一种使用半溶液-固相烧结法制备施主-受主复合掺杂的钛酸钡基陶瓷的方法与流程

文档序号:22552100发布日期:2020-10-17 02:29阅读:338来源:国知局
一种使用半溶液-固相烧结法制备施主-受主复合掺杂的钛酸钡基陶瓷的方法与流程

本发明涉及材料技术制备领域,尤其涉及一种使用半溶液-固相烧结法制备施主-受主复合掺杂的钛酸钡基陶瓷的方法。



背景技术:

钛酸钡陶瓷作为钙钛矿型铁电体的代表,其研究历史可追溯至二战时期。由于其具备优异的压电、铁电及热释电性能,且易于制备,钛酸钡成为电子陶瓷中使用最广泛的材料之一,被广泛使用在电容器、麦克风等工业各个领域,被誉为“现代电子陶瓷的支柱”。然而,纯钛酸钡漏电流大,需根据实际应用需求对纯钛酸钡进行改性。由于钛酸钡陶瓷固溶度高,可与多种元素形成固溶体并保持钙钛矿结构,因此在大量研究中,功能元素掺杂被广泛使用来改善钛酸钡陶瓷特性。

掺杂根据掺杂元素价态和被取代元素价态的关系可分为等价掺杂、施主掺杂和受主掺杂。由于掺杂元素与替位元素价态不一致,为了保持电荷中性,在钛酸钡陶瓷中掺杂受主元素可在晶格中引入氧空位,而掺杂施主元素可在晶格中引入钡离子空位或钛离子空位。空位的产生极大地改变了钛酸钡陶瓷的铁电特性:受主元素掺杂的钛酸钡陶瓷具有类似反铁电体的双电滞回线,施主元素掺杂的钛酸钡陶瓷呈现“软化”效应。实验结果显示同时掺杂施主和受主元素并调节比例可调控钛酸钡陶瓷的铁电特性,提高钛酸钡陶瓷的储能密度和储能效率。

现有制备钛酸钡基陶瓷的主要制备烧结方法为:

常压固相烧结法、热压烧结法、等离子烧结法、微波烧结法、溶胶-凝胶法等。

使用现有传统固相烧结法制备施主-受主共掺钛酸钡基陶瓷时,球磨、过筛等工艺难以实现掺杂元素在钛酸钡基体中的均匀分布,使得样品最大极化强度下降过多,极大限制了双掺提高钛酸钡基陶瓷储能特性的进一步提高。

为了提高掺杂元素在陶瓷基体中的分散均匀性,实验室中通常使用溶胶-凝胶法制备多元素掺杂的陶瓷试样。然而,溶胶-凝胶法所使用原材料价格昂贵,制备试样周期较长,制备工艺复杂,不适用于工业化大规模生产。

因此,本领域的技术人员致力于开发一种新的钛酸钡基陶瓷的制备方法,使得在提高最大极化强度,提高介电常数峰值同时适用于大规模生产。



技术实现要素:

有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种新的新的钛酸钡基陶瓷的制备方法,使得在提高最大极化强度,提高介电常数峰值同时适用于大规模生产。

为实现上述目的,本发明提供了一种使用半溶液-固相烧结法制备施主-受主复合掺杂的钛酸钡基陶瓷的方法,所述方法包括步骤:

s100、称量la(no3)3和mn(no3)2粉末并加入去离子水中充分溶解获得溶液;称量baco3、tio2粉末加入所述溶液中在介质中混合后球磨得到第一浆料;

s200、将所述浆料烘干后过筛,将得到的混合粉末烧结得到合成第一粉料;

s300、将所述粉料过筛后球磨后得到第二浆料;

s400、将所述第二浆料烘干过筛后加入pva胶获得粒径在60-100目之间的第二粉料,并使用压片机将所述第二粉料压成粗坯;

s500、将所述粗坯烧结得到钛酸钡基陶瓷样品。

与传统固相烧结法比,半溶液-固相烧结法能够提高掺杂元素在基体中的分散均匀性,提高双掺后钛酸钡基陶瓷的介电常数峰值、最大极化强度和储能密度,实现性能的改善。并且与溶胶-凝胶法相比,此种方法工艺简单,成本低,具有传统固相烧结法的优点,适应于工业大规模生产。

附图说明

图1(a)至图1(b)是样品自然表面sem图,其中,图1(a)是使用传统固相烧结法制备样品表面sem图,图1(b)是使用半溶液法制备样品表面sem图;

图2是本发明方法与传统固相烧结法制备的样品的介电常数随温度变化对比图;

图3是本发明方法与传统固相烧结法制备的样品的电滞回线对比图。

具体实施方式

以下参考说明书附图1(a)至附图3介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。

使用半溶液-固相烧结法制备施主-受主复合掺杂的钛酸钡基陶瓷的方,包括步骤:

s100、称量la(no3)3和mn(no3)2粉末并加入去离子水中充分溶解获得溶液;称量baco3、tio2粉末加入所述溶液中在介质中混合后球磨得到第一浆料;

s200、将所述浆料烘干后过筛,将得到的混合粉末烧结得到合成第一粉料;

s300、将所述粉料过筛后球磨后得到第二浆料;

s400、将所述第二浆料烘干过筛后加入pva胶获得粒径在60-100目之间的第二粉料,并使用压片机将所述第二粉料压成粗坯;

s500、将所述粗坯烧结得到钛酸钡基陶瓷样品。

本发明中烧结温度均是通过实验结合理论所得,烧结温度过低时,样品烧结不充分,点缺陷浓度会增大,晶格常数会随之变大,介电性能下降。烧结温度过高时,会由于晶界移动速度加快而使一些晶粒的生长速率明显高于其他晶粒,在样品中出现过烧现象,导致晶粒与晶界间相互作用出现异常,介电性能下降,并且出现介电常数随温度升高而变小的情况。同样的,球磨时间的范围选择是为了确保球磨的充分,使得物料达到实验所需要的目数;烧结时间的范围选择是为了确保烧结充分,烧结时间短了烧结不充分,过长则晶粒会生长过大,导致材料致密度下降,击穿性能显著下降。

