一种二硫化镍电极材料及制备方法和应用

文档序号:32400522发布日期:2022-12-02 18:52阅读:442来源:国知局
一种二硫化镍电极材料及制备方法和应用

1.本发明属于镁离子电池电极材料领域,涉及一种二硫化镍电极材料及制备方法和应用。


背景技术:

2.储能是实现“双碳”目标的重要支撑技术之一,随着双碳目标的提出,新能源的优势逐步凸显。动力电池作为新能源产业中最重要的一个构架,近些年来得到了我国的大力扶持,其中二次电池,锂离子电池是迄今为止最具代表性的蓄电池。尽管锂离子电池广泛应用于移动设备或电动汽车,但从安全性、元素丰度和成本方面来看,锂离子电池在大型电池(如固定式储能电池)中的应用不太合适。因此,开发使用镁、锌和钙的环保多价金属电池是非常有必要的。
3.镁可再充电池具有相对较低的氧化还原电位,与锂金属阳极电池相比,它倾向于电沉积而不形成树枝状结构,可以安全地用作阳极,因此镁离子电池成为除锂离子电池之外的实际应用中最有前途的大型储能系统之一。然而,目前镁离子电池的发展还不成熟,没有合适的阴极材料和电解质来达到优异的电化学性能。研究表明,mg
2+
是二价离子,由于其高电荷,与其他离子有强烈的相互作用,因此mg
2+
扩散动力学性质较差。因此,改善镁离子在电极中的扩散动力学以获得高性能的镁离子电池是非常迫切的。
4.过渡金属二卤化物(tmd)因其独特的电子结构、高导电性和丰富的氧化还原化学等特点而备受关注。二硫化镍(nis2)由于其理论容量高、成本低、环境友好等优点,在实际储能方面具有巨大的优势。然而,经过测试,nis2的电化学性能较差,所以迫切需要一种智能策略来开发高性能的二硫化镍电极。
5.现有技术中研究人员已成功采用了多种制备二硫化镍的方法。例如:水热法,固相法,熔盐法等。这些方法都有其各自的优势,但仍然存在着一些问题。如传统熔盐法制备的产物纯度不高、反应温度相对较高、工艺复杂和原料昂贵;水热法制备过程繁琐,产生危险废水,不易处理。且这些方法由于安全性低、生产周期长,从而不适用于大批量的生产。因此,必须寻找出一种简单、快速且大批量制备出高纯度二硫化镍电极材料的有效制备方法。


技术实现要素:

