一种提高Ti3B2N材料纯度的处理方法与流程

文档序号:16130170发布日期:2018-12-01 00:13阅读:183来源:国知局

本发明属于一种结构材料领域,具体涉及一种提高ti3b2n材料纯度的处理方法。

背景技术

ti3b2n是一种新型的三元层状化合物,它具有高模量(杨氏模量430.22gpa,剪切模量181.06gpa),高强度等。同时,ti3b2n具有很低的密度(理论密度4.80g/cm3)。

中国发明专利申请2016100610872和2016106036190分别公开了“一种新型陶瓷晶体ti3b2n及其制备方法”和“一种合成高纯度ti3b2n的方法”均采用高温固相反应制备方法;中国发明专利申请2018101697425、201810169743x、2018101517916和2018101697410等公开了分别采用低熔点金属al、pb、sn和zn作为助熔剂合成ti3b2n的方法。但是无论是上述哪一个专利申请中,所合成的ti3b2n样品中都含有tin和tib2两种杂相,tin和tib2两种杂相的存在不利于该新型陶瓷材料ti3b2n的实际应用。因此,如何除掉ti3b2n样品中的杂相,提高ti3b2n的含量,对于ti3b2n材料的实际应用具有很好的现实意义。

因此,需要提供一种针对上述现有技术不足的改进技术方案。



技术实现要素:

本发明的目的在于提供一种高纯度ti3b2n材料的新型制备方法,以至少解决现有合成方法中ti3b2n样品杂质多的问题,从而大幅提高ti3b2n材料的纯度和含量,对于ti3b2n材料的实际应用具有很好的现实意义。

为了实现上述目的,本发明提供如下技术方案:

一种提高ti3b2n材料纯度的处理方法,所述ti3b2n的处理方法包括如下步骤:

步骤一,将制备的含杂ti3b2n样品置于硝酸溶液中进行除杂反应,除杂反应在恒温水浴锅中进行加热,期间使用磁力搅拌助其充分反应,反应完成后得样品溶液;

步骤二,待步骤一反应完成后,用蒸馏水充分清洗至样品溶液ph值为中性,并使用高速离心机离心样品溶液;经离心清洗后得到半成品物料,将所得半成品物料置于真空干燥箱中充分干燥后,即可得高纯度的ti3b2n材料。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤一中所述含杂ti3b2n样品的制备方法包括如下步骤:

1)分别称取tih2粉、无定型b粉和六方bn粉,备用;

2)将步骤1)中称取的tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀,得混合料;

3)将步骤2)中的混合料压片之后,在惰性保护气氛下升温至1200~1300℃,保温3~6h;

4)待步骤3)完成后,随炉自然冷却至室温,得含杂ti3b2n样品。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤1)中,所述tih2粉、所述无定型b粉和所述六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶(0.9~1.1)∶(0.9~1.1);

优选地,所述tih2粉、所述无定型b粉和所述六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶1∶1。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤2)中,所述tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀过程为:在tih2粉、无定型b粉、六方bn粉混合搅拌中再加入无水乙醇混合搅拌均匀后,自然晾干。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,加入无水乙醇混合搅拌5~30h后,自然晾干。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤3)中,混合料压片之后,以5~10℃/min的速率升温至1200~1300℃,保温3~6h。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤一中,所述硝酸溶液的浓度为10~30%wt;

优选地,硝酸溶液的浓度为20%wt。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤二中,所述恒温水浴锅中的加热温度为30~50℃,保温时间为20min~2h;

优选地,步骤二中,所述恒温水浴锅中的加热温度为40℃,保温时间为30min。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤二中,将离心清洗所得半成品物料置于40~150℃的所述真空干燥箱中充分干燥,干燥时间为24~48h。

在如上所述的提高ti3b2n材料纯度的处理方法,优选,步骤二中,所述高速离心机的转速为18000~23000rpm,离心时间为3~7min。

再优选地,所述高速离心机的转速为20000rpm,离心时间为5min。

与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:

