平行排列石墨烯陶瓷高性能摩擦材料及低成本制备方法与流程

文档序号:15623937发布日期:2018-10-09 22:30阅读:189来源:国知局

本发明属于陶瓷基复合材料技术领域,特别涉及平行排列石墨烯陶瓷高性能摩擦材料及低成本制备方法。



背景技术:

陶瓷基复合材料是一种以陶瓷为基体与其它材料复合而成的材料,其中陶瓷基体可为氧化硅、氧化铝、氧化锆或氧化钛等氧化物陶瓷,也可为碳化硅、碳化硼或硼化钛等非氧化物陶瓷。这些陶瓷材料大多具有硬度高、耐腐蚀、耐磨损和良好的化学稳定性等特点而得到了研究者广泛的关注。而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,而裂纹极易发生扩展,致使整个材料断裂失效。石墨烯是一种由sp2杂化的碳原子以六边形周期排列形成的二维结构,其厚度只有0.335nm,是目前世界上发现的最薄却最坚硬的材料,同时也是其他维度碳材料的基本结构单元。

采用石墨烯与陶瓷基体复合,是提高陶瓷韧性和使用可靠性的有效方法,石墨烯的加入对裂纹尖端有着桥连作用,并能够延长裂纹扩展的路径,从而得到有优良力学性能的石墨烯增强陶瓷基复合材料。除此以外,石墨烯层间由范德华力结合,容易在剪切力的作用下发生相对滑移。如果将其与陶瓷复合,不仅可以改善力学性能,还能够赋予陶瓷材料良好的自润滑性,制备出具有良好力学性能和摩擦性能的复合材料。

目前广泛采用的石墨烯/陶瓷复合材料的制备方法是以石墨烯分散液和超细陶瓷粉体为原料,通过长时间的超声和球磨等方式加以混合,再进行烧结,得到石墨烯增强陶瓷基复合材料。这种制备方法的不足之处在于:所涉及的原料价格高昂,无法大量制备复合材料;混合过程不仅耗时耗能,而且破坏了石墨烯原有的片状结构;所制备出的复合材料中,石墨烯分布混乱不均,没有明显的择优取向;复合材料力学性能的改善不够明显,尤其是无法使断裂韧性和抗弯强度同时提高;随机不均的分布也无法发挥石墨烯应有的自润滑作用。



技术实现要素:

本发明的目的在于提供平行排列石墨烯陶瓷高性能摩擦材料及低成本制备方法,具体技术方案如下:

平行排列石墨烯陶瓷高性能摩擦材料,石墨烯以5~10μm的层间距平行排列在陶瓷基体中,陶瓷选择前驱体为液态的陶瓷材料;其中石墨烯为3-10层的少层石墨烯。

所述陶瓷为sio2、al2o3、zro2、tio2、sic或tib2。

所述平行排列石墨烯陶瓷高性能摩擦材料的低成本制备方法包括以下步骤:

(1)将陶瓷前驱体浸润膨胀石墨,经真空除泡、磁力搅拌后,得到悬浊液;

(2)将乙醇水溶液和步骤(1)得到的悬浊液混合,经旋转蒸发、烘干后,得到混合粉体;

(3)将步骤(2)得到的混合粉体过筛、烧结,得到石墨烯/陶瓷复合材料;

所述步骤(1)中陶瓷前驱体为常温下呈液态的正硅酸乙酯、乙氧基铝或异丙醇锆。

将可膨胀石墨在常压、750~950℃下加热20~30秒,得到所述步骤(1)中膨胀石墨;处理前可膨胀石墨中石墨层间距为0.4~1nm,处理后的膨胀石墨中石墨层间距为160~400nm,扩大了400倍;

原料可膨胀石墨与陶瓷前驱体的质量比为1︰(400~200)。

所述步骤(1)中真空除泡的真空度为8~12pa,除泡时间为15~30分钟。

所述步骤(1)中磁力搅拌的搅拌功率为100~200w,转速为1200~1400r/min,搅拌时间2.5~4.5小时。

所述步骤(2)中的乙醇水溶液中乙醇与水的质量比为1:1,旋转蒸发的转速为30~40r/min,温度为60~70℃,时间为45~60分钟;烘干温度60~90℃,烘干时间为24~30小时。

