一种碳化硅陶瓷篦条及其制备方法与流程

文档序号:30058218发布日期:2022-05-17 19:54阅读:194来源:国知局

1.本发明涉及碳化硅陶瓷耐火、耐磨材料,具体涉及一种碳化硅陶瓷篦条,碳化硅陶瓷篦条可以用于带式焙烧机球团工艺用篦条、链回环球团工艺用篦条、垃圾焚烧炉排炉用篦条等,取代价格昂贵的含铬高温耐磨合金钢,具有在1300℃长期使用不变形,提高产能、整体装备轻量化、节能降耗、性价比高,环境友好等特点。


背景技术:

2.近年来,国内大型带式焙烧机球团焙烧工艺快速发展,随着首钢 400万t及包钢500万t带式焙烧机投产,2017年带式焙烧机球团产量占比达20%左右;2019年5月,首钢京唐钢铁联合有限责任公司二期球团工程3#线400万 t/a 项目工程点火成功;2019年福建三钢闽光股份有限公司200万t球团项目、2020年防城港 400万t球团项目、河钢乐亭480万t球团项目等工程均采用带式焙烧工艺;大型带式焙烧机是近年来刚刚兴起的一种热工设备,带式焙烧球团技术未来会有很好的发展前景。
3.带式焙烧机从外形上看,和烧结机十分相似,但在设备结构上存在很大的区别。如风箱的分布和密封的要求.上部炉罩的设置和密封,风流的走向(不像烧结机那样是单一的抽风,而是既有抽风又有鼓风),布料方式,成品的排出和台车运行速度等,都不相同,特别是本体的材质更是完全不同。为了能长期安全地承受最高焙烧气体的温度(≥1300 ℃),篦条不得不采用耐高温性能极好的特殊合金钢。在国外带式焙烧机发展的过程中,曾因材质不过关而一度受挫,而使得同时正在开发的链篦机—回转窑得到了极大的发展。因为链篦机—回转窑工艺是将焙烧过程的最高温度段放在设有耐火炉衬的回转窑中进行,这样就顺利解决了在高温焙烧中的材质问题。而带式焙烧机在使用铺底铺边料和台车采用耐高温合金特殊钢的材质后才得以过关并获得大发展。
4.现有耐高温合金钢篦条含有24-28%的cr元素,属于贵金属,使用寿命一般在2年左右,常见的损毁方式为长期承受高温荷重变形,影响其功能发挥而下线,另外cr元素在空气、土壤中长期存放存在c
6+
污染问题,属于国家限制、淘汰产品类别。为了保证耐高温合金钢的使用效果,现有工业化生产的操作方式是通过在篦条上铺设一层熟料,将需要在1300℃焙烧的生料团通过已经焙烧好的熟料和耐高温合金钢隔离,将篦条真正的服役温度从1300℃降低为600-700℃。采用这种方法虽然可以在短期内实现稳定生产,从长期看,一是不能避免合金钢变形,二是降低了产能。
5.本发明的碳化硅陶瓷篦条是经1350-1450℃高温烧成,具有耐磨性好,高温强度高,长期荷重不变形等特点,可以在不铺设熟料的情况下直接和生料团接触,密度在2.60-2.75g
·
cm-3
,是耐磨合金钢的1/3,具有产量大、轻量化、蓄热少,节能降耗、环境友好等特点。


技术实现要素:

6.本发明的目的是提供一种碳化硅陶瓷篦条及其制备方法,使其能提高带式焙烧机
球团工艺用篦条、链回环球团工艺用篦条、垃圾焚烧炉排炉用篦条等使用寿命,最大限度发挥相关工艺的设计产能,减少价格昂贵且含有大量cr元素的耐高温耐磨合金钢的使用,实现相关工艺的环境友好型和节能降耗型规模化稳定生产。
7.本发明为完成上述目的采用如下技术方案:一种碳化硅陶瓷篦条,所述的碳化硅陶瓷篦条以硅粉、氧化铝微粉、二氧化硅微粉、碳化硅微粉、碳化硅颗粒为原料;硅粉和二氧化硅微粉共同氮化反应生成氮化硅和氧氮化硅;氧化铝微粉固溶到由硅粉氮化生成的氮化硅中生成β-sialon;氧化铝微粉固溶到由二氧化硅微粉和硅粉共同氮化生成的氧氮化硅中生成o-sialon;所有这些反应和结合相的生成是在1350-1450℃,氮气气氛下实现的;碳化硅陶瓷篦条以氮化硅、氧氮化硅、o-sialon、β-sialon、莫来石为结合相,碳化硅为主晶相;所述的碳化硅陶瓷篦条氮化硅、氧氮化硅、o-sialon、β
‑ꢀ
sialon、莫来石结合相的含量为10%-30%,碳化硅主晶相的含量为70%-90%。
8.所述的原料中组分的质量含量为:硅粉的质量含量为8%~15%,氧化铝微粉和二氧化硅微粉的质量含量为2%-12%,碳化硅微粉的质量含量为2%-10%,碳化硅颗粒的质量含量为65-80%。
9.所述二氧化硅微粉d
50
小于等于0.2微米,所述氧化铝微粉的d
50
小于等于2微米;所述碳化硅微粉的d
50
小于等于10微米。
10.所述二氧化硅微粉的sio2含量大于等于95%,二氧化硅微粉中杂质k2o+na2o的含量小于等于0.5%。
11.一种碳化硅陶瓷篦条的制备方法为:先把碳化硅颗粒混练均匀,再外加原料总量3~5%的结合剂、外加原料总量0.5~3.5%的溶剂混练均匀,使结合剂在碳化硅颗粒表面形成均匀的薄膜,然后加入预先混好的硅粉、二氧化硅微粉、氧化铝微粉、碳化硅微粉混合细粉混合均匀,然后压制试样,将烘干后的试样装入烧结炉中,在0.1mpa氮气气氛下,分段升温至1350℃~1450℃,并在此温度下保温6h~10h,然后用空气置换氮气,控制温度在1100-1300℃保温3h-6h,得到碳化硅陶瓷篦条;采用该方法制备的碳化硅陶瓷篦条密度在2.60-2.75 g
·
cm-3
,气孔率在8%-10%,在1300℃天然气或煤气空气燃烧情况下的长期服役温度在3年以上。
12.氮化和固溶反应完成后用空气置换氮气,并在1100-1300℃保温,消除部分残余二氧化硅和氧化铝微粉以及对碳化硅或氮化硅或氧氮化硅或β-sialon或o-sialon进行共同氧化产生的硅质氧化物和铝质氧化物以及系统可能存在的杂质玻璃相对晶界的不良影响,使其转化为耐高温的莫来石晶相,净化系统游离玻璃相,在氮化物为主的结合相系统内,预制部分含氧晶相,对氮化物结合碳化硅气孔进行封堵,最大限度屏蔽服役环境气氛对优质氮化物结合相的影响,同时消除方石英或游离氧化铝存在带来的热膨胀系数差异对体系热震稳定性带来的不利因素,实现材料结构长期高温服役条件下的稳定。
13.本发明提出的碳化硅陶瓷篦条,具备密度为2.60-2.75 g
·
cm-3
,气孔率在8%-10%的特点,这种具有低密度、低气孔率、高强度、高耐磨性等结构特点的碳化硅陶瓷篦条的制备,主要归因于以下几个方面:1.sio2微粉、al2o3微粉、sic微粉三种微粉体系的协同引入,并且通过三种不同微粉d50粒径的梯度设置,在对坯体气孔的有效物理填充方面比单一微粉效果更加明显;2、sio2微粉的增塑效果要远远优于al2o3微粉,在保证碳化硅陶瓷篦条的
成型稳定和坯体密度均一性方面更优。3.通过硅粉氮化主体系形成的氮化物赋予了结合相的高强度、高耐磨性,同时可以吸收sio2微粉和al2o3微粉在化学键上带来的si-o-al键,转化为氧氮化硅或β-sialon或o-sialon,期间伴随着si-o-n、al-o-n、si-o-al-n化学键的形成,在硅粉氮化转化为氮化硅的过程中,由于氮化的增重反应会降低坯体气孔率,al2o3在氮化硅或氧氮化硅的固溶过程中,伴随着晶格畸变,也会赋予材料更微小、更低的气孔率以及更合理的气孔孔径分布,提高耐磨性和高温强度。4.碳化硅陶瓷篦条首先通过在氮气气氛生成高强、高耐磨氮化硅、氧氮化硅、β-sialon或o-sialon复相结合相,然后在空气气氛处理形成莫来石结合相,形成氮化物和耐高温氧化物协同增强、高耐磨、高稳定性碳化硅陶瓷篦条。
14.本发明提到的一种碳化硅陶瓷篦条具有密度低、气孔率低、导热系数高、耐磨性好、高温强度高、抗热震性能好、环境友好特点,有利于提高带式焙烧机球团工艺用篦条、链回环球团工艺用篦条、垃圾焚烧炉排炉用篦条等使用寿命,最大限度发挥相关工艺的设计产能,减少价格昂贵且含有大量cr元素的耐高温耐磨合金钢的使用,实现相关工艺的环境友好型和节能降耗型规模化稳定生产。
具体实施方式
15.结合具体实施例对本发明加以详细说明:实施例1:碳化硅陶瓷篦条最终物相组成为:碳化硅比例70%,氮化硅+氧氮化硅+β-sialon+o-sialon+莫来石比例为30%。作为原料引入的si粉的引入量为15%,sic微粉(d
50
=8μm)的引入量为5%,sio2微粉(d
50
=0.2μm)的引入量为2%,al2o3微粉(d
50
=1μm)的引入量10%,0.1-1.43mmsic颗粒的引入量为68%。结合剂为水溶性氨基树脂,制品的显气孔率为8.0%,体积密度为2.75g/cm3,常温抗折强度55.0mpa,1300℃高温抗折强度60.0mpa,耐磨性为2.5cm3。
16.实施例2:碳化硅陶瓷篦条最终物相组成为:碳化硅比例80%,氮化硅+氧氮化硅+β-sialon+o-sialon+莫来石比例为20%。作为原料引入的si粉的引入量为12%,sic微粉(d
50
=8μm)的引入量为5%,sio2微粉(d
50
=0.2μm)的引入量为0.5%,al2o3微粉(d
50
=1μm)的引入量5%,0.1-1.43mmsic颗粒的引入量为77.5%,结合剂为酚醛树脂,制品的显气孔率为9.5%,体积密度为2.60g/cm3,常温抗折强度45.0mpa,1300℃高温抗折强度50.0mpa,耐磨性为3.5cm3。
17.实施例3:碳化硅陶瓷篦条最终物相组成为:碳化硅比例90%,氮化硅+氧氮化硅+β-sialon+o-sialon+莫来石比例为10%。作为原料引入的si粉的引入量为8%,sic微粉(d
50
=8μm)的引入量为10%,sio2微粉(d
50
=0.2μm)的引入量为0.5%,al2o3微粉(d
50
=1μm)的引入量1.5%,0.1-1.43mmsic颗粒的引入量为80%,结合剂为糊精和木质素磺酸钙,制品的显气孔率为9.0%,体积密度为2.7g/cm3,常温抗折强度50.0mpa,1300℃高温抗折强度65.0mpa,耐磨性为4.0cm3。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1