低损耗功率铁氧体及制造方法与流程

文档序号:25329403发布日期:2021-06-04 18:04阅读:116来源:国知局
低损耗功率铁氧体及制造方法


背景技术:

1.本公开一般地涉及制造用于电力应用的低损耗复合材料的方法、通过所述方法制造的低损耗复合材料、以及包含所述低损耗复合材料的制品。
2.数十年来一直期望用于电力应用的低损耗和小尺寸铁氧体组件。随着电力电子设备当前的快速发展,特别是宽带隙装置的应用,迫切需要用于高频应用的低损耗铁氧体材料。
3.已经进行了许多尝试以降低电力铁氧体材料的功率损耗密度。这些尝中的大部分涉及通过将非磁性(例如,顺磁性、反磁性或反铁磁性)绝缘材料添加到铁氧体基体中来增加电阻率。然而,使用非磁性材料的缺点是材料的磁导率和饱和磁通密度显著降低。
4.本领域需要用于电力应用的具有在高工作频率(50khz至10mhz)下的低损耗、高磁导率、和高饱和的铁氧体材料,以及制造这样的铁氧体材料的成本有效且灵活的方法。


技术实现要素:

5.本文公开了用于制造多相铁氧体组合物的方法,所述方法包括:将以下组合以形成铁氧体混合物:mnzn铁氧体颗粒;0.01重量百分比至10重量百分比微米级夹杂物(inclusion)颗粒,所述微米级夹杂物颗粒包括正铁氧体rfeo3(其中r为稀土离子,优选地r为y、ho、er、gd、或lu),钇铁石榴石(yig),或其组合;以及任选的0.01重量百分比至5重量百分比添加剂,其中重量百分比基于铁氧体混合物的总重量,其中微米级夹杂物颗粒的平均颗粒尺寸(d50)为0.1微米至5微米,优选地0.15微米至2微米,或1微米至5微米,以及其中微米级夹杂物颗粒的d50小于mnzn铁氧体颗粒的平均颗粒尺寸(d50);使包含铁氧体混合物和粘结剂溶液的浆料粒化以获得50微米至750微米,优选地100微米至500微米的颗粒体;将颗粒体压制以形成生坯;以及在0.01%至20%氧气中对生坯进行烧结以形成多相铁氧体组合物c。
6.还公开了多相铁氧体组合物,所述多相铁氧体组合物包含:由mnzn铁氧体基体组成的主相;和0.01重量百分比至10重量百分比微米级夹杂物颗粒,所述微米级夹杂物颗粒包括正铁氧体rfeo3(其中r为稀土离子,优选地r为y、ho、er、gd、或lu)、钇铁石榴石(yig)、或其组合,其中微米级夹杂物颗粒的平均颗粒尺寸(d50)为0.1微米至5微米,优选地0.15微米至2微米或1微米至5微米,以及其中微米级夹杂物颗粒的d50小于mnzn铁氧体颗粒的平均颗粒尺寸(d50);以及任选的0.01重量百分比至5重量百分比添加剂;其中重量百分比基于多相铁氧体组合物的总重量。
7.上述和其他特征通过以下详细描述例示。
具体实施方式
8.本发明人已开发了包含引入到mnzn铁氧体基体中的亚铁磁性电介质或弱铁磁性电介质的微米级夹杂物的多相铁氧体组合物,以及制造该多相铁氧体组合物的方法。该多相铁氧体组合物具有增加的电阻率同时保持高磁导率和饱和磁化强度。夹杂物在保持、或
甚至增加多相铁氧体组合物的磁导率的同时降低功率损耗密度。该多相铁氧体组合物特别适用于在高工作频率例如50千赫兹(khz)至10兆赫兹(mhz)下的电力应用。
