陶瓷元件和用于制造陶瓷元件的方法与流程

文档序号:27946552发布日期:2021-12-11 14:19阅读:164来源:国知局
陶瓷元件和用于制造陶瓷元件的方法与流程
陶瓷元件和用于制造陶瓷元件的方法
1.本发明涉及一种陶瓷元件,其包括陶瓷基体,该陶瓷基体具有陶瓷材料。此外,本发明涉及一种用于制造所述陶瓷元件的方法。
2.陶瓷元件是广泛用于电子元件的部件。由于对电子部件的小型化和性能的要求不断提高,必须提供越来越小的陶瓷部件。但是,基于传统陶瓷材料的陶瓷元件的部件尺寸的减小会对陶瓷元件的尤其是电性能产生负面影响。因此,例如,基于传统陶瓷材料的电容器的尺寸减小会导致对电容器内的静电放电(electrostatic discharge,esd)的敏感性增加。由于esd,电容器可能变得不可用。
3.根据迄今为止的现有技术的陶瓷部件的第一个实例可在出版物de 11 2012 000 669 t5 中找到。
4.de 11 2012 000 669 t5描述了一种具有变阻器功能的层叠型半导体陶瓷电容器及其制造方法。具体公开了一种用于变阻器功能的基于srtio3的晶界绝缘型半导体陶瓷。对于一个实施方式,de 11 2012 000 669 t5公开了将掺杂剂添加到相应的半导体陶瓷中,所述掺杂剂尤其选自镧、钕、铌和钽。
5.根据迄今为止的现有技术的陶瓷部件的第二个实例可在出版物fr 2 799 301 b1中找到。
6.fr 2 799 301 b1描述了一种非线性电阻,所述电阻能够用于保护电网防止过电压,以及描述了一种用于制造所述电阻的方法。fr 2 799 301 b1公开了,该非线性电阻具有氧化锌作为主要组分,并且在非线性电阻体的侧面形成高电阻层。fr 2 799 301 b1此外公开了可以给该非线性电阻添加焦磷酸锰。
7.因此,本发明的目的是提供一种陶瓷元件,该陶瓷元件包括陶瓷基体,该陶瓷基体包含改进的陶瓷材料作为主要组分。此外,本发明的目的是提供一种用于制造该陶瓷元件的方法。
8.所述目的通过根据权利要求1的陶瓷元件得以实现。该陶瓷元件的其它实施方式和用于制造该陶瓷元件的方法可由其它权利要求获悉。
9.提供一种具有陶瓷基体的陶瓷元件,其中所述陶瓷基体包含具有通用经验式a
x
b
y
c1‑
x

v
ti1‑
y+w
o
3 * (mn2p2o7)
z * d
u
的陶瓷材料作为主要成分。在该通用经验式中,a为第一掺杂,其选自包括钕、镨、铈和镧的第一金属的组。此外,b为第二掺杂,其选自包括铌、钽和钒的第二金属的组。此外,c为基础陶瓷材料的主要组分,其选自包括钙、锶和钡的第三金属的组。此外,d是添加剂,其包括至少一种第一化合物,所述第一化合物包含第四金属,所述第四金属选自包括铝、镍和铁的第四金属的组。此外,x是a的量比,y是b的量比,v是a空缺的量比,w是钛过量的量比,z是mn2p2o7的量比且u是d的量比。对于这些量比适用:0.0 ≤ x < 0.1,0.0 ≤ y < 0.1,0 ≤ v < 1.5*x,0 ≤ w < 0.05,0.01 ≤ z < 0.1,
0 ≤ u < 0.05。
10.在此处和在下文中,应将基础陶瓷材料理解为是指通用经验式为ctio3的基础化合物,其中c是所述基础陶瓷材料的主要组分,其选自第三金属的组。
11.此外,在此处和在下文中,应将第一金属理解为是指第一掺杂,其在所述基础陶瓷材料的晶格中占据第三金属的晶格位置。