本发明提供的ti3b2n材料的制备方法可以有效提高制备的ti3b2n材料的ti3b2n含量,提高其纯度,成功去除样品中的tib2杂质,减少tin杂质的含量,对于ti3b2n材料的实际应用和科学研究十分重要。

本发明提供的ti3b2n材料的制备方法,操作简单,重复性高,适合工业规模化生产,降低生产成本。

本发明通过对合成的ti3b2n样品进行硝酸反应后处理,成功清除了合成样品中的tib2杂质,提高了合成样品中ti3b2n的纯度,对于ti3b2n材料未来的实际应用方面,意义深远,影响重大。

附图说明

构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:

图1:本发明中具体实施例1制备的ti3b2n样品的xrd图谱;

图2:ti3b2n化合物的理论xrd图谱;

图3:本发明中具体实施例2制备的ti3b2n样品的xrd图谱;

图4:本发明中具体实施例3制备的ti3b2n样品的xrd图谱;

图5:本发明中对照例1的xrd图谱;

图6:本发明中对照例2的xrd图谱;

图7:本发明中对照例3的xrd图谱;

图8:本发明中对照例4的xrd图谱;

图9:本发明中对照例5的xrd图谱;

图10:本发明中对照例6的xrd图谱;

图11:本发明中对照例7的xrd图谱;

图12:本发明中对照例8的xrd图谱;

图13:本发明中对照例9的xrd图谱。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。

下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

如图1、图3、图4所示,根据本发明的实施例,提供了一种高纯度ti3b2n材料的新型制备方法,制备ti3b2n的方法包括如下步骤:

1)分别称取tih2粉、无定型b粉和六方bn粉,备用;

且tih2粉、无定型b粉和六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶(0.9~1.1)(例如0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99、1.0)∶(0.9~1.1)(例如0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99、1.0);

2)将步骤1)中称取的tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀,得混合料;

3)将步骤2)中的混合料压片之后,在惰性保护气氛下升温至1200~1300℃(例如1210℃、1220℃、1230℃、1240℃、1250℃、1260℃、1270℃、1280℃、1290℃),保温3~6h(例如3.2h、3.4h、3.6h、3.8h、4h、4.2h、4.4h、4.6h、4.8h、5h、5.2h、5.4h、5.6h、5.8h);

4)待步骤3)完成后,随炉自然冷却至室温,得样品一;

5)将步骤4)中所得样品一置于硝酸溶液中进行除杂反应,硝酸溶液的加入量需要满足该硝酸溶液液面完全覆盖住该样品一材料,除杂反应在恒温水浴锅中进行加热,期间使用磁力搅拌助其充分反应;

6)待步骤5)反应完成后,用蒸馏水充分清洗至溶液ph值为中性,使用高速离心机离心样品,经离心清洗后得到半成品物料,将所得半成品物料置于真空干燥箱中充分干燥后,即可得较高纯度的ti3b2n材料。

在本发明的具体实施例中,进一步优选,步骤1)中,tih2粉、无定型b粉和六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶1∶1。

在本发明的具体实施例中,进一步优选,为了使物料混合更加均匀,tih2粉、无定型b粉和六方bn粉的混合过程中加入无水乙醇作为分散剂,在步骤2)中,tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀过程为:在tih2粉、无定型b粉、六方bn粉混合搅拌中再加入无水乙醇混合搅拌均匀后,自然晾干。

在本发明的具体实施例中,进一步优选,加入无水乙醇混合搅拌5~30h(例如6h、7h、8h、9h、10h、11h、12h、13h、15h、18h、20h、21h、22h、23h、25h、26h、28h、29h)后,自然晾干。

优选地,无水乙醇的加入量满足该无水乙醇液面完全淹没tih2粉、无定型b粉和六方bn粉混合后的物料。

再进一步优选地,无水乙醇的加入量必须满足该无水乙醇液面完全淹没高过tih2粉、无定型b粉和六方bn粉混合后的物料2~4mm(例如2.1mm、2.4mm、2.5mm、2.8mm、3mm、3.2mm、3.5mm、3.8mm、4mm)。