9.如上所述,多相铁氧体组合物包含由mnzn铁氧体基体组成的主相,引入在mnzn铁氧体基体中的在室温下为亚铁磁性或弱铁磁性的介电材料的微米级夹杂物颗粒。微米级夹杂物颗粒可以位于mnzn铁氧体的晶界处或晶粒内。任选地,多相铁氧体组合物还包含添加剂组成。多相铁氧体组合物在50khz至10mhz的工作频率下表现出超低的功率损耗,同时保持高的磁导率和高的磁通密度。例如,多相铁氧体组合物可以具有在200khz,100mt下的50mw/cm3至150mw/cm3的功率损耗(pv);1000至3500的磁导率;和/或至少450mt至500mt的磁通密度。
10.mnzn铁氧体基体为式mn1‑
x
zn
x
fe
2+y
o4的mnzn铁氧体,其中x=0.1至0.9,以及y=0至0.4,任选地包含掺杂剂。mnzn铁氧体掺杂剂可以为co、ni、ti、zr、sn、si、v、ta、nb、ca、或其组合。精心选择mnzn铁氧体以提供在预期用途的工作频率下具有期望特性例如磁导率的基体。
11.任选地掺杂的mnzn铁氧体可以以粉末形式或颗粒形式商购获得。或者,任选地掺杂的mnzn铁氧体可以通过任何合适的方法来合成。
12.用于合成mnzn铁氧体的示例性方法包括:将合适的量的mno、zno、fe2o3、和任选地掺杂剂源混合;将氧化物的混合物煅烧;以及将煅烧产物减小至期望的颗粒尺寸。掺杂剂源可以为coo、nio、cao、sio2、tio2、zro2、sno2、v2o5、nb2o5、ta2o5、或其组合。掺杂剂源的合适的量是在mnzn铁氧体中提供期望的掺杂程度的量,例如0.005重量百分比至15重量百分比、0.005重量百分比至8重量百分比、0.005重量百分比至5重量百分比、0.01重量百分比至5重量百分比、0.05重量百分比至5重量百分比、或0.1重量百分比至5重量百分比的掺杂水平,其中重量百分比基于所有源化合物的总重量。氧化物的混合物的煅烧可以在空气或其他合适的气氛中进行。温度可以为600℃至1500℃,优选地800℃至1300℃。进行氧化物的混合物的煅烧适合于由混合物产生任选地掺杂的mnzn铁氧体的时间段,例如1小时至12小时、或2小时至10小时的时段。煅烧产物的颗粒尺寸的减小可以通过任何合适的方法来进行。例如煅烧产物可以被压碎和/或经历研磨,以及任选地筛分。为了制造多相铁氧体组合物,任选地掺杂的mnzn铁氧体的最终平均颗粒尺寸应当大于微米级夹杂物颗粒的平均颗粒尺寸,例如,可以为0.5微米至10微米、或0.5微米至2微米、或1微米至5微米、或5微米至10微米。
13.在本文中,“颗粒尺寸”意指体积分布颗粒尺寸。术语“平均颗粒尺寸”或“d50”是指在50%的颗粒具有小于该值的体积分布颗粒尺寸时的体积分布颗粒尺寸值。颗粒尺寸可以通过沉降图法、激光衍射、或等同方法来确定。在某些实施方案中,颗粒尺寸通过激光衍射,例如用horiba la

960激光颗粒尺寸分析仪来确定。
14.精心选择微米级夹杂物颗粒以提供在多相铁氧体组合物的预期用途的工作频率下具有期望特性例如磁导率的多相铁氧体组合物。微米级夹杂物颗粒可以为正铁氧体rfeo3,其中r为稀土离子;y3fe5o
12
(钇铁石榴石,“yig”);或其组合。优选地,正铁氧体中的r为y、ho、er、gd、或lu,更优选地r为y、ho、或er。
15.稀土正铁氧体的特有的特征是存在两种磁性子系统,r
3+
和fe
3+
。不受理论的束缚,认为fe

