使用保护性材料的贯穿玻璃通孔的制造的制作方法

文档序号:21322406发布日期:2020-06-30 20:55阅读:208来源:国知局
使用保护性材料的贯穿玻璃通孔的制造的制作方法

本申请案根据专利法主张于2018年10月27日申请的美国临时申请案序号第62/578,109号的优先权的权益,依据所述案的内容且将所述案的内容通过全文引用并入本文。

本公开案一般而言涉及贯穿玻璃通孔(throughglassvia;tgv)。更具体而言,本公开案涉及使用保护性材料制造tgv以在装置(如显示器)内形成电信号路径。



背景技术:

玻璃为多种电子应用中广泛使用的材料,如显示器、中介层(interposer)、传感器等。电子显示器可用于多种类型的装置,如智能手机、平板电脑、汽车电子装置、增强现实(augmentedreality)装置等。电子装置可包含延伸穿过玻璃基板的厚度的通孔,以将电信号从玻璃基板的一个主表面传递到玻璃基板的另一个主表面。通孔可在位于玻璃基板的顶部的电路与位于玻璃基板下方的电路之间传送电信号和电力。

在贯穿玻璃通孔(tgv)基板的表面上形成电路的电子图案的制造可包含可能造成tgv中的光刻胶包埋(entrapment)的光刻步骤。tgv中的此光刻胶包埋可能损害tgv基板的表面上形成的电子图案的品质。因此,本文公开在包含tgv的玻璃基板上制造电子图案同时防止tgv中的光刻胶包埋的方法。



技术实现要素:

本公开案的一些实施方式涉及子组件。所述子组件包含玻璃基板、多个电子装置和钝化层。玻璃基板包含第一表面、与第一表面相对的第二表面和在第一表面与第二表面之间延伸的第三表面。玻璃基板包含从第一表面延伸至第二表面的多个激光损伤区域。所述多个电子装置在玻璃基板的第一表面上。钝化层在所述多个电子装置和玻璃基板的第三表面上。钝化层包含至所述多个激光损伤区域中的每个激光损伤区域的开口。

而本公开案的其他实施方式涉及制造玻璃部件的方法。所述方法包含将玻璃基板激光损伤,以产生从所述玻璃基板的第一表面延伸至所述玻璃基板的第二表面的多个激光损伤区域,第二表面与第一表面相对。所述方法进一步包含在玻璃基板的第一表面上制造多个电子装置。所述方法进一步包含在所述多个电子装置和所述玻璃基板的第三表面上方施加保护性材料,第三表面在所述玻璃基板的第一表面与第二表面之间延伸。所述方法进一步包含蚀刻所述多个激光损伤区域以赋予相应的多个贯穿玻璃通孔。

而本公开案的其他实施方式涉及用于制造显示器的方法。所述方法包含将玻璃基板激光损伤,以产生从所述玻璃基板的第一表面延伸至所述玻璃基板的第二表面的多个激光损伤区域,第二表面与第一表面相对。所述方法进一步包含在玻璃基板的第一表面上制造薄膜晶体管的阵列。所述方法进一步包含在所述薄膜晶体管的阵列上方和在所述玻璃基板的第三表面上方施加保护性材料,第三表面在所述玻璃基板的第一表面与第二表面之间延伸。所述方法进一步包含蚀刻所述多个激光损伤区域以赋予相应的多个贯穿玻璃通孔。所述方法进一步包含将所述多个贯穿玻璃通孔金属化以产生相应的多个电触点(electricalcontact),所述电触点延伸穿过所述玻璃基板并且耦合至所述薄膜晶体管的阵列。所述方法进一步包含去除所述保护性材料。

本文公开的子组件和方法使得能够使用贯穿玻璃的电信号路径将电信号和/或电力从位于玻璃基板的一侧上的电路传送至位于玻璃基板的另一侧上的电路,同时防止tgv中的光刻胶包埋。

附加特征和优点将在以下的实施方式中记载,并且部分地对于本领域技术人员而言从所述实施方式将为显而易见的,或通过实践本文所述的实施方式而认知,本文包含以下的实施方式、权利要求书以及附图。

应了解,前述一般性描述和以下实施方式两者描述各种实施方式,且旨在提供用以了解所要求保护主题的本质和特性的概要或架构。本文包含附图以提供进一步了解各种实施方式,且附图并入此说明书中且构成此说明书的一部分。附图绘示本文所述的各种实施方式,且附图与说明一起用以解释所要求保护主题的原理和操作。

附图说明

图1a~图1b示意描绘显示器的一个实例;