在本发明的具体实施例中,进一步优选,步骤3)中的惰性保护气氛为氮气或者氩气。

在本发明的具体实施例中,进一步优选,步骤3)中,以5~10℃/min(例如5.5℃/min、6℃/min、6.5℃/min、7℃/min、7.5℃/min、8℃/min、8.5℃/min、9℃/min、9.5℃/min)的速率升温至1200~1300℃(例如1210℃、1215℃、1220℃、1225℃、1230℃、1235℃、1240℃、1245℃、1250℃、1255℃、1260℃、1265℃、1270℃、1275℃、1280℃、1285℃、1290℃),保温3~6h(例如3.2h、3.4h、3.6h、3.8h、4h、4.2h、4.4h、4.6h、4.8h、5h、5.2h、5.4h、5.6h、5.8h)。

在本发明的具体实施例中,进一步优选,步骤5)中,硝酸溶液的浓度为10~30%wt。

优选地,硝酸溶液的浓度为20%wt。

在本发明的具体实施例中,进一步优选,步骤5)中,恒温水浴锅中的加热温度为30~50℃(例如31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、340℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、),保温时间为20min~2h(例如30min、35min、40min、45min、50min、55min、1h、1.1h、1.2h、1.3h、1.4h、1.5h、1.6h、1.7h、1.8h、1.9h)。

在本发明的具体实施例中,进一步优选,恒温水浴锅中的加热温度为40℃,保温时间为30min。

在本发明的具体实施例中,进一步优选,将离心清洗所得半成品物料置于40~150℃(例如45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、140℃)的真空干燥箱中充分干燥,干燥时间为24~48h(例如25h、26h、28h、30h、32h、34h、36h、38h、40h、42h、44h、46h)。

在本发明的具体实施例中,高速离心机的转速为18000~23000rpm(例如18200rpm、18400rpm、18600rpm、18800rpm、19000rpm、19200rpm、19400rpm、19600rpm、19800rpm、20000rpm、21000rpm、22000rpm、22500rpm),离心时间为3~7min(例如3.2min、3.4min、3.6min、3.8min、4min、4.2min、4.4min、4.6min、4.8min、5min、5.2min、5.4min、5.6min、5.8min、6min、6.2min、6.4min、6.6min、6.8min)。进一步优选,高速离心机的转速为20000rpm,离心时间为5min。

总而言之,本发明高纯度ti3b2n材料的制备中,采用按tih2粉、无定型b粉、六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶(0.9~1.1)∶(0.9~1.1),称取tih2粉、无定型b粉和六方bn粉放入容器中并加入无水乙醇混合搅拌均匀;将tih2粉、无定型b粉、六方bn粉混匀压片后,在惰性保护气氛下以5~10℃/min的速率升温至1200~1300℃,保温3~6h;反应完成后,在惰性保护气氛下,样品随炉自然冷却至室温得到样品一;然后将所得样品置于10~30%wt硝酸溶液中进行除杂反应,恒温水浴锅加热,保温反应20min~2h,并使用磁力搅拌器助其充分反应;反应完全后用蒸馏水充分清洗至溶液呈中性,使用高速离心机离心样品,得到粉末半成品物料,最后再真空干燥箱中以一定温度干燥脱水,充分干燥后,得到本发明的高纯度ti3b2n材料。

本发明通过上述反应工艺得到高纯ti3b2n的原因是:通过固相反应合成的样品一中,除了目标产物ti3b2n作为主相之外,还含有一定的杂相tin和tib2。杂相的存在,势必会影响ti3b2n材料的性质,继而影响其应用。在本发明中,基于本发明发现掌握的ti3b2n材料的化学活性特点,利用其不能和一定浓度的硝酸反应,而tib2材料可以与一定浓度的硝酸反应的特点,采用一定浓度硝酸对样品一进行处理,从而去除tib2杂相,提高ti3b2n材料的纯度。