6.针对上述技术问题,本发明提出一种二硫化镍电极材料及制备方法和应用。与传统熔盐法相比,本次实验所用的低温熔盐法通过调整熔融盐的比例,最终克服了传统方法中产物纯度不高、反应温度相对较高、工艺复杂和原料昂贵、制备过程繁琐等缺点。且反应中,nacl的再结晶效应可以促进二硫化镍的生成,使得反应最终在较短的时间内获得了高纯度且粒径较小的二硫化镍电极材料,这将有助于提高样品的比面积,从而增加放电比容量。最后将该材料作为镁离子电池的正极材料,考察其电化学性能,并探究其储镁机制。
7.为了达到上述目的,本发明的技术方案是这样实现的:一种二硫化镍电极材料的制备方法,通过一步低温熔盐法,以熔融共晶盐六水合
硝酸镍(ni(no3)2·
6h2o)-nacl为反应提供液体介质,以六水合硝酸镍和五水合硫代硫酸钠为原料,制备得到二硫化镍电极材料。
8.进一步,二硫化镍电极材料的制备方法为:(1)电极材料的制备:将六水合硝酸镍、五水合硫代硫酸钠、nacl研磨均匀后进行恒温反应,得到二硫化镍浑浊电极材料;(2)电极材料成品的制备:将步骤(1)所得的二硫化镍浑浊电极材料冷却至室温后。加入去离子水进行超声,待混合均匀后经过分离、清洗、干燥得到二硫化镍电极材料。
9.进一步,所述步骤(1)中六水合硝酸镍、五水合硫代硫酸钠和nacl的质量比为(8~10):(18~20):(1~2)。
10.进一步,所述步骤(1)中加入nacl研磨后的混合物状态为流动状态的,由于nacl的吸潮,六水合硝酸镍、五水合硫代硫酸钠中的结晶水会在空气中释放,从而为反应提供了液相的介质。
11.进一步,所述步骤(1)中恒温反应的温度为160~180℃。
12.进一步,所述步骤(1)中恒温反应的时间为10~14h。
13.进一步,所述步骤(2)中先采用去离子水洗涤3~5次,再采用乙醇洗涤3~5次,干燥的温度为60℃,干燥的时间为6~20h。
14.进一步,上述制备方法制备的二硫化镍电极材料由颗粒直径为10~110nm的二硫化镍纳米颗粒组成,二硫化镍电极材料的形貌结构为棉絮状,分子式为nis2。
15.进一步,所述的二硫化镍电极材料在作为正极材料制备镁离子电池领域的应用。
16.进一步,所述的镁离子电池由正极、负极、电解液和隔膜组成,所述正极包括二硫化镍电极材料、导电剂、正极粘合剂和正极集流体;正极的制备方法为:将二硫化镍材料、导电剂、正极粘合剂加入到研钵中,研磨,加入有机溶剂,搅拌均匀后涂覆在铜箔上,干燥。
17.进一步,所述的正极制备方法中,导电剂为乙炔黑或炭黑,正极粘合剂为聚偏氟乙烯或聚四氟乙烯。
18.进一步,所述二硫化镍电极材料、导电剂和正极粘合剂质量比为(8-a-b):(1+a):(1+b),其中0≤a≤2,0≤b≤1,正极的质量为30~60 mg,有机溶剂为n-甲基吡咯烷酮,涂覆方式为刮涂、旋涂或滴涂中的任意一种,铜箔厚度为14~21μm。
19.进一步,所述铜箔圆片直径为8 mm,每片铜箔的负载的活性质量为0.48~0.64 mg,涂覆后干燥温度为60 ℃,干燥时间为6~12 h。
20.进一步,所述负极的制备方法为:使用砂纸打磨镁片,打磨至两面光滑,然后使用稀盐酸溶液清洗打磨后的镁片;再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极,使用冲压机将镁片裁成一个圆片;稀盐酸的浓度为0.1~0.5 m,镁圆片的直径为8~13 mm。
21.进一步,镁离子电池的组装方法为:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
22.本发明具有以下有益效果:1、本发明提供的二硫化镍电极材料是由六水合硝酸镍、氯化钠和五水合硫代硫酸
钠为原料,采用低温熔盐法制备得出的。其中nacl的参与能够加速反应物中结晶水的分离,为反应提供了一个良好的液态介质;而在不加nacl的情况下,研磨过程中混合物的状态为褐色混合粘稠物,流动性不佳。六水合硝酸镍-nacl的结合能够降低其熔点,从而降低反应温度。总的来说,该反应避免了溶剂的加入,又降低了反应所需的条件,操作方便,污染少,具有很好的应用前景。
23.2、本发明构建出的二硫化镍,其形貌类似棉絮状,会提高电极材料的离子电导率,进而提升电极整体的导电能力,改善电池倍率性能。反应过程中熔盐体系的存在使得反应在原子尺度上进行,nacl的溶解有助于原料混合的均匀性,且熔融状态中nacl的空间限制效应能够促进高纯度棉絮状的nis2快速生成,赋予了该电极良好的电子、离子导电性和结构稳定性,提高了活性材料的利用效率,实现了优化电化学性能的目的。
24.3、本发明中nacl的存在又肩负着双重作用:第一,能与六水合硝酸镍组成熔盐体系,为反应提供液体介质,使得反应在较低的温度(160~180℃)和较短的时间内(10~14h)完成;第二,作为模板以合成粒径较小的颗粒状nis2(由颗粒直径为10~110nm的二硫化镍纳米颗粒组成),在一定程度上缓解了nis2的不规则发展和尺寸大小。
25.4、由本发明方法制备的二硫化镍材料组装镁离子电池,隔膜选用玻璃纤维,电解液为apc时,表现出优良的协同效应和良好的稳定性。经过测试,二硫化镍电极材料在100 ma g-1
下的放电容量可以达到261 mah g-1
。同样表现出优异的长循环性能,在200 ma g-1
下进行循环后容量保持率为44%。
附图说明
26.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
27.图1为本发明实施例1中不锈钢高压釜ⅰ制备的二硫化镍电极材料的扫描电子显微镜图片(a)(b)和对比例中不锈钢高压釜ⅱ(不添加nacl)制备的二硫化镍电极材料的扫描电子显微镜图片(c)(d)。
28.图2为本发明实施例1中三种原料恒温60℃反应后转化为硬质块的状态图。
29.图3为本发明实施例1中不锈钢高压釜ⅰ制备的二硫化镍电极材料的x射线衍射谱(xrd)。
30.图4为本发明对比例中不锈钢高压釜ⅱ(不添加nacl)制备的材料的x射线衍射谱(xrd)。
31.图5为本发明实施例1中制备的二硫化镍电极材料的能量色散谱图。
32.图6为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在不同电流密度下的充放电曲线。
33.图7为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在不同放电倍率下的比容量曲线。
34.图8为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在200 ma g-1
下的循环稳定性曲线。
具体实施方式
35.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
36.实施例1本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:(1)称取六水合硝酸镍3 g、五水合硫代硫酸钠6.39 g、氯化钠0.333 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜ⅰ中。在180 ℃的恒温鼓风干燥箱中反应12 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
37.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例,称取一共30 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中12 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.49 mg。
38.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.1 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
39.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
40.图1(a)(b)为本实施例不锈钢高压釜ⅰ得到的二硫化镍电极材料的扫描电镜,表明二硫化镍电极材料是棉絮状的活性材料,且颗粒直径为10~110nm。
41.图2为本实施例不锈钢高压釜ⅰ中恒温反应后三种原料转化为硬质块的状态图。由图可知,三种原料恒温60℃反应后是转化为硬质块状态,而不是粉末,证明nacl与六水合硝酸镍之间存在熔融区域。
42.图3为本实施例不锈钢高压釜ⅰ得到二硫化镍材料的xrd图谱,该图谱与文献报道的图谱相符合,表明成功制备二硫化镍材料。
43.图5为本实施例得到的二硫化镍电极材料的能谱图,图表明材料主要含有ni和s元素。
44.对比例本对比例为二硫化镍电极材料的制备方法(不加nacl)及应用,步骤如下:(1)称取六水合硝酸镍3 g、五水合硫代硫酸钠6.39 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜ⅱ(不添加nacl)中。在180 ℃的恒温鼓风干燥箱中反应12 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