图2示意描绘玻璃基板的一个实例;

图3示意描绘将图2的玻璃基板激光损伤的一个实例;

图4示意描绘在图3的玻璃基板的顶表面上形成电子装置的一个实例;

图5a~图5b示意描绘在图4的电子装置和玻璃基板上方施加保护性材料层之后的子组件的实例;

图6示意描绘图5a的子组件在形成贯穿玻璃通孔(tgv)之后的一个实例;

图7示意描绘图6的子组件在将tgv金属化之后的一个实例;

图8示意描绘图7的子组件在玻璃基板的底部表面上形成电子装置之后的一个实例;及

图9示意描绘图8的子组件在去除保护性材料层之后的一个实例。

具体实施方式

现将详细参照本公开案的实施方式,所述实施方式的实例绘示于附图中。在附图各处将尽可能使用相同的元件符号来指称相同或相似的部件。然而,此公开案可以许多不同的形式来实现,并且不应被解释为限于本文记载的实施方式。

在本文中可将范围表示为从“约”一个特定值,和/或至“约”另一个特定值。当表示如此的范围时,另一个实施方式包含从所述个特定值和/或至所述另一个特定值。类似地,当将数值表示为近似值时,通过使用先行词“约”,将理解所述特定值形成另一个实施方式。将进一步理解,每个范围的端点关于另一个端点都为有意义的并且独立于所述另一个端点。

本文使用的方向性用语──例如,上、下、右、左、前、后、顶部、底部、垂直、水平──仅为参照所绘制的附图而作出,而不旨在暗示绝对定向。

除非另外明确说明,否则本文记载的任何方法决不欲解释为要求以特定顺序实行所述方法的步骤,也无要求以任何设备、特定的定向来实行。因此,当方法权利要求实际上并未叙述所述方法的步骤所要遵循的顺序时,或当任何设备权利要求实际上并未叙述对个别部件的顺序或定向时,或当在权利要求书或说明中并未另外特定说明步骤将限于特定的顺序时,或当并未叙述对设备的部件的特定顺序或定向时,决不欲在任何方面中推断顺序或定向。此适用于用于解释的任何可能的非明白表示依据,包含:关于步骤的安排、操作流程、部件的顺序或部件的定向的逻辑事项;从语法组织或标点符号得到的简单含义,和;说明书中描述的实施方式的数量或类型。

如本文使用的,除非上下文另有明确指示,否则单数形式“一(a)”、“一个(an)”和“所述(the)”包含复数指示物。因此,例如,除非上下文另有明确指示,否则对“一”部件的参照包含具有两个或更多个上述部件的方面。

现参照图1a~图1b,描绘示例性显示器100。图1a绘示显示器100的俯视图且图1b绘示显示器100的截面图。显示器100包含玻璃基板102、第一金属化贯穿玻璃通孔(tgv)104、第二金属化tgv106、第一导线108、第二导线110、薄膜电子电路111、光源112、控制板130和电极132。玻璃基板102包含第一表面114和与第一表面114相对的第二表面116。玻璃基板102还包含在玻璃基板102的第一表面114与第二表面116之间延伸的侧表面117、118、119和120。在一个实例中,第一表面114与第二表面116平行,且侧表面117、118、119和120与玻璃基板102的第一表面114和第二表面116正交。

薄膜电子电路111可为薄膜晶体管(tft)。tft111以行和列的阵列排列。每个tft111电耦合至光源112。每个光源112可为发光二极管(led),如微发光二极管(microled)。microled为小的(例如,通常小于约100μm乘以约100μm)发光部件。microled是无机半导体部件,其产生高达约5000万尼特(nit)的高亮度。因此,microled特别适用于高解析度显示器。每个tft111电耦合至第一导线108(例如,经由tft的源极或漏极)及第二导线110(例如,经由tft的栅极)。第二导线110布置于第一导线108上方并且与第一导线108电绝缘。在此实例中,第二导线110与第一导线108正交,第一导线108在玻璃基板102的侧表面117与侧表面119之间延伸,第二导线110在玻璃基板102的侧表面118与侧表面120之间延伸。tft111、第一导线108及第二导线110形成在玻璃基板102的第一表面114上。每个光源112布置在玻璃基板102的第一表面114上且与tft111电接触(例如,经由tft的漏极或源极)。未示出的平面电极可施加于每个光源112上方并且电耦合至每个光源112以提供共用电极(commonelectrode)。

