一种铌酸银基陶瓷及其制备方法和应用与流程

文档序号:17478797发布日期:2019-04-20 06:18阅读:460来源:国知局
一种铌酸银基陶瓷及其制备方法和应用与流程
本发明涉及介电储能陶瓷材料,具体涉及一种铌酸银基陶瓷及其制备方法和应用。
背景技术
:人类社会的发展对能源需求量越来越大,提高各类能源使用效率显得尤为重要。相较于其他电能存储装置(如化学电池、燃料电池等),介电储能电容器的有效储能密度高,充放电速率快,并且循环老化速度缓慢。并且,介电储能电容器在高温高压等极端环境中性能稳定,因此在先进电力电子
技术领域
有重要的实用价值。商用的介电电容器一般以介电聚合物或介电陶瓷作为主要材料,他们的能量密度一般小于2j/cm3。高储能密度电容器被广泛应用于能源发电系统等民用装置、军事化武器、电气化发射平台等军用方面。电气化发射平台工作电流高达100ka,电压高达1mv。因此,提高介电材料储能特性进而实现设备的小型集成化显得尤为重要。传统的plzst反铁电储能介质陶瓷具有优良的储能特性(可释放储能密度高达6.4j/cm3),但是由于该体系陶瓷含有大量的有毒物质铅,在生产、使用及后处理过程中会对人类身体健康及环境造成严重伤害。2007年日本的fu等人在agnbo3:alead-freematerialwithlargepolarizationandelectromechanicalresponse一文中发现,agnbo3陶瓷在180kv/cm的电场条件下可以发生反铁电到铁电相的转变,出现双电滞回线。在电场强度达到220kv/cm时,其饱和极化强度可达52μc/cm2。但是fu等人仅仅只对该陶瓷的极化强度和机电响应进行了研究,并未提出用该类陶瓷进行介电储能研究。正是由于其具有高饱和极化强度、低剩余极化强度和高击穿电场强度,2016年tian等人在highenergydensityinsilverniobateceramics一文中首次提出将该材料作为反铁电储能介质材料,并在单项纯agnbo3陶瓷中于175kv/cm条件下获得了2.1j/cm3的可释放储能密度。虽然该陶瓷在单项无铅反铁电陶瓷中具有可观的储能密度,但是相比较于含铅的反铁电储能陶瓷而言,其储能密度依然很低,这对于介电储能电容器的小型集成化不利。因此,为满足环境保护和人类健康的需求,且进一步提高无铅反铁电储能陶瓷的储能性能,研究开发性能优良的无铅反铁电储能介质陶瓷是一项紧迫且具有实际意义的课题。tian等人在phasetransitionsinbismuth-modifiedsilverniobateceramicsforhighpowerenergystorage一文中,通过a位掺杂la,成功制备得到了铌酸银基无铅反铁电储能陶瓷,其储能密度为2.6j/cm3。zhao等人在lead-freeagnbo3anti-ferroelectricceramicswithanenhancedenergystorageperformanceusingmno2modification;silverniobatelead-freeantiferroelectricceramics:enhancingenergystoragedensitybyb-sitedoping;lead-freeantiferroelectricsilverniobatetantalatewithhighenergystorageperformance文中通过b位掺杂mn4+,w6+以及ta5+等,也成功制备得到了铌酸银基无铅反铁电储能陶瓷,其获得的储能密度分别为2.9j/cm3、3.3j/cm3、4.2j/cm3。但上述掺杂方式得到的铌酸银基无铅反铁电储能陶瓷的储能密度相较于铅系反铁电储能陶瓷,有待于进一步提高。技术实现要素:本发明的第一个目的在于提供一种具有高介电常数、高抗击穿电场、高能量密度的铌酸银基陶瓷。本发明的第二个目的在于提供一种铌酸银基陶瓷的制备方法。本发明的第三个目的在于提供一种铌酸银基陶瓷的应用。本发明的第四个目的在于提供一种绝缘电介质的应用。本发明的第五个目的在于提供一种电容器的制备。本发明一种铌酸银基陶瓷,掺杂有bi(zn2/3nb1/3)o3。发明人通过研究发现,bi离子与ag离子的半径相似,向铌酸银基陶瓷中掺入bi,可实现bi掺杂a位的ag。而且bi的6p轨道与o的2p轨道之间存在杂交,因此,掺bi可以提高铌酸银基陶瓷的饱和极化。本发明通过进一步研究发现,向铌酸银基陶瓷中掺杂bi(zn2/3nb1/3)o3(bzn)化合物,bi会掺杂a位的ag,zn会掺杂b位的nb,从而可实现铌酸银基陶瓷a位和b位共掺杂,增强铌酸银基陶瓷的反铁电性能,加之bzn对陶瓷晶粒的细化作用,导致陶瓷介电击穿场强的提高,从而使铌酸银陶瓷的储能性能得以提高。