以下实施例中tih2粉、无定型b粉和六方bn粉均为市售产品,纯度为99.9%以上。

实施例1

本实施例提供一种高纯度ti3b2n材料的新型制备方法,制备ti3b2n的方法包括如下步骤:

1)分别称取tih2粉、无定型b粉和六方bn粉,备用;

且tih2粉、无定型b粉和六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶1∶1;

2)将步骤1)中称取的tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀,tih2粉、无定型b粉和六方bn粉的混合过程中加入无水乙醇作为分散剂,混合搅拌10h,无水乙醇的加入量满足该无水乙醇液面完全淹没tih2粉、无定型b粉和六方bn粉混合后的物料,混合均匀后,自然晾干,得混合料;

3)将步骤2)中的混合料压片之后,在氮气气氛下以8℃/min的速率升温至1250℃,保温5h;

4)待步骤3)完成后,随炉自然冷却至室温,得样品一;

5)将步骤4)中所得样品一置于20%wt硝酸溶液中进行除杂反应,除杂反应在40℃恒温水浴锅中进行,保温30min,即在40℃下进行除杂反应30min,期间使用磁力搅拌助其充分反应;

6)待步骤5)中反应完成后,用蒸馏水充分清洗至溶液ph值为7,使用高速离心机离心样品,离心机的转速为2000rpm,离心时间为5min,将离心清洗所得半成品物料置于80℃的真空干燥箱中充分干燥,干燥时间25h,即可得较高纯度的ti3b2n材料。

本实施例制备的ti3b2n产品的xrd图谱见图1。由于ti3b2n是一种新合成的物质,因此x射线衍射标准卡片库中尚未收录。采用晶体xrd谱图模拟软件poudrix,可得ti3b2n的理论xrd图谱,见图2。将图1和图2进行比对,可确定合成样品中主相为ti3b2n化合物。同时,样品中还含有少量的杂相tin,无tib2(tin,jcpds卡片号:38-1420;tib2,jcpds卡片号:35-0741)。

实施例2

本实施例与实施例1的不同之处在于:步骤5)中硝酸溶液浓度为30%wt,除杂反应在30℃恒温水浴锅中进行,保温1h,即在30℃下进行除杂反应1h,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的产品xrd图谱见图3,本实施例制备的样品含有ti3b2n和tin两种相,说明将样品浸泡在硝酸溶液中,并在一定温度和时间条件下可以除去tib2杂相,实施例2和实施例1的xrd图谱相似,这说明本实施例中选取的硝酸浓度、水浴锅温度和保温时间的参数均能有效去除tib2杂相,得到纯度较高的ti3b2n样品。

实施例3

本实施例与实施例1的不同之处在于:步骤5)中硝酸溶液浓度为10%wt,除杂反应在50℃恒温水浴锅中进行,保温1.5h,即在50℃下进行除杂反应1.5h,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的产品xrd图谱见图4,本实施例制备的样品含有ti3b2n和tin两种相,说明将样品浸泡在硝酸溶液中,并在一定温度和时间条件下可以除去tib2杂相,实施例3和实施例1的xrd图谱相似,这说明本实施例中选取的硝酸浓度、水浴锅温度和保温时间的参数均能有效去除tib2杂相,得到纯度较高的ti3b2n样品。

实施例4

本实施例与实施例1的不同之处在于:步骤1)中,tih2粉、无定型b粉和六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶0.9∶0.9,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的样品(xrd图谱图中未示出)含有ti3b2n和tin两种相,说明在本发明权利要求书的原料配比范围内,不同的原材料配比参数下制备的含杂ti3b2n样品经过合适的硝酸处理同样可以有效去除tib2杂相,得到纯度较高的ti3b2n样品。

实施例5

本实施例与实施例1的不同之处在于:步骤3)中,在氮气气氛下以10℃/min的速率升温至1300℃,保温4h,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的样品(xrd图谱图中未示出)含有ti3b2n和tin两种相,说明在本发明范围内的升温速率、烧结温度和保温时间条件下制备的含杂ti3b2n样品经过合适的硝酸处理同样可以有效去除tib2杂相,得到纯度较高的ti3b2n样品。