每个第一导线108电耦合至第一金属化tgv104。在此实例中,金属化tgv104以与玻璃基板102的侧表面117相邻的列布置而延伸穿过玻璃基板102。每个第二导线110电耦合至第二金属化tgv106。在此实例中,金属化tgv106在玻璃基板102的中心以列布置而延伸穿过玻璃基板102。每个第一金属化tgv104和每个第二金属化tgv106提供延伸穿过玻璃基板102的电信号路径(例如,电接触)。每个第一金属化tgv104和每个第二金属化tgv106经由控制板130的电极132电耦合至控制板130。在操作中,控制板130可个别控制每个tft111以个别控制每个光源112。

图2示意描绘示例性玻璃基板200。玻璃基板200包含第一表面202、与第一表面相对的第二表面204和在第一表面202与第二表面204之间延伸的第三表面206。玻璃基板200还可包含在第一表面202与第二表面204之间延伸的第四表面208。在一个实例中,第一表面202与第二表面204平行,第三表面206及第四表面208与第一表面202及第二表面204正交。玻璃基板200可包含在第一表面202与第二表面204之间延伸的另外的侧表面。例如,对于矩形玻璃基板,玻璃基板200可包含在第一表面202与第二表面204之间延伸、与第三表面206和第四表面208正交的第五表面和第六表面。在其他实例中,玻璃基板200可具有其他具相应数量的侧表面的适合的形状,如圆形、三角形、六边形等。玻璃基板200可具有约0.1mm与约0.63mm之间的第一表面202与第二表面204之间的厚度或另一个适合的厚度。

图3示意描绘将图2的玻璃基板200激光损伤的一个实例。经由激光211产生的激光束212将玻璃基板200损伤,以产生多个激光损伤区域210。每个激光损伤区域210从玻璃基板200的第一表面202延伸至玻璃基板200的第二表面204。在一个实例中,激光损伤区域210包含开放或中空微通道,其具有在约7μm与约9μm之间的直径。在其他实例中,激光损伤区域210包含破坏或中断玻璃基板200的晶体结构的其他结构。在任何情况下,玻璃基板200的激光损伤区域210以比玻璃基板200的未损伤区域更快的速率来蚀刻。

通过用激光211产生的激光束212照射玻璃基板200的第一表面202来形成激光损伤区域210。激光束212可例如通过透镜213聚焦至玻璃基板200的第一表面202的约+/-100μm内的焦点。在某些示例性实施方式中,对于玻璃基板200的厚度在约0.1mm与约0.63mm之间的范围内,透镜213具有在约0.1与约0.4之间的范围内的数值孔径。激光211可以约50khz或更低的重复率来操作并且具有足够的照射持续时间,以将激光损伤区域210延伸至玻璃基板200的第二表面204。

在某些示例性实施方式中,激光211为二氧化碳激光,其产生波长在约9μm与约10.2μm之间的激光束212。在另一个实例中,激光211是紫外(uv)激光,其产生波长在约300nm与约400nm之间的uv激光束212,如约355nm(例如,掺杂钕的钨酸钆钾(neodymiumdopedpotassium-gadoliniumtungstate)或另一种掺杂nd的激光)。例如,激光211可照射玻璃基板200的第一表面202对于每个激光损伤区域210持续从约8毫秒至约150毫秒的范围内的持续时间。每个激光损伤区域210的特定照射持续时间取决于玻璃基板200的厚度。

激光损伤区域210制备玻璃基板200用于如以下将描述的后续蚀刻工艺,同时维持玻璃基板200的尺寸稳定性以用于在玻璃基板200上制造电子装置。同时,由于在制造电子装置之前tgv还没有完全形成,因此防止由于光刻工艺在tgv中的光刻胶包埋。

图4示意描绘在图3的玻璃基板200的表面上形成电子装置214的一个实例。电子装置214制造于玻璃基板200的第一表面202上。在某些示例性实施方式中,电子装置214包含薄膜电子装置,如tft。可使用光刻工艺来制造电子装置214,以形成电子装置的导电和/或介电部分。例如,电子装置214可包含先前参照图1a~图1b所述和绘示的第一导线108、第二导线110及tft111。电子装置214参照激光损伤区域210,使得开口216保留在电子装置214之间而暴露出激光损伤区域210。在另一个实例中,可在如参照图3所述的激光损伤区域210形成之前将电子装置214制造在图2的玻璃基板200上。