所述铌酸银基陶瓷的结构式为(1-x)agnbo3-xbi(zn2/3nb1/3)o3,其中0<x≤0.03。该铌酸银基无铅反铁电陶瓷具有以下化学通式,(1-x)agnbo3-xbi(zn2/3nb1/3)o3,简写为(1-x)an-xbzn,0<x≤0.03。发明人通过研究发现,当x大于0.03时,由于样品致密度和样品质量等问题,在高电场(大于230kv/cm)条件下不能测试出其反铁电性能。当x大于0.05时,会有杂相析出。所述铌酸银基陶瓷在180kv/cm~230kv/cm的电场下获得的可释放储能密度为1.9j/cm3~4.6j/cm3。所述铌酸银基陶瓷在180kv/cm~230kv/cm的电场下获得的储能效率为31.2%~68.1%。本发明能在220kv/cm的电场条件下,得到具有可释放储能密度为4.6j/cm3,储能效率为57.5%的铌酸银基陶瓷。本发明一种铌酸银基陶瓷的制备方法,包括如下步骤:(1)配料混合:将银源、铌源、铋源和锌源混合,得到粉体a;(2)预烧:将粉体a预烧,球磨破碎,得到粉体b;(3)造粒、成型:将粉料b与造粒剂混合后造粒,成型,得到陶瓷生坯片;(4)排胶、烧结:将步骤(3)得到的陶瓷生坯片排胶,烧结,得到所述铌酸银基陶瓷。优选的,步骤(1)中将银源、铌源、铋源和锌源混合,经球磨,干燥、过筛,得到粉体a。进一步优选的,步骤(1)中所述银源包括ag2o。所述铌源包括nb2o5。所述铋源包括bi2o3。所述锌源包括zno。优选的,步骤(2)中将粉体a预烧,球磨破碎,经干燥,过筛,得到粉体b。进一步优选的,步骤(1)和步骤(2)中所述球磨的介质包括无水乙醇。磨球的粒径为2~8mm。球料质量比为(5~10)﹕1。粉体与球磨介质的质量比约为1﹕(1~1.5)。球磨转速为250~300r/min。球磨的时间为12-24h。进一步优选的,步骤(2)中粉体b的粒径小于300nm。进一步优选的,步骤(1)和步骤(2)中的干燥的温度为80℃~120℃。优选为90-110℃。进一步优选为100-105℃。干燥时间为12-36h。干燥的时间优选为20-26h。进一步优选的,步骤(2)中的预烧温度为800~900℃。优选为830-860℃。预烧的气氛包括氧气。所述氧气的流量为0.4-0.6l/min。预烧的时间为3-6h。进一步优选的,步骤(1)和(2)中所述的过筛为过120-180目筛;优选的,步骤(3)中将粉料b与造粒剂混合后造粒,干燥,陈化后成型,得到陶瓷生坯片;进一步优选的,步骤(3)中所述造粒剂包括pva。所述造粒的温度为85-95℃。造粒过程中搅拌的转速为100-200r/min。陈化时间为3h。所述成型包括压制成型。成型的压强为300-50mpa。所述造粒剂的质量为粉料b质量的2-3倍。所述造粒剂配制成造粒剂的水溶液使用。所述造粒剂的水溶液的质量分数为2-10%。所述造粒剂与粉料b的质量比为1:80-120。进一步优选的,步骤(4)中所述排胶的温度为500-700℃。排胶的时间为1-3h。所述烧结的气氛包括氧气。烧结的温度为1000℃~1200℃。优选为1030-1120℃。所述氧气的流量为0.4-0.6l/min。烧结过程中包括在1000℃~1150℃的温度下保温2-8h的过程。优选为在1030-1120℃保温5-7h。本发明一种铌酸银基陶瓷的应用,应用于制备绝缘电介质。本发明一种绝缘电介质的应用,应用于制备电容器。所述电容器包括介电储能电容器。本发明一种电容器的制备方法,包括如下步骤:将所述绝缘电介质两表面涂覆电极材料,干燥、烧电极,得到所述电容器。所述电极材料包括银、金、铂、铑和钯中的一种。所述干燥的温度为100~200℃。烧电极的温度为500~600℃。烧电极的时间为10-30min。优选的,所述烧电极的温度为530-570℃。烧电极的时间为10-15min。与现有技术相比,本发明具有以下优点及有益效果:(1)本发明利用高温固相反应法于氧气气氛条件下制备得到高纯粉末,进而用固相法于氧气气氛条件下进行陶瓷烧结,从而制备得到具有钙钛矿结构的铌酸银基无铅反铁电储能介质陶瓷,其化学通式为(1-x)agnbo3-xbi(zn2/3nb1/3)o3,0≤x≤0.03,制备工艺简单。(2)本发明得到的铌酸银基无铅反铁电储能介质陶瓷不含易挥发性的pb等有毒物质,对环境友好。(3)本发明通过引入bi(zn2/3nb1/3)o3和进行制备工艺的调控,能够将晶粒细化,细化的晶粒有利于介电击穿场强的提高,从而有利于铌酸银基无铅反铁电陶瓷储能密度的提高。