实施例6

本实施例与实施例1的不同之处在于:步骤3)中,在氮气气氛下以6℃/min的速率升温至1200℃,保温6h,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的样品(xrd图谱图中未示出)含有ti3b2n和tin两种相,说明在本发明范围内的升温速率、烧结温度和保温时间条件下制备的含杂ti3b2n样品经过合适的硝酸处理同样可以有效去除tib2杂相,得到纯度较高的ti3b2n样品。

实施例7

本实施例与实施例1的不同之处在于:步骤2)中,tih2粉、无定型b粉和六方bn粉的混合过程中加入无水乙醇作为分散剂,混合搅拌5h,无水乙醇的加入量满足该无水乙醇液面完全淹没tih2粉、无定型b粉和六方bn粉混合后的物料,其他制备步骤与实施例1相同,在此不再赘述。

本实施例制备的样品(xrd图谱图中未示出)含有ti3b2n和tin两种相,说明加入无水乙醇后本发明范围内的混合搅拌时间制备的含杂ti3b2n样品经过合适的硝酸处理同样可以有效去除tib2杂相,得到纯度较高的ti3b2n样品。

对照例1

本对照例与实施例1的不同之处在于:步骤5)中选用20%wt的hcl溶液,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图5,图5中显示仍然是含有ti3b2n、tib2和tin三种相,相比于实施例1,图谱中多了tib2杂相,说明制备完成的样品采用hcl溶液进行处理后无法有效去除tib2杂相。

对照例2

本对照例与实施例1的不同之处在于:步骤5)中选用20%wt的hf溶液,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图6,图6中显示含有tib2和tin两种相,而没有了ti3b2n主相,说明制备完成的样品采用hf溶液进行处理后,hf溶液与ti3b2n主相反应,将主相完全侵蚀,腐蚀作用强烈,所以不能选择hf溶液对ti3b2n进行除杂。

对照例3

本对照例与实施例1的不同之处在于:步骤5)中选用20%wt的naoh溶液,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图7,图7中显示仍然是含有ti3b2n、tib2和tin三种相,相比于实施例1,图谱中多了tib2杂相,说明制备完成的样品采用naoh溶液进行处理后无法有效去除tib2杂相。

对照例4

本对照例与实施例1的不同之处在于:步骤5)中保温时间为10min,即在40℃下进行除杂反应10min,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图8,图8中显示本实施例制备的样品含有ti3b2n、tib2和tin三种相,说明在硝酸溶液中进行的除杂反应保温时间对去除ti3b2n样品中的杂相非常重要,相比于实施例1,本对照例中样品存在杂相tib2,这说明本对照例中选取的保温时间的参数不合适,保温反应时间过短,不能完全去除杂相tib2,因而不能有效改善ti3b2n材料的纯度。

对照例5

本对照例与实施例1的不同之处在于:步骤5)中保温时间为12h,即在40℃下进行除杂反应12h,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图9,图9中显示本实施例制备的样品含有ti3b2n和tin两种相,虽然杂相tib2成功去除,但是目标相ti3b2n的量也大大减少,这说明过长的反应保温时间也会减少目标相,对提高ti3b2n样品含量不利。

对照例6

本对照例的制备工艺采用与中国专利申请号2016100610872中公告的“一种新型陶瓷晶体ti3b2n及其制备方法”相同的制备方法,即是如下制备方法:

将钛粉和六方氮化硼粉末以1.5~2.5∶1的摩尔比在空气孔混合、研磨、压片,然后在惰性保护气氛下以5~10℃/min的速率升温至1100~1200℃,保温3~12h,自然冷却至室温,即得目标产品。

本对照例制备的产品xrd图谱见图10,所得产品含有ti3b2n、tib2和tin三种相,且杂相tib2和tin的含量高于实施例1、2和3。

对照例7

本对照例的制备工艺采用与中国专利申请号为2016106036190中公告的“一种合成高纯度ti3b2n的方法”相同的制备方法,即是如下制备方法:

按tih2粉、无定型b粉、六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶1∶1,称取tih2粉、无定型b粉和六方bn粉;将称取的tih2粉、无定型b粉、六方bn粉加入无水乙醇,使无水乙醇的液面没过物料3mm,混合18h后,自然晾干;用压片机5mpa压力下,冷压成素坯块体;将素坯块体置于管式炉,氩气保护气氛中进行烧结;烧结步骤为:以10℃/min的升温速率升至1300℃,保温6h;烧结完成后,在氩气保护气氛下,自然冷却至室温,得产品ti3b2n。

本对照例制备的产品xrd图谱见图11,本对照例中制得的产品没有采用硝酸处理,所得产品含有ti3b2n、tib2和tin三种相,且杂相tib2和tin的含量较多,杂相含量高于实施例1、2和3,说明将含有杂相的ti3b2n投入硝酸溶液加热处理可以有效将tib2杂相完全去除,得到纯度较高的ti3b2n材料。

对照例8

本对照例与实施例1的不同之处在于:省略步骤5)和6),即,采用高温合成的样品没有进行后续的硝酸处理,其他制备步骤与实施例1相同,在此不再赘述。

本对照例制备的产品xrd图谱见图12,本对照例中制得的产品没有采用硝酸处理,所得产品含有ti3b2n、tib2和tin三种相,且杂相tib2和tin的含量较多,杂相含量高于实施例1、2和3,说明将含有杂相的ti3b2n投入硝酸溶液加热处理可以有效将tib2杂相完全去除,得到纯度较高的ti3b2n材料。

对照例9

本对照例的制备工艺采用与中国专利申请号为201810169743x中公告的“一种pb助熔剂合成ti3b2n的方法”相同的制备方法,即是如下制备方法:

1)分别称取tih2粉、无定型b粉和六方bn粉,备用;且tih2粉、无定型b粉和六方bn粉三种原料的摩尔比tih2∶b∶bn=3∶1∶1;

2)将步骤1)中称取的tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀,得混合料;tih2粉、无定型b粉和六方bn粉放入容器中混合搅拌均匀过程为:在tih2粉、无定型b粉、六方bn粉混合搅拌中再加入无水乙醇混合搅拌18h后,自然晾干。其中,无水乙醇的加入量必须满足该无水乙醇液面完全淹没高过tih2粉、无定型b粉和六方bn粉混合后的物料3mm。

3)向步骤2)中的混合料中加入该混合料重量比20%的金属pb粉作为助熔剂,在玛瑙研钵中混合均匀,压片(压片过程中的压力须在5mpa),冷压成素坯块体;将素坯块体置于石英管中,抽真空充入ar气,密封石英管;将该石英管以10℃/min的速率升温至800℃,保温18h。

4)待步骤3)完成后得样品;样品随炉自然冷却至室温后;将样品置于浓度为15%稀盐酸中浸泡除去样品中残留的pb,浸泡的时间为48h,用蒸馏水稀释,过滤离心,可得ti3b2n黑色样品。

本对照例制备的产品xrd图谱见图13,所得产品含有ti3b2n、tib2和tin三种相,且杂相tib2和tin的含量较多,杂相高于实施例1、2和3。

综上所述,本发明制备的ti3b2n材料,相比于现有技术,具有如下有益效果:

1、本发明可以有效提高制备的ti3b2n样品中的ti3b2n相的含量,提高其纯度,成功去除样品中的tib2杂质,减少tin杂质的含量,对于ti3b2n材料的实际应用和科学研究十分重要。

2、本发明提供的合成制备方法,操作简单,重复性高,适合工业规模化生产,降低生产成本。

3、本发明通过对合成的ti3b2n样品进行硝酸反应后处理,成功清除了合成样品中的tib2杂质,提高了合成样品中ti3b2n的纯度,对于ti3b2n材料未来的实际应用方面,意义深远,影响重大。

以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1