fe、r

fe和r

r相互作用的竞争导致这些材料中一些有趣的现象。相应的自旋排列是倾斜的反铁磁性结构,所述倾斜的反铁磁性结构具有沿c(c//z)晶轴定向的小的总铁磁
矩和沿a(a//x)晶轴定向的反铁磁性矢量。稀土离子保持顺磁性,但是在铁离子子系统的分子场中产生磁矩。
16.钇铁石榴石是具有磁特性和磁电特性的铁氧体材料,其适合光学装置和微波通信组件中的各种应用,特别是高频应用。yig的立方晶体结构包括三个子晶格:分别由三个钇离子、两个铁离子、和三个铁离子占据的十二面体(c)位置、八面体(a)位置、和四面体(d)位置。不受理论的束缚,认为yig结构的磁行为由a

位置和d

位置中的具有反平行排列的铁离子之间的超交换相互作用而引起,这由于d

位置中过剩的铁离子而产生磁矩。
17.微米级夹杂物颗粒还可以包含掺杂剂。经掺杂的rfeo3中的掺杂剂的实例包括zr、ti、及其组合。经掺杂的yig中的掺杂剂的实例包括ce、ca、v、mn、gd、al、in、及其组合。基于多相铁氧体组合物的总重量,微米级夹杂物颗粒可以以0.005重量百分比至15重量百分比、或0.01重量百分比至10重量百分比、或0.01重量百分比至5重量百分比的量存在于多相铁氧体组合物中。在本文中,“微米级”意指颗粒的基于体积的平均颗粒尺寸(d50)为至少0.1微米、或至少0.15微米、或至少0.25微米、或至少0.5微米但不大于10微米、或不大于5微米、或不大于2微米。微米级夹杂物颗粒的d50应小于mnzn铁氧体颗粒的d50。
18.微米级夹杂物颗粒可以以粉末形式或颗粒形式商购获得。或者,微米级夹杂物颗粒可以通过任何合适的方法来合成。
19.用于合成任选地掺杂的微米级夹杂物颗粒的示例性方法包括:将合适的量的稀土离子的源化合物(例如稀土氧化物)、和fe2o3、以及任选地掺杂剂源混合;将氧化物的混合物煅烧;以及将煅烧产物减小至期望的颗粒尺寸。掺杂剂源的实例包括tio2、zro2、sno2、gd2o3、in2o3、al2o3、及其组合。掺杂剂源的合适的量是在正铁氧体或yig中提供期望的掺杂程度的量,例如0.005重量百分比至8重量百分比、0.005重量百分比至5重量百分比、0.01重量百分比至5重量百分比、0.05重量百分比至5重量百分比、或0.1重量百分比至5重量百分比的掺杂水平,其中重量百分比基于所有源化合物的总重量。氧化物的混合物的煅烧可以在空气或其他合适的气氛,例如20%至100%氧气中进行。温度可以为600℃至2000℃、700℃至1700℃、或800℃至1500℃。进行氧化物的混合物的煅烧适合于由混合物产生任选地掺杂的夹杂物颗粒的时间段,例如1小时至12小时、或2小时至10小时、或3小时至8小时的时段。减小煅烧产物的颗粒尺寸可以通过任何合适的方法来进行。例如煅烧产物可以被压碎和/或经历研磨。减小煅烧产物的颗粒尺寸可以在磨碎机、轧机、交叉打磨机(cross