(4)本发明得到的铌酸银基无铅反铁电储能介质陶瓷,在220kv/cm的电场条件下,能够获得的可释放储能密度为4.6j/cm3,储能效率为57.5%。附图说明图1为实施例1、2、3和对比例1制备得到的铌酸银基无铅反铁电储能介质陶瓷的x射线衍射图谱。图2为实施例1、2、3和对比例1制备得到的铌酸银基无铅反铁电储能介质陶瓷的表面形貌照片。图3为实施例1、2、3和对比例1制备得到的铌酸银基无铅反铁电储能介质陶瓷的铁电电滞回线。具体实施方式下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例1制备包括具有通式为0.995agnbo3-0.005bi(zn2/3nb1/3)o3的铌酸银基陶瓷的电容器将ag2o、nb2o5、bi2o3和zno按化学计量比进行称量,在尼龙球磨罐中加入无水乙醇介质,用行星球磨机混合球磨24h,行星球磨机转速300r/min,得到混合均匀的粉体a;用120目筛过筛后于850℃在氧气气氛中预烧粉体6h,将预烧后的得到的粉体b于300r/min的转速行星球磨破碎24h,使粉末平均粒度小于300nm,粉体﹕球﹕无水乙醇质量比约为1﹕10﹕1;将球磨粉体放入干燥箱于100℃烘干、过筛,并加入质量分数为5%的pva(聚乙烯醇)水溶液(pva与粉体的质量比是1:100)与两倍于粉体质量的去离子水,加热搅拌混合均匀并干燥,陈化3h后研磨、过筛;再将其压制成直径为10mm、厚度为1.2mm左右的胚体,胚体置于通有氧气气氛的管式炉中于600℃排胶2h,并在1090℃的温度下烧结6h,制备得到陶瓷片。将制备得到的陶瓷片两面打磨、抛光至200~300mm,被直径为2~3mm的银电极,空气中烧结30min。得到介电储能电容器。实施例2制备包括具有通式为0.99agnbo3-0.01bi(zn2/3nb1/3)o3的铌酸银基陶瓷的电容器依照实施例1中的步骤制备铌酸银基陶瓷。由此,制备得到包括具有通式为0.99agnbo3-0.01bi(zn2/3nb1/3)o3的酸银基陶瓷的电容器。实施例3制备包括具有通式为0.97agnbo3-0.03bi(zn2/3nb1/3)o3的铌酸银基陶瓷的电容器依照实施例1中的步骤制备铌酸银基陶瓷。由此,制备得到包括具有通式为0.97agnbo3-0.03bi(zn2/3nb1/3)o3的酸银基陶瓷的电容器。对比例1制备包括具有通式为agnbo3(x=0)的铌酸银基陶瓷的电容器依照实施例1中的步骤制备铌酸银基陶瓷,由此,制备得到包括具有通式为agnbo3的铌酸银基陶瓷的电容器。对上述实施例制得的包括铌酸银基陶瓷的电容器的储能特性进行测试,其具体结果如表1所示。其具体的性能指标如表1所示。表1样品wrec(j/cm3)η(%)0.995agnbo3-0.005bi(zn2/3nb1/3)o33.331.20.99agnbo3-0.01bi(zn2/3nb1/3)o34.657.50.97agnbo3-0.03bi(zn2/3nb1/3)o33.768.1agnbo31.935.2分别对实施例1、2、3和对比例1制备得到的铌酸银基陶瓷的相结构进行表征。图1为实施例1(x=0.005)、实施例2(x=0.01)、实施例3(x=0.03)和对比例1(x=0)的铌酸银基陶瓷的xrd图谱,结果表明,所制备陶瓷为纯相,并无杂相生成。随着bzn掺杂量的增加,陶瓷的晶胞体积变小,从而导致衍射峰向高衍射角发生偏移。分别对实施例1、2、3和对比例1制备得到的铌酸银基陶瓷的微观形貌进行表征。图2为实施例1(x=0.005)、实施例2(x=0.01)、实施例3(x=0.03)和对比例1(x=0)的铌酸银基陶瓷的sem照片,结果表明,所制备陶瓷的晶界清楚,结构致密,无明显孔洞产生。随着bzn掺杂量的增加,陶瓷的晶粒明显得到了细化,由2.20μm减小至1.14μm,这对于陶瓷介电击穿场强的提高有明显的贡献,由180kv/cm提高至230kv/cm。分别对实施例1、2、3和对比例1制备得到的包括铌酸银基陶瓷的铁电性能进行表征。图3为实施例1(x=0.005)、实施例2(x=0.01)、实施例3(x=0.03)和实施例4(x=0)的铌酸银基反铁电陶瓷的铁电电滞回线,结果表明,bi(zn2/3nb1/3)o3的加入会使铌酸银反铁电陶瓷的反铁电性能增强,且使其饱和极化强度增大,由37.3μc/cm2升高至59.3μc/cm2,从而有助于储能密度的进一步提高。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1