12.此外,在此处和在下文中,应将第二掺杂理解为是指第二金属,其在所述基础陶瓷材料的晶格中占据钛的晶格位置。
13.在所述陶瓷材料的一个实施方式中,所述陶瓷材料包括基础陶瓷材料以及至少一种添加剂和经验式为mn2p2o7的焦磷酸锰,所述基础陶瓷材料包括第一掺杂和第二掺杂。
14.第一掺杂、第二掺杂和添加剂的量比也可以各自取零值。换言之,除了陶瓷基础材料之外,该陶瓷材料也可以仅包含第一掺杂或第二掺杂或添加剂。此外,除了基础陶瓷材料之外,该陶瓷材料还可以仅包含第一掺杂和添加剂或仅包含第二掺杂和添加剂。此外,该陶瓷材料可以仅包含包括第一和第二掺杂的基础陶瓷材料。在这种情况下,该陶瓷材料不包含添加剂。在所有前述的实施方式中,所述陶瓷材料以大于零的量比包含焦磷酸锰。换言之,在该陶瓷材料中始终包含焦磷酸锰。
15.此外,第一掺杂可以包括至少两种第一金属,第二掺杂可以包括至少两种第二金属并且基础陶瓷材料的主要组分可以包括至少两种第三金属。
16.此外,添加剂可以至少包含第一化合物和第二化合物,它们各自包含第四金属,其中第一化合物包含的第四金属与包含在第二化合物中的第四金属不同。换言之,第一化合物与第二化合物包含不同的第四金属。可以使用包含至少一种第四金属的金属氧化物作为第一和第二化合物。
17.优选地,所述陶瓷材料具有下表1中所示的组成之一。
18.表1
19.表1中,b1代表一种第二金属,b2代表另一种第二金属,它们包含在第二掺杂b中,其中系数y1和y2为第二掺杂b中第二金属b1和b2各自的量比。系数 y1 和 y2 的总和给出了陶瓷材料中第二掺杂的量比 y。
20.此外,c1代表一种第三金属,c2代表另一种第三金属,c3代表又一种第三金属,它们包含在基础材料的主要组分c中。 c1、c2和c3的值代表主要组分c中各自第三金属的量比,其中这些值的总和为1。
21.此外,d
1 代表一种第四金属,d
2 代表另一种第四金属,它们包含在添加剂 d 中。系数 u1 和 u2 的总和给出了陶瓷材料中添加剂的量比 u。
22.必须提及,相应于表1中所列的实施例1至7的陶瓷材料的组分的量比可以各自改变至多10%。因此,实施例1的第一掺杂的量比x例如可以不仅仅具有0.02的值。相反,x 也可以具有 0.018 至0.022的所有值。以类似的方式,各自量比的在表 1 中列出的所有其他值也可以改变至多10%。有利的量比围绕该表中给出的值改变至多 5%。例如,对于实施例1中的第一掺杂的量比x而言,这意味着x可以取0.019至0.021的所有值。
23.此外,陶瓷元件的陶瓷基体可以具有多个可以相同或不同的陶瓷层以及布置在陶瓷层之间的内电极,其中内电极包含镍作为主要成分。
24.此外,所述陶瓷元件可以形成为电容器。所述陶瓷元件尤其可以形成为多层电容器。多层电容器具有带有多个陶瓷层和布置在陶瓷层之间的内电极的陶瓷基体。内电极优选包含镍。
25.由于陶瓷材料中的焦磷酸锰,在1200
°
c或更低的相对低的烧结温度下已经能够获得致密烧结的陶瓷基体。在此处和在下文中,应将致密烧结的陶瓷基体理解为是指具有90%或更高的烧结密度的基体。
26.本发明人以焦磷酸锰是一种在还原条件下在低于1100
°
c的温度下已经一致地熔融的烧结助剂来解释焦磷酸锰的积极作用。一致地熔融意味着焦磷酸锰在所提及的熔点下完全变成液体而没有分解。这导致熔融的焦磷酸锰均匀分布在陶瓷基体中并因此导致使得该陶瓷基体非常均匀且高密实。