图5a示意描绘在电子装置214和玻璃基板200上方施加保护性材料层218(例如,钝化层)之后的示例性子组件。保护性材料层218施加在电子装置214、玻璃基板200的第一表面202和玻璃基板200的侧表面(包含玻璃基板200的第三表面206和第四表面208)上方。使用物理气相沉积(pvd)或另一个适合的沉积工艺将保护性材料层218沉积至电子装置214和玻璃基板200上。在某些示例性实施方式中,在沉积工艺期间使用遮罩工艺以维持开口216暴露出激光损伤区域210。在另一个实例中,在沉积工艺之后去除激光损伤区域210上方的保护性材料以产生开口216。保护性材料层218可例如包含树脂材料、聚酰亚胺(polyimide)材料、丙烯酸(acrylic)材料、无机材料或另一个适合的钝化材料。保护性材料层218可具有在约1μm与约50μm之间的范围内的厚度。保护性材料层218在从约100℃至约300℃的范围内具有适合的耐酸性和适合的热稳定性。

在如以下将所述的激光损伤区域210的蚀刻期间,保护性材料层218保护电子装置214和包含第三表面206及第四表面208的玻璃基板200的侧表面。例如,在先前参照图1a~图1b所述和绘示的显示装置100的制造期间,在蚀刻激光损伤区域以提供tgv之前,可通过保护性材料层覆盖第一导线108、第二导线110、tft111和玻璃基板102的侧表面117、118、119及120,然后所述激光损伤区域被填充以提供第一金属化tgv104和第二金属化tgv106。通过保护玻璃基板200的侧表面,防止侧表面的横向蚀刻,因此维持用于无边框(bezel-less)显示器(如利用microled的显示器)的侧表面附近的电子装置214的品质。

图5b示意描绘在电子装置214和玻璃基板200上方施加保护性材料层218之后的子组件的另一个实例。此实例类似于图5a中绘示的实例,除了在此实例中,保护性材料层214还沉积在玻璃基板200的第二表面204上方。在某些示例性实施方式中,在沉积工艺期间使用遮罩工艺以产生开口220,在玻璃基板200的第二表面204处暴露出激光损伤区域210。在另一个实例中,在沉积工艺之后去除激光损伤区域210下方的保护性材料以产生开口220。

图6示意描绘图5a的子组件在形成tgv222之后的示例性实施方式。蚀刻激光损伤区域210以提供tgv222。在某些示例性实施方式中,湿式蚀刻(例如,酸浴)用于蚀刻激光损伤区域210。湿式蚀刻可例如包含氟化氢与硝酸的溶液(例如,20%hf+10%hno3的体积水溶液)。可基于蚀刻浴的温度和浓度来调节蚀刻速率。蚀刻参数(例如,酸浓度、蚀刻剂配方、蚀刻持续时间、溶液的温度)决定tgv222的直径及形状。在此实例中,选择蚀刻参数以提供实质上圆柱形的tgv222。tgv222可例如具有约25μm与约100μm之间的直径。在其他实例中,可使用喷蚀刻(sprayetch)或干式蚀刻来蚀刻激光损伤区域210。

图7示意描绘图6的子组件在tgv222金属化之后的示例性实施方式。将tgv222金属化以提供从玻璃基板200的第一表面202延伸至玻璃基板200的第二表面204的金属化tgv224。金属化tgv224提供耦合至电子装置214的电信号路径(例如,电触点)。在某些示例性实施方式中,通过使用金属有机化学气相沉积(mocvd)沉积共形铜种晶层来准备tgv电镀,来将tgv222金属化。例如,种晶层可在整个tgv222中沉积至约0.75μm的厚度。然后可使用cu的电镀来完全填充tgv222以提供金属化tgv224。在其他实例中,tgv222可经由电镀或另一个适合的工艺来填充除cu以外的导电材料。

图8示意描绘图7的子组件在玻璃基板200的第二表面204上形成电子装置226之后的示例性实施方式。电子装置226可例如包含将金属化tgv224彼此电耦合的导线、薄膜电子电路或其他适合的电子装置。在其他实例中,可排除电子装置226。

图9示意描绘图8的子组件在去除保护性材料层218之后的示例性实施方式。例如,可使用蚀刻工艺或另一个适合的工艺去除保护性材料层218,以暴露出电子装置214和包含玻璃基板200的第三表面206及第四表面208的玻璃基板200的侧表面。在某些示例性实施方式中,图9的子组件可用作电子装置的玻璃部件,如中介层。在另一个实例中,光源可电耦合至每个电子装置214,并且每个金属化tgv224可电耦合至控制板以提供显示装置,如图1a~图1b的显示装置100。

对于本领域技术人员而言将为显而易见的是,可在不脱离本公开案的精神和范围的情况下对本公开案的实施方式进行各种修改和变化。因此,预期本公开案涵盖上述修改和变化,只要上述修改和变化在所附权利要求书及其均等物的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1