所述步骤(3)过筛目数为200目,然后在压力30~50mpa下,以50~150℃/min的升温速率,升温至烧结温度1300~1500℃,保温3~10分钟。

所述平行排列石墨烯陶瓷高性能摩擦材料或所述制备方法制备得到的平行排列石墨烯陶瓷高性能摩擦材料因少层石墨烯的平行排列这一独特的微观结构,使得复合材料的力学性能良好,断裂韧性、抗弯强度分别可以达到7.5mpa·m1/2、570mpa;还具有自润滑性能,摩擦系数仅为0.075-0.15,其自润滑原理在于,摩擦后材料表面有碳膜形成,进而降低了材料的摩擦系数。

本发明的有益效果为:

本发明提供的平行排列石墨烯陶瓷高性能摩擦材料,石墨烯横向尺寸大,达到20-25μm,石墨烯以5~10μm的层间距有规则的平行排列在陶瓷基体中;相比于现有技术陶瓷复合材料中石墨烯杂乱无章的排列方式,本发明复合材料的特殊显微结构使得复合材料的力学性能得到有效提高,且具有较低的摩擦系数,自润滑性能优异,可应用于航天航空或交通运输领域;本发明提供的制备方法具有原料成本低、制备工艺简单的优点,易于工业化应用。

附图说明

图1为实施例1制备得到的石墨烯/sio2陶瓷复合材料的显微结构;

图2为实施例1制备得到的石墨烯/sio2陶瓷复合材料的断裂韧性测试;

图3为实施例1制备得到的石墨烯/sio2陶瓷复合材料的抗弯强度测试;

图4为实施例2制备得到的石墨烯/al2o3陶瓷复合材料的显微结构;

图5为实施例2制备得到的石墨烯/al2o3陶瓷复合材料的断裂韧性、抗弯强度检测结果;

图6为实施例2制备得到的石墨烯/zro2陶瓷复合材料的显微结构;

图7为实施例1~3制备的石墨烯/sio2陶瓷复合材料、石墨烯/al2o3陶瓷复合材料、石墨烯/zro2陶瓷复合材料的摩擦系数。

具体实施方式

本发明提供了平行排列石墨烯陶瓷高性能摩擦材料及低成本制备方法,下面结合附图和实施例对本发明做进一步的说明。

实施例1:制备平行排列石墨烯/sio2陶瓷复合材料的具体步骤为:

(1)以可膨胀石墨和常温下呈液态的正硅酸乙酯为原料,按照质量比1︰380分别称量;

(2)将可膨胀石墨在常压、800℃下加热20s,得到膨胀石墨;

(3)将上述步骤(2)得到的膨胀石墨与原料正硅酸乙酯放置于同一容器中,使陶瓷正硅酸乙酯完全浸润膨胀石墨,并在真空度8pa下真空除泡30min,得到由膨胀石墨和正硅酸乙酯共同组成的固液混合物;

(4)将上述步骤(3)的固液混合物进行磁力搅拌,搅拌功率为100w,转速为1200r/min,搅拌时间2.5h,得到石墨烯在正硅酸乙酯中的悬浊液;

(5)以乙醇与水质量比为1︰1配置乙醇水溶液,将乙醇水溶液加入到上述步骤(4)得到的悬浊液中,然后旋转蒸发干燥,其中旋转转速为30r/min,干燥温度为60℃,干燥时间为45min;

(6)在60℃下烘干步骤(5)得到的产物,烘干时间为30小时,得到干燥的石墨烯/sio2混合粉体;

(7)将上述石墨烯/sio2混合粉体过200目筛,然后进行烧结:在压力30mpa下,以60℃/min的升温速率,升温至烧结温度1300℃,保温3分钟,得到石墨烯平行排列的sio2陶瓷复合材料。

上述制备得到的石墨烯/sio2陶瓷复合材料的显微结构如图1所示,从图1可以看出,石墨烯平行排列,平均横向尺寸为20-25μm;

调节原料配比,得到石墨烯含量在2~6vol.%之间的石墨烯/sio2陶瓷复合材料(通过原料正硅酸乙酯转变为sio2的化学方程式并结合实际产率计算sio2质量,并通过各自密度换算得到体积比);对不同石墨烯含量的石墨烯/sio2陶瓷复合材料进行断裂韧性、抗弯强度测试,测试结果如图2、3所示,从图2可以看出,相比于纯sio2陶瓷,石墨烯/sio2陶瓷复合材料的断裂韧性提高了2~3倍;从图3可以看出,相比于纯sio2陶瓷,石墨烯/sio2陶瓷复合材料的抗弯强度提高了28~46%。