beat mill)等中进行。为了制造多相铁氧体组合物,任选地掺杂的微米级夹杂物颗粒的最终平均颗粒尺寸可以为0.1微米至10微米、或0.1微米至5微米、或0.15微米至2微米、或1微米至5微米,条件是任选地掺杂的微米级夹杂物颗粒的平均颗粒尺寸小于mnzn铁氧体颗粒的平均颗粒尺寸。
20.例如,为了合成经掺杂的正铁氧体yfeo3,可以将化学计量的y2o3和fe2o3,以及掺杂剂源例如tio2和/或zro2混合。然后将氧化物的混合物在1000℃至1200℃的温度下煅烧。将煅烧产物的颗粒尺寸减小至期望的颗粒尺寸。
21.例如,为了合成经掺杂的yig,可以将化学计量的y2o3和fe2o3,以及掺杂剂源例如ce2o3、cao、v2o5、mno、gd2o3、in2o3、和/或al2o3混合。可以将氧化物的混合物在1200℃至1500℃的温度下煅烧;然后可以将煅烧产物的颗粒尺寸减小至期望的颗粒尺寸。
22.多相铁氧体中任选地存在的添加剂可以为cao、sio2、tio2、zro2、sno2、v2o5、nb2o5、
ta2o5、coo、bi2o3、moo3、或其组合。基于多相铁氧体组合物的总重量,添加剂可以以0.01重量百分比至5重量百分比存在于多相铁氧体中。精心选择添加剂以在多相铁氧体组合物的预期用途的工作频率下提供具有期望的特性(例如显微组织或改善的功率损耗特性)的多相铁氧体组合物。
23.用于制造多相铁氧体组合物的方法包括:将以下组合以形成铁氧体混合物:mnzn铁氧体颗粒;平均颗粒尺寸(d50)小于mnzn铁氧体颗粒的d50的微米级夹杂物颗粒;和任选地添加剂;使包含铁氧体混合物和粘结剂溶液的浆料粒化以获得50微米至750微米,优选地100微米至500微米的颗粒体;将颗粒体压制以形成生坯;以及对生坯进行烧结。烧结可以例如,在0.01%至20%氧气中在1000℃至1500℃的温度下进行以形成多相铁氧体组合物,优选地温度为1100℃至1350℃。在一些实施方案中,将夹杂物颗粒、和任选地添加剂与mnzn铁氧体颗粒混合,然后将混合物研磨以获得选定颗粒尺寸的mnzn铁氧体颗粒。
24.粘结剂溶液可以以3重量百分比至20重量百分比、或5重量百分比至15重量百分比的量添加至铁氧体混合物中以形成浆料,其中重量百分比基于浆料的总重量。粘结剂溶液可以为4重量百分比至6重量百分比聚乙烯醇或聚乙烯醇缩丁醛等的水溶液。
25.使浆料粒化可以使用任何合适的方法,例如通过使用热喷雾干燥器系统来进行,用于实现合适尺寸的颗粒体。在某些实施方案中,颗粒体的尺寸为50微米至750微米、或100微米至500微米。
26.将颗粒体压制以形成生坯在0.3公吨/cm2至4公吨/cm2,优选地0.5公吨/cm2至3公吨/cm2下进行。
27.可以将生坯模制成许多不同的几何形状。在一些实施方案中,使生坯成形为芯组件。芯组件的实例包括环形、板、盘、e

芯、和ei

芯。
28.对生坯进行烧结可以在包含0.01%至20%氧气的氮气或空气气氛中进行。烧结温度可以为1000℃至1500℃,优选地温度为1100℃至1350℃。停留时间可以为1小时至12小时、或2小时至10小时、或3小时至8小时。将烧结产物冷却至室温(25℃)可以在受控的气氛中进行。例如,在冷却期间,可以将氧分压控制在0.005%至8%、或0.01%至5%的范围内。在加热和冷却阶段期间,期望的气氛条件中的低的氧分压可以通过气氛中的氮气的流量(例如0.5升/分钟至5升/分钟氮气、或1升/分钟至3升/分钟氮气的流量)来控制。可以选择合适的加热和冷却速率以获得具有期望的特性的产物。
29.可以根据需要将烧结体进一步加工以满足各种应用要求。
30.制品可以包含多相铁氧体组合物。制品的实例包括变压器;电子装置;电感器;电力电子装置;功率转换器;电感器装置;天线;发射和接收模块(transmit and receive module,trm);电子扫描相控阵(electronically scanned phased array,espa)系统;电子战(electronic warfare,ew)系统;抗电磁干扰材料;具有开关模式电源(switched mode power supply,smps)调节组件的通信装置;磁性汇流条,例如用于无线充电;nfc屏蔽材料;或电子带隙超材料。在一些实施方案中,制品为微波装置,例如天线或电感器。制品可以用于微波吸收或微波屏蔽应用。在一些实施方案中,制品为天线,例如贴片天线、倒f天线、或平面倒f天线。
31.制造的材料的化学组成和相纯度可以利用技术例如x射线衍射(xrd)来确定。可以使用能量色散x射线光谱法来确定烧结产物的化学计量。可以使用扫描电子显微镜(sem)进
行形态的确定。可以使用合适的方法和仪器工具来确定包括功率损耗、复磁导率、电阻抗和电阻率的磁特性和电特性。例如,功率损耗可以通过b

