一种含缺陷的片状二硼化钨粉体及其制备方法和应用

文档序号:32351429发布日期:2022-11-26 13:24阅读:173来源:国知局
一种含缺陷的片状二硼化钨粉体及其制备方法和应用

1.本发明属于无机非金属硬质材料技术领域,特别涉及一种含缺陷的片状二硼化钨粉体及其制备方法和应用。


背景技术:

2.在过去的几十年里,二硼化钨可以在环境压力下合成,由于其高熔点、高硬度、良好的化学稳定性和导电性,在各种工业应用中引起了广泛关注。这些优异的性能使二硼化钨成为切削工具、耐磨部件和电极材料等的潜在候选材料。
3.事实上,与其他过渡金属硼化物类似,由于二硼化钨的自扩散系数较低,巩固二硼化钨陶瓷并不是一件容易的事。
4.添加烧结添加剂为提高过渡金属硼化物的烧结反应提供了一个简单而有效的手段。添加烧结助剂对陶瓷的提升有局限性,过量添加烧结助剂会使陶瓷性能下降。必须探索新的加工方法来改善二硼化钨的烧结行为和性能。
5.高质量(纯度高、杂质少、粒度细)粉体和含有缺陷的粉体均可以促进晶体动力学,促进陶瓷的烧结性能。
6.通过硼/碳热还原法可以合成了亚微米级、高纯度的高质量二硼化钨粉体。


技术实现要素:

7.为了克服现有技术中存在的二硼化钨难烧结的缺点与不足,本发明的首要目的在于提供一种含缺陷的片状二硼化钨粉体的制备方法,该方法通过掺杂不同元素,合理控制缺陷浓度,制备了不同缺陷浓度的二硼化钨粉末;以三氧化钨(wo3)粉、碳化硼(b4c)粉、碳源粉末为原料作为基本配方,加入三氧化钼(moo3)粉或三氧化二铬(cr2o3)粉进行掺杂,对其进行球磨混料,然后在真空状态下热处理得到含缺陷的片状二硼化钨粉体,经放电等离子烧结获得致密的二硼化钨块体材料。
8.本发明的又一目的在于提供一种上述制备方法制备得到的含缺陷的片状二硼化钨粉体。
9.本发明的再一目的在于提供一种上述含缺陷的片状二硼化钨粉体的应用。
10.本发明的目的通过下述技术方案实现:
11.一种含缺陷的片状二硼化钨粉体的制备方法,包括以下操作步骤:
12.(1)将三氧化钼(moo3)粉和三氧化二铬(cr2o3)粉中的一种,与三氧化钨(wo3)粉、碳化硼(b4c)粉和碳源粉末一起混合,添加磨球,在氩气保护气氛和室温条件下球磨,得到混合均匀的粉末;
13.(2)用干压机将混合均匀的粉末压坯,并在1300~1500℃,真空状态下,保温0.5~2h,随炉冷却热处理,将疏松块体敲散,得到含缺陷的片状二硼化钨粉体。
14.优选地,步骤(1)中所述三氧化钨(wo3)粉、碳化硼(b4c)粉和碳源粉末的摩尔比为2:(1~2.5):(4.5~5);所述三氧化钼粉中的mo原子和三氧化钨(wo3)粉中的w原子的摩尔
比为5:95;所述三氧化二铬粉中的cr原子和三氧化钨(wo3)粉中的w原子的摩尔比为5:95。
15.更加优选地,所述三氧化钨(wo3)粉、碳化硼(b4c)粉和碳源粉末的摩尔比为2:(1~1.5):(4.7~5)。
16.步骤(1)中所述球磨的时间为1~3h;所述磨球的材质为碳化钨,磨球的直径为6.5~11mm,球料质量比为3~5:1。
17.步骤(2)中所述干压机压块的压力在3~30mpa;所述保温的时间为1~2h;所述将疏松块体敲散之后在玛瑙研钵中进行研磨,在200目过筛网中进行过筛得到粒径0.2~0.5μm的含缺陷的片状二硼化钨粉体。
18.所述三氧化钼粉、三氧化二铬粉和三氧化钨粉的纯度均≥99%,平均粒径0.5μm~2μm;所述碳化硼粉的纯度大于99%,平均粒径1μm~3μm;所述碳源粉末是炭黑、石墨、乙炔黑和酚醛树脂中的一种以上,纯度大于99%,平均粒径30nm~1.5μm。
19.一种由上述的制备方法制备得到的含缺陷的片状二硼化钨粉体。
20.上述的含缺陷的片状二硼化钨粉体在研磨抛光和氢催化领域中的应用。
21.一种由上述的含缺陷的片状二硼化钨粉体制成的二硼化钨块体材料,所述二硼化钨块体材料按照以下制备方法制备得到:将含缺陷的片状二硼化钨粉体放入石墨模具预压,预压压力在3~30mpa,在温度1500℃~1700℃下保温10min进行烧结,烧结气氛为氩气或真空,烧结压力为10~30mpa,得到二硼化钨块体材料。
22.所述烧结是在放电等离子烧结炉中进行烧结。
23.上述的二硼化钨块体材料在电极材料、耐磨材料和切削刀具领域中的应用。
24.本发明相对于现有技术具有如下的优点及效果:
25.(1)本发明产率高,获得的粉体粒径为亚微米级且分布范围窄,适合规模化生产;
26.(2)本发明设计了一种能够定量控制缺陷浓度的二硼化钨粉体,具有良好的烧结性能,制备出来的二硼化钨块体致密度高达96%,并且未添加任何烧结助剂。
27.(3)本发明制备的二硼化钨粉体可以有效用于研磨抛光和氢催化等相关工业领域,二硼化钨块体可以有效用于电极材料、耐磨材料和切削刀具等相关工业领域。
附图说明
28.图1是实施例1-3制备含缺陷的片状二硼化钨粉末的xrd图。
29.图2是实施例1-3制备含缺陷的片状二硼化钨粉末的sem图。
30.图3是实施例1-3制备含缺陷的片状二硼化钨粉末的高分辨tem图。
31.图4是实施例4-6制备二硼化钨块体的xrd图。
32.图5是实施例4-6制备二硼化钨块体的sem图。
具体实施方式
33.下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
34.混料所用的设备可以为高能球磨机、振动球磨机、行星式球磨机、场辅助磨机、等离子体辅助高能球磨机等。烧结方式可以为热压烧结炉,放电等离子烧结,无压烧结等。以下实施例中采用的是高能球磨机(美国spex公司型号为8000m)。以下实施例中采用的原料
为三氧化钨(wo3,纯度99.9%,粒径500纳米,上海巷田纳米材料有限公司,中国)、三氧化钼(moo3,纯度99.9%,粒径1微米,上海巷田纳米材料有限公司,中国)、三氧化二铬(cr2o3,纯度99.9%,粒径600纳米,上海乃欧纳米科技有限公司,中国)、碳化硼(b4c,纯度99.9%,粒径1微米,牡丹江钻石碳化硼有限公司,中国)和碳黑(纯度99.9%,粒径30纳米,cabot,美国)。
35.实施例1
36.1.将三氧化钨粉、碳化硼粉和炭黑按摩尔比2:1.075:4.9称量并置于球磨罐中,添加碳化钨磨球六个,尺寸为11mm,球与混合粉末的质量比为4:1,在氩气环境下球磨1小时,得到混合均匀的粉末;
37.2.混合后粉末用干压机预压成型,并在1400℃温度下真空保温1小时,待冷却后,将疏松块体敲散之后,在玛瑙研钵中研磨过筛,得到含缺陷的片状二硼化钨粉末。
38.实施例2
39.1.将三氧化钨粉、三氧化钼、碳化硼粉和炭黑按摩尔比1.9:0.1:1.075:4.9称量并置于球磨罐中,添加碳化钨磨球六个,尺寸为11mm,球与混合粉末的质量比为4:1,在氩气环境下球磨1小时,得到混合均匀的粉末;
40.2.混合后粉末用干压机预压成型,并在1400℃温度下真空保温1小时,待冷却后,将疏松块体敲散之后,在玛瑙研钵中研磨过筛,得到含缺陷的片状二硼化钨粉末。
41.实施例3
42.1.将三氧化钨粉、三氧化二铬、碳化硼粉和炭黑按摩尔比1.9:0.05:1.075:4.9称量并置于球磨罐中,添加碳化钨磨球六个,尺寸为11mm,球与混合粉末的质量比为4:1,在氩气环境下球磨1小时,得到混合均匀的粉末;
43.2.混合后粉末用干压机预压成型,并在1400℃温度下真空保温1小时,待冷却后,将疏松块体敲散之后,在玛瑙研钵中研磨过筛,得到含缺陷的片状二硼化钨粉末。
44.图1是实施例1-3制备的含缺陷的片状二硼化钨粉末的xrd图。从图1可以看出合成粉末的相组成。所有样品的主要相都可以被确定为wb2型wb2(p63/mmc,iccd pdf#43-1386)。在w
0.95
mo
0.05
b2和w
0.95
cr
0.05
b2的粉末样品中不能检测到含mo或cr的相。除了wb2型wb2,还可以检测到mob2型wb2(r-3m,iccd pdf#31-1407)的弱衍射峰。
45.图2是实施例1-3制备的含缺陷的片状二硼化钨粉末的sem图。从图2可以看出经过掺杂后,wb2形貌逐渐变为明显片状,尺寸粒径也从300nm长到400nm左右。
46.图3是实施例1-3制备的含缺陷的片状二硼化钨粉末的高分辨tem图。从图中可以看出,由于同族元素wmo和cr原子半径不同,在掺杂后所引起的晶格畸变程度也各不相同,其中w
0.95
cr
0.05
b2的缺陷浓度最大,这是由于较大的原子半径差异导致的结果。
47.实施例4
48.取实施例1得到的二硼化钨粉体,放入石墨模具中预压,使用放电等离子烧结炉在1600℃下保温10分钟进行烧结,保护气氛为氩气,烧结压力为30mpa,得到二硼化钨(wb2)块体。
49.实施例5
50.取实施例2得到的二硼化钨粉体,放入石墨模具中预压,使用放电等离子烧结炉在
1600℃下保温10分钟进行烧结,保护气氛为氩气,烧结压力为30mpa,得到二硼化钨(w
0.95
mo
0.05
b2)块体。
51.实施例6
52.取实施例3得到的二硼化钨粉体,放入石墨模具中预压,使用放电等离子烧结炉在1600℃下保温10分钟进行烧结,保护气氛为氩气,烧结压力为30mpa,得到二硼化钨(w
0.95
cr
0.05
b2)块体。
53.图4是实施例4-6制备二硼化钨块体的xrd图。从图4可以看出合成二硼化钨块体的相组成。所有样品的主要相都可以被确定为wb2型wb2(p63/mmc,iccd pdf#43-1386)。在二硼化钨粉体中存在的mob2型wb2也转换为wb2型wb2。
54.图5是实施例4-6制备二硼化钨块体的sem图。从图5可以看出合成二硼化钨块体中,wb2由于孔隙较多,致密度也只有93%,w
0.95
mo
0.05
b2和w
0.95
cr
0.05
b2中孔隙明显减少,其致密度也分别为95%和96%。由于缺陷浓度的不同各粉体的烧结活性也不相同,缺陷浓度最高的w
0.95
cr
0.05
b2烧结性能也最好。
55.上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1