加入一定量蒸馏水,将其搅拌均匀,在行星球磨机上球磨12h,使pan与sic充分共混包覆。将称取的pva和mgo、y2o3、al2o3,加入蒸馏水直到pva基本溶解,均匀搅拌。将其加入到sic与pan/dmso的混合溶液中,球磨16h,得到共混浆料。将其移至烧杯中,静置脱泡。加入一定量的氨水,调节ph到合适值,使得碳化硅陶瓷浆料粘度适合3d打印成型设备加工。取适量碳化硅陶瓷浆料加入3d打印成型设备中,调整设备工艺参数,打印陶坯。预烧结陶坯,以2℃/min升温速度,升温至180℃、240℃、300℃,分别保温1h,使pan预氧化并发生环化反应同时dmso分解挥发;在氩气环境下,以5℃/min升温速度,升温至600℃、800℃、1000℃,分别保温1h,使pva气化均匀溢出实现脱脂,并实现pan的低温碳化。pan高温碳化以及sic致密烧结过程需继续升高温度至1800℃,于1300℃、1500℃、1800℃三段梯度升温,保护气为高纯氮气,分别保温3h。最终实现sic致密烧结,pan完全碳化,得到空间原位碳化材料增强陶瓷材料。

上述两个实施例得到的制品的材料都是空间原位碳化材料增强陶瓷材料,实施例2得到制品韧性更好一些。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1