h分析仪、功率计、或其他等同的测量系统来确定;复磁导率和电阻抗可以通过阻抗分析仪或等同物来确定;以及电阻率可以通过兆欧计或等同物来确定。
32.以下实施例仅是本文公开的多相铁氧体组合物和制造方法的举例说明,而不旨在限制其范围。
33.预示的实施例
34.mnzn铁氧体的制备
35.通过常规的陶瓷加工方法来制备(mn
0.69
zn
0.20
)fe
2.11
o4尖晶石型铁氧体。将fe2o3(纯度99.95%)、mn3o4(纯度97%,其中剩余部分mno)、和zno(纯度99.99%)的高纯度原料氧化物以标称比例组合,研磨,干燥,并在空气中在900℃下煅烧4小时。将经煅烧的mnzn铁氧体压碎并研磨至2微米的平均颗粒尺寸。使用la

960激光颗粒尺寸分析仪(horiba)将颗粒尺寸确定为体积分布颗粒尺寸。
36.多相铁氧体制备
37.通过将平均颗粒尺寸0.75微米的yig微米级夹杂物颗粒与mnzn铁氧体混合来制备一系列的多相铁氧体样品。向混合物中添加聚乙烯醇至5重量百分比的浓度,其中重量百分比基于组合物的总重量,粒化,然后在压力下压制以形成环形生坯。将生坯在5%的氧分压(po2)下在1200℃下烧结4小时,在2l/分钟的n2气流中冷却至室温。
38.磁特性和电特性的测量
39.测量所有试样的磁特性和电特性,包括功率损耗、复磁导率、和电阻抗。
40.多相铁氧体组合物具有以下优点:在50khz至10mhz的工作频率下表现出超低功率损耗同时保持高磁导率和高磁通密度,并且特别适用于在高工作频率,例如在50千赫兹(khz)至10兆赫兹(mhz)下的电力应用。多相铁氧体组合物具有在200khz,100毫特斯拉(mt)下的50毫瓦/厘米3(mw/cm3)至100毫瓦/厘米3的pv;1000至3500的磁导率;和>500mt的饱和磁通密度。
41.通过非限制性的以下方面进一步举例说明本文公开的多相铁氧体组合物和用于制造多相铁氧体组合物的方法。
42.方面1.一种用于制造多相铁氧体组合物的方法,包括:将以下组合以形成铁氧体混合物:mnzn铁氧体颗粒;0.01重量百分比至10重量百分比微米级夹杂物颗粒,所述微米级夹杂物颗粒包括正铁氧体rfeo3(其中r为稀土离子,优选地r为y、ho、er、gd、或lu,更优选地r为y、ho、或er),钇铁石榴石(yig),或其组合;以及任选地0.01重量百分比至5重量百分比添加剂,其中重量百分比基于所述铁氧体混合物的总重量,其中所述微米级夹杂物颗粒的平均颗粒尺寸(d50)为0.1微米至5微米,优选地0.15微米至2微米或1微米至5微米,以及其中所述微米级夹杂物颗粒的d50小于所述mnzn铁氧体颗粒的平均颗粒尺寸(d50);使包含所述铁氧体混合物和粘结剂溶液的浆料粒化以获得50微米至750微米,优选地100微米至500微米的颗粒体;将所述颗粒体压制以形成生坯;在0.01%至20%氧气中对所述生坯进行烧结以形成多相铁氧体组合物。
43.方面2.根据方面1所述的方法,其中所述mnzn铁氧体颗粒包含mn1‑
x
zn
x
fe
2+y
o4,其中x=0.1至0.9,以及y=0至0.4;以及任选地掺杂剂。
44.方面3.根据方面2所述的方法,其中所述掺杂剂包括co、ni、ti、zr、sn、si、v、ta、nb、ca、或其组合。