实施例2:制备平行排列石墨烯/al2o3陶瓷复合材料的具体步骤为:

(1)以可膨胀石墨和常温下呈液态的乙氧基铝为原料,按照质量比1︰300分别称量;

(2)将可膨胀石墨在常压、900℃下加热25s,得到膨胀石墨;

(3)将上述步骤(2)得到的膨胀石墨与原料乙氧基铝放置于同一容器中,使陶瓷乙氧基铝完全浸润膨胀石墨,并在真空度10pa下真空除泡20min,得到由膨胀石墨和乙氧基铝共同组成的固液混合物;

(4)将上述步骤(3)的固液混合物进行磁力搅拌,搅拌功率为150w,转速为1300r/min,搅拌时间3h,得到石墨烯在乙氧基铝中的悬浊液;

(5)以乙醇与水质量比为1︰1配置乙醇水溶液,将乙醇水溶液加入到上述步骤(4)得到的悬浊液中,然后旋转蒸发干燥,其中旋转转速为35r/min,干燥温度为65℃,干燥时间为50min;

(6)在75℃下烘干步骤(5)得到的产物,烘干时间为28小时,得到干燥的石墨烯/al2o3混合粉体;

(7)将上述石墨烯/al2o3混合粉体过200目筛,然后进行烧结:在压力40mpa下,以100℃/min的升温速率,升温至烧结温度1450℃,保温6分钟,得到石墨烯平行排列的al2o3陶瓷复合材料。

上述制备得到的石墨烯/al2o3陶瓷复合材料的显微结构如图4所示,从图4可以看出,石墨烯平行排列,平均横向尺寸为20-25μm;

调节原料配比,得到石墨烯含量在3~6vol.%之间的石墨烯/al2o3陶瓷复合材料;对不同石墨烯含量的石墨烯/al2o3陶瓷复合材料进行断裂韧性、抗弯强度测试,测试结果如图5所示,从图5可以看出,相比于纯al2o3陶瓷,石墨烯/al2o3陶瓷复合材料的断裂韧性提高了40~100%,抗弯强度提高了10~30%。

实施例3:制备平行排列石墨烯/zro2陶瓷复合材料的具体步骤为:

(1)以可膨胀石墨和常温下呈液态的异丙醇锆为原料,按照质量比1︰240分别称量;

(2)将可膨胀石墨在常压、950℃下加热20s,得到膨胀石墨;

(3)将上述步骤(2)得到的膨胀石墨与原料异丙醇锆放置于同一容器中,使陶瓷异丙醇锆完全浸润膨胀石墨,并在真空度12pa下真空除泡15min,得到由膨胀石墨和异丙醇锆共同组成的固液混合物;

(4)将上述步骤(3)的固液混合物进行磁力搅拌,搅拌功率为180w,转速为1400r/min,搅拌时间4h,得到石墨烯在异丙醇锆中分散的悬浊液;

(5)以乙醇与水质量比为1︰1配置乙醇水溶液,将乙醇水溶液加入到上述步骤(4)得到的悬浊液中,然后旋转蒸发干燥,其中旋转转速为40r/min,干燥温度为69℃,干燥时间为60min;

(6)在90℃下烘干步骤(5)得到的产物,烘干时间为30小时,得到干燥的石墨烯/zro2混合粉体;

(7)将上述石墨烯/zro2混合粉体过200目筛,然后进行烧结:在压力50mpa下,以150℃/min的升温速率,升温至烧结温度1420℃,保温8分钟,得到石墨烯平行排列的zro2陶瓷复合材料。

上述制备得到的石墨烯/zro2陶瓷复合材料的显微结构如图6所示,从图6可以看出,石墨烯平行排列,平均横向尺寸为20-25μm;

对石墨烯含量为5vol.%的石墨烯/zro2陶瓷复合材料进行断裂韧性、抗弯强度测试,断裂韧性为7.44mpa·m1/2,抗弯强度为510mpa,相比于纯zro2陶瓷断裂韧性和抗弯强度分别为3.38mpa·m1/2和390mpa,石墨烯/zro2陶瓷复合材料的断裂韧性分别提高了120%和31%。

分别测试实施例1~3制备的石墨烯/sio2陶瓷复合材料、石墨烯/al2o3陶瓷复合材料、石墨烯/zro2陶瓷复合材料的摩擦系数,得到数据如图7所示,从图7可以看出,三种材料摩擦系数仅为0.075-0.15,都处于较低水平,自润滑性能优异。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1