步骤s400的粒径确定范围要求在烧结温度下能致密烧结(95%理论密度)。粒径较大时,表面能低,烧结不致密。粒径小时影响烧结效率,烧结不均匀,部分样品不能致密化并且容易形成二次相。

其中,本文所提到的施主、受主元素不限于本文所提的nb、mn元素,还可是la、co等。

与传统固相烧结法比,半溶液-固相烧结法能够提高掺杂元素在基体中的分散均匀性,提高双掺后钛酸钡基陶瓷的介电常数峰值、最大极化强度和储能密度,实现性能的改善。并且与溶胶-凝胶法相比,此种方法工艺简单,成本低,具有传统固相烧结法的优点,适应于工业大规模生产。

在一个较佳的实施例中,步骤s100中所述介质为酒精,所述球磨的时间为4-5h。

在一个较佳的实施例中,步骤s200中所述烧结温度为1100-1200℃。

在一个较佳的实施例中,步骤s300中所述球磨的时间为8-10h。

在一个较佳的实施例中,步骤s500还包括:将所述粗坯置于烧结炉中,以80-100℃/h的升温速率升温至1350-1450℃下烧结8-10小时,得到钛酸钡基陶瓷样品。

以下通过几个具体的实施例来介绍本发明的具体实施方式。

实施例1

s100、称量la(no3)3和mn(no3)2粉末并加入去离子水中充分溶解获得溶液;称量baco3、tio2粉末加入所述溶液中在介质中混合后球磨得到第一浆料;

s200、将第一浆料烘干后过筛,将得到的混合粉末在1100℃烧结得到合成第一粉料;

s300、将第一粉料过筛后球磨8小时得到第二浆料;

s400、将第二浆料烘干过筛后加入pva胶获得粒径在60-100目之间的第二粉料,并使用压片机将所述第二粉料压成粗坯;

s500、将粗坯置于烧结炉中,以80℃/h的升温速率升温至1350℃下烧结10小时,得到钛酸钡基陶瓷样品。

实施例2

s100、称量la(no3)3和mn(no3)2粉末并加入去离子水中充分溶解获得溶液;称量baco3、tio2粉末加入所述溶液中在介质中混合后球磨得到第一浆料;

s200、将第一浆料烘干后过筛,将得到的混合粉末在1150℃烧结得到合成第一粉料;

s300、将第一粉料过筛后球磨9小时得到第二浆料;

s400、将第二浆料烘干过筛后加入pva胶获得粒径在60-100目之间的第二粉料,并使用压片机将所述第二粉料压成粗坯;

s500、将粗坯置于烧结炉中,以90℃/h的升温速率升温至1400℃下烧结9小时,得到钛酸钡基陶瓷样品。

实施例3

s100、称量la(no3)3和mn(no3)2粉末并加入去离子水中充分溶解获得溶液;称量baco3、tio2粉末加入所述溶液中在介质中混合后球磨得到第一浆料;

s200、将第一浆料烘干后过筛,将得到的混合粉末在1200℃烧结得到合成第一粉料;

s300、将第一粉料过筛后球磨10小时得到第二浆料;

s400、将第二浆料烘干过筛后加入pva胶获得粒径在60-100目之间的第二粉料,并使用压片机将所述第二粉料压成粗坯;

s500、将粗坯置于烧结炉中,以100℃/h的升温速率升温至1450℃下烧结10小时,得到钛酸钡基陶瓷样品。

图1(a)至图1(b)是样品自然表面sem图,其中,图1(a)是使用传统固相烧结法制备样品表面sem图,图1(b)是使用半溶液法制备样品表面sem图;从中可以看到,本发明的方法制备的受主-施主复合掺杂的钛酸钡陶瓷与传统固相烧结法制备的陶瓷相比,在相同烧结温度条件下,平均尺寸更大,晶粒生长更加充分,致密度更高,气孔更少。

图2是本发明方法与传统固相烧结法制备的样品的介电常数随温度变化对比图,从图中对比可以看出,本发明的方法制备的受主-施主复合掺杂的钛酸钡陶瓷与传统固相烧结法制备的陶瓷相比,具有更高介电常数和更高的最大极化强度,同时时效(本文采取时效条件为常温下放置一天)后依然呈现双电滞回线,如图3本发明方法与传统固相烧结法制备的样品的电滞回线对比图所示。在7kv/mm的电场作用下,其储能密度达到0.47j/cm3,较传统固相烧结法制备的陶瓷储能密度上升10%。

如何证明元素分布更加均匀:在高施主浓度样品中使用传统固相烧结法制备的样品时效后仍具有类似反铁电体的双电滞回线,这表明施主受主在钛酸钡基体中分布不均。受主元素较多的区域产生大量氧空位,时效后产生缺陷偶极矩,导致双电滞回线。而在半溶液法制备样品中,施主、受主充分混合,电荷中和,未产生可形成缺陷偶极矩的氧空位,因此时效后仍保持正常的电滞回线形状。这是掺杂元素在基体中分散均匀的有力证据,其中,施主受主掺杂浓度一致时为高施主浓度样品,施主比受主掺杂浓度小时为低施主浓度样品。本文中受主掺杂浓度为1.0%,低施主掺杂样品的施主掺杂浓度为0.5%,高施主掺杂浓度样品的施主浓度为1.0%。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1