27.由于通过焦磷酸锰降低烧结温度,可以控制在烧结陶瓷基体时的晶粒生长,从而改善陶瓷基体的电和机械性能。
28.此外,降低的烧结温度使得能够使用含镍的内电极,因为它们在该降低的烧结温度下不会熔融。 由于镍比传统用于内电极的金属(例如金、银或钯)便宜,因此陶瓷部件的成本总体上可以保持较低。
29.由于该陶瓷材料可以是作为电容器、特别是多层电容器的一部分的陶瓷基体的主要组分,因此可以提供即使在小的电容器尺寸下也能对esd具有鲁棒性并且具有含ni内电极的多层电容器。由此,该多层电容器可靠且便宜。
30.0603 型或更小的构造形式应被视为小的电容器尺寸。此外,应将几乎不易于esd的电容器理解为是指具有0603型或更小的构造形式、具有小于10nf的电容和大于8kv的esd电压的电容器。优选地,对esd具有鲁棒性的电容器具有1nf的电容和大于20kv的esd电压。 esd 电压是我可以加载给部件不损坏部件的电压。 esd 电压越高,我可以在不损坏部件的情况下给部件加载得越高。
31.此外,本发明给出了一种用于制造陶瓷元件的方法。该方法包括以下的子步骤:
‑ꢀ
提供通用经验式为ctio3的基础陶瓷材料,其中c是所述基础陶瓷材料的主要组分,其包括第三金属,所述第三金属选自包括钙、锶、钡的第三金属的组,
‑ꢀ
将mn2p2o7、包含第一金属的第一掺杂剂和/或包含第二金属的第二掺杂剂和/或含ti化合物和/或包括至少一种包含第四金属的第一化合物的添加剂添加至所述陶瓷材料,随后混合,以获得混合物,
其中所述第一金属选自包括钕、镨、铈和镧的第一金属的组,第二金属选自包括铌、钽和钒的第二金属的组,第三金属选自包括钙、锶和钡的第三金属的组,并且第四金属选自包括铝、镍和铁的第四金属的组,
‑ꢀ
研磨所述混合物,以获得经研磨的混合物,
‑ꢀ
由所述经研磨的混合物制造陶瓷生坯薄膜,
‑ꢀ
在陶瓷生坯薄膜上施加内电极,
‑ꢀ
堆叠陶瓷生坯薄膜,以获得生坯薄膜堆叠,
‑ꢀ
压制所述生坯薄膜堆叠,以获得经压制的生坯薄膜堆叠,
‑ꢀ
切割经压制的堆叠,以获得切割的生坯部件。
32.‑ꢀ
使切割的部件脱碳,以获得脱碳的部件,
‑ꢀ
烧结脱碳的部件,以获得烧结的部件,
‑ꢀ
对烧结的部件进行回火,以获得陶瓷基体,
‑ꢀ
在陶瓷基体的外表面上施加和烘烤金属化部(metallisierungen),以获得陶瓷元件。
33.在此处和在下文中,应将包含至少一种第一金属的物质视为第一掺杂剂,所述第一金属是第一掺杂的成分。
34.在此处和在下文中,应将包含至少一种第二金属的物质视为第二掺杂剂,所述第二金属是第二掺杂的成分。
35.可以使用第一金属的至少一种氧化物作为第一掺杂剂,其中所述第一金属选自第一金属的组。
36.可以使用第二金属的至少一种氧化物作为第二掺杂剂,其中所述第二金属选自第二金属的组。
37.此外,可以将第一和/或第二掺杂剂添加至基础陶瓷材料,其中第一掺杂剂包含至少两种第一金属并且第二掺杂剂包含至少两种第二金属。换言之,第一掺杂剂包括至少一种包含至少两种不同的第一金属的组分。优选地,第一掺杂剂可以包含第一组分和第二组分,其中第一组分包含的第一金属与包含在第二组分中的第一金属不同。第二掺杂剂的情况类似,其中替代第一金属包含的是第二金属。
38.此外,基础陶瓷材料的主要组分可以包括至少两种第三金属。