45.方面4.根据方面1至3中任一项所述的方法,其中所述微米级夹杂物颗粒还包含掺杂剂。
46.方面5.根据方面4所述的方法,其中所述微米级夹杂物颗粒包括正铁氧体以及所述掺杂剂包括zr、ti、或其组合;或者其中所述微米级夹杂物颗粒包括yig以及所述掺杂剂包括ce、ca、v、mn、gd、al、in、或其组合。
47.方面6.根据方面1至5中任一项所述的方法,其中所述微米级夹杂物颗粒包括yfeo3、yig、或其组合。
48.方面7.根据方面1至6中任一项所述的方法,其中所述任选地添加剂为cao、sio2、tio2、zro2、sno2、v2o5、nb2o5、ta2o5、coo、或其组合。
49.方面8.根据方面1至7中任一项所述的方法,其中所述mnzn铁氧体颗粒的平均颗粒尺寸(d50)为0.5微米至10微米,优选地0.5微米至2微米,或1微米至5微米,或5微米至10微米。
50.方面9.根据方面1至8中任一项所述的方法,还包括将所述铁氧体混合物研磨以获得平均颗粒尺寸(d50)为0.5微米至10微米,优选地0.5微米至2微米,或1微米至5微米,或5微米至10微米的mnzn铁氧体颗粒;合成所述mnzn铁氧体颗粒;合成所述微米级夹杂物颗粒;或者使经烧结的生坯冷却以获得所述多相铁氧体组合物。
51.方面10.根据方面1至9中任一项所述的方法,其中所述粘结剂溶液包含聚乙烯醇(pva)或聚乙烯醇缩丁醛(pvb),优选地基于所述粘结剂溶液的总重量,所述粘结剂溶液以4重量百分比至6重量百分比的浓度包含pva或pvb。
52.方面11.根据方面1至10中任一项所述的方法,其中通过将所述浆料喷雾干燥来进行粒化。
53.方面12.根据方面1至11中任一项所述的方法,其中将所述颗粒体压制以形成生坯在0.3公吨/cm2至4公吨/cm2,优选地0.5公吨/cm2至3公吨/cm2下进行。
54.方面13.一种通过根据方面1至12中任一项所述的方法制造的多相铁氧体组合物。
55.方面14.一种多相铁氧体组合物,包含:由mnzn铁氧体基体组成的主相;和0.01重量百分比至10重量百分比微米级夹杂物颗粒,所述微米级夹杂物颗粒包括正铁氧体rfeo3(其中r为稀土离子,优选地r为y、ho、er、gd、或lu,更优选地r为y、ho、或er)、钇铁石榴石(yig)、或其组合,其中所述微米级夹杂物颗粒的平均颗粒尺寸(d50)为0.1微米至5微米,优选地0.15微米至2微米,或1微米至5微米,以及其中所述微米级夹杂物颗粒的d50小于所述mnzn铁氧体颗粒的平均颗粒尺寸(d50);以及任选地0.01重量百分比至5重量百分比添加剂;其中重量百分比基于所述多相铁氧体组合物的总重量。
56.方面15.根据方面14所述的多相铁氧体组合物,其中所述mnzn铁氧体基体包含mn1‑
x
zn
x
fe
2+y
o4,其中x=0.1至0.9,以及y=0至0.4;以及任选地掺杂剂。
57.方面16.根据方面15所述的多相铁氧体组合物,其中所述掺杂剂包括co、ni、ti、zr、sn、si、v、ta、nb、ca、或其组合。
58.方面17.根据方面14至16中任一项所述的多相铁氧体组合物,其中所述微米级夹杂物颗粒还包含掺杂剂。
59.方面18.根据方面17所述的多相铁氧体组合物,其中所述微米级夹杂物颗粒包括正铁氧体以及所述掺杂剂为zr、ti、或其组合;或者其中所述微米级夹杂物颗粒包括yig以及所述掺杂剂为ce、ca、v、mn、gd、al、in、或其组合。