39.此外,可以将至少包括铝和镍的添加剂添加至基础陶瓷材料。换言之,添加剂可以包括至少包含铝和镍的第一化合物。优选地,添加剂可以包括第一化合物和第二化合物,其中第一化合物包含镍而第二化合物包含铝,反之亦然。
40.此外,可以使用包含镍的含金属的糊剂用于施加内电极。
41.此外,脱碳的生坯薄膜堆叠可以在1200至1250
°
c的温度下并且以1至5小时的保持时间进行烧结。优选地,脱碳的生坯薄膜堆叠在1200
°
c、1250
°
c或两者之间的温度下烧结四小时在所述用于制造陶瓷元件的方法的一个优选实施方式中,脱碳的生坯薄膜堆叠可以在还原气氛中烧结。在此处和在下文中,还原气氛应是防止陶瓷材料和镍内电极特别是被空气中的氧气氧化的气氛。
42.此外,可以在空气中下进行回火以重新氧化烧结的部件。 通过该步骤可以,例如
在电容器的情况下,调整电容器的电性能,如电容器对esd的鲁棒性。
43.此外,可以在陶瓷基体上施加由玻璃制成的钝化部(passivierung)。 通过钝化部保护陶瓷基体免受外部影响,如湿度或温度波动。
44.下面借助执行实施例和所属附图更详细地描述本发明。
45.图1示出了具有陶瓷基体的陶瓷元件。
46.图中的数字和尺寸比率并非真实比例。
47.图1示出了具有陶瓷基体1的陶瓷元件,该陶瓷基体1带有内置的内电极2和两个金属化部3,这些金属化部安置在陶瓷基体1的两个相对的外表面1'上。此外,陶瓷基体1具有由玻璃制成的钝化部4。该陶瓷元件形成为多层电容器。该陶瓷基体包含经验式为la
0.2
ba
0.194
sr
0.776
ti1o
3 * (mn2p2o7)
0.01
的陶瓷材料作为主要成分,因此相应于表 1 中所示的第一实施例的组成。
48.为了制造该陶瓷基体,一个执行实施例提供经验式为ba
0.2
sr
0.8
tio3的基础陶瓷材料。将作为第一掺杂剂的氧化镧、作为含钛化合物的二氧化钛和焦磷酸锰添加至该基础陶瓷材料。基础陶瓷材料、第一掺杂剂、含钛化合物和焦磷酸锰的量比的总和为100mol%。由此得出基础化合物量比的值为 97mol

%,第一掺杂剂量比的值为 1mol

%,含钛化合物量比的值为1.5 mol

%和焦磷酸锰量比的值为 0.5mol

%。然后,将该基础陶瓷材料、第一掺杂剂、含钛化合物和焦磷酸锰彼此混合并研磨,以获得经研磨的混合物。
49.由经研磨的混合物制造陶瓷生坯薄膜,在其上借助于包含镍的含金属的糊剂施加内电极。在下一步骤中,将印制的生坯薄膜堆叠成生坯薄膜堆叠并压制,以获得经压制的生坯薄膜堆叠。然后将经压制的生坯薄膜堆叠切割,然后使切割的部件在600
°
c下脱碳并在还原气氛中在1250
°
c下烧结4小时,以获得陶瓷基体1。在进一步的步骤中,将金属化部3施加在陶瓷基体1的两个相对的外表面1'上。最后,给陶瓷基体1覆盖以由玻璃制成的钝化部4。
50.本发明不限于上述的执行实施例。特别地,所述陶瓷材料可以具有相应于表1中的实施例2至7的组成。然而,所述陶瓷材料也可以具有不同于表1中的实施例1至7中所示组成的组成,其中实施例1至7被认为是优选的。所述陶瓷材料的应用也不限于电容器。
51.附图标记列表1
ꢀꢀꢀꢀꢀ
陶瓷基体1
´ꢀꢀꢀꢀ
外表面2
ꢀꢀꢀꢀꢀ
内电极3
ꢀꢀꢀꢀꢀ
外金属化部4
ꢀꢀꢀꢀꢀ
钝化部。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1