60.方面19.根据方面14至18中任一项所述的多相铁氧体组合物,其中所述微米级夹杂物颗粒包括yfeo3、yig、或其组合。
61.方面20.根据方面14至19中任一项所述的多相铁氧体组合物,其中所述任选地添加剂为cao、sio2、tio2、zro2、sno2、v2o5、nb2o5、ta2o5、coo、或其组合。
62.方面21.根据方面13至20中任一项所述的多相铁氧体组合物,具有在200khz,100mt下的50mw/cm3至150mw/cm3的功率损耗(pv);1000至3500的磁导率;至少450mt至500mt的磁通密度,或其组合。
63.方面22.一种制品,包含根据方面13至21中任一项所述的多相铁氧体组合物或者通过根据方面1至12中任一项所述的方法制造的多相铁氧体组合物。
64.方面23.根据方面22所述的制品,其为变压器、电子装置、电感器、电力电子装置、电力系统、电源或电力转换器。
65.通常,本文描述的组合物、制品、和方法可以替代地包括本文所公开的任何组分或步骤,由其组成,或者基本上由其组成。所述制品和方法可以另外地或替代地制造或实施成没有或者基本上不含对实现本权利要求的功能或目的不必要的任何成分、步骤或组分。
66.除非上下文另外明确规定,否则单数形式“一个”、“一种”和“该”包括复数指代物。“或”意指“和/或”。除非另外限定,否则本文使用的技术和科学术语具有与权利要求所属领域的技术人员通常理解的相同的含义。“组合”包括共混、混合、合金、反应产物等。本文中所述的值包括如由本领域普通技术人员确定的特定值的可接受的误差范围,该可接受的误差范围部分取决于该值是如何测量或确定的,即,测量系统的限制。涉及相同组分或特性的所有范围的端点包括端点和中间值,并且可独立组合。在可替代地使用的物质的列表中,“其组合”意指该组合可以包括该列表中的至少一个要素与一个或更多个未提名的相似要素的组合。此外,“至少一者”意指列表包括独立的各个要素,以及该列表中的两个或更多个要素的组合,以及该列表中的至少一个要素与未提名的相似要素的组合。
67.除非本文另有说明,否则所有测试标准为本申请的申请日之前有效的最新标准,或者,如果要求优先权,则为出现该测试标准的最早优先权申请的申请日之前有效的最新标准。除非另外限定,否则本文中使用的技术和科学术语具有与本公开所属领域的技术人员通常理解的相同的含义。
68.所有引用的专利、专利申请和其他参考文献均通过引用整体并入本文。然而,如果本申请中的术语与并入的参考文献中的术语相矛盾或冲突,则来自本申请的术语优先于来自并入的参考文献的冲突术语。
69.虽然本文根据一些实施方案和代表性实施例描述了所公开的主题,但是本领域技术人员将认识到可以在不脱离所公开的主题的范围的情况下对其进行各种修改和改进。本领域已知的附加特征同样可以并入。此外,尽管所公开的主题的一些实施方案的单独的特征可以在本文中而不是在另一些实施方案中讨论,但是应当明显的是,一些实施方案的单独的特征可以与另一个实施方案的一个或更多个特征或者来自多个实施方案的特征相组合。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1