45.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例,称取一共30 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中12 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.49 mg。
46.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.1 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
47.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
48.通过对比实施例1高压釜ⅰ和对比例高压釜ⅱ可以得出nacl在该反应过程中的作用。
49.图1(c)(d)为本对比例不锈钢高压釜ⅱ得到的二硫化镍电极材料的扫描电镜,不加nacl形成的二硫化镍电极材料的颗粒直径比实施例1不锈钢高压釜ⅰ制备的二硫化镍电极材料颗粒直径大,会降低电极材料的离子电导率,进而降低电极整体的导电能力;而且颗粒越大,镁离子嵌入和脱出的通道越长,直接影响到镁离子的脱嵌,从而影响到电池性能。
50.图4为本对比例不锈钢高压釜ⅱ得到材料的xrd图谱,通过对比可知nacl的参与能够使得材料纯度变高。
51.实施例2本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:(1)称取六水合硝酸镍2.831 g、五水合硫代硫酸钠6.094 g、氯化钠0.353 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜中,在180 ℃的恒温鼓风干燥箱中反应12 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
52.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例,称取一共30 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中12 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.49 mg。
53.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.1 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
54.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
55.实施例3本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:
(1)称取六水合硝酸镍3.064 g、五水合硫代硫酸钠6.460 g、氯化钠0.346 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜中,在180 ℃的恒温鼓风干燥箱中反应12 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
56.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例,称取一共30 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中12 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.49 mg。
57.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.1 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
58.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
59.实施例4本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:(1)称取六水合硝酸镍2 g、五水合硫代硫酸钠5 g、氯化钠0.5 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜中,在170 ℃的恒温鼓风干燥箱中反应12 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
60.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为7:2:1的比例,称取一共40 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中6 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.64 mg。
61.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.2 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为8 mm的圆盘。
62.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
63.实施例5本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:(1)称取六水合硝酸镍2 g、五水合硫代硫酸钠5 g、氯化钠0.5 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜中,在180 ℃的恒温鼓风干燥箱中反应10 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,
用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
64.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为6.5:2:1.5的比例,称取一共50 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中8 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.53 mg。
65.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.3 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为11 mm的圆盘。
66.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
67.实施例6本实施例为二硫化镍电极材料的制备方法及应用,步骤如下:(1)称取六水合硝酸镍2 g、五水合硫代硫酸钠4 g、氯化钠0.4 g,研磨均匀后转移到容量为25 ml的聚四氟乙烯内衬不锈钢高压釜中,在160 ℃的恒温鼓风干燥箱中反应10 h。反应结束后冷却至室温,再添加去离子水超声处理30 min,形成均匀溶液。超声结束后,用去离子水和乙醇反复洗涤清洗并离心3~5次,在60 ℃的恒温鼓风干燥箱中干燥过夜,得到二硫化镍电极材料。
68.(2)镁离子电池的制备,步骤如下:正极的制备:将制得的二硫化镍电极材料、乙炔黑和聚偏氟乙烯按质量比为5:3:2的比例,称取一共45 mg置入研钵中,研磨30 min后,加入有机溶剂n-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上。然后放入60 ℃真空干燥箱中10 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍的质量大约为0.48 mg。
69.负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.5 m的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
70.组装:在手套箱内,使用硬币型电池cr2032,分别将正极,隔膜,负极,填充物通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;玻璃纤维隔膜作为隔膜,电解液为0.4m 2phmgcl/thf-alcl3(简称apc)电解液。
71.实施效果例将实施例1制备的电极片制备成电池后进行电化学性能测试。
72.图6为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在不同电流密度下的充放电曲线,可以清楚地观察到放电和充电平台,显示出其优异的结构稳定性。
73.图7为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在不同放电倍率下的比容量曲线,在100 ma g-1
下的放电容量为261 mah g-1

74.由图6和图7可以看出,该材料有优异的倍率性能,在100 ma g-1
下的放电容量为261 mah g-1

75.图8为本发明实施例1中以二硫化镍电极材料为正极制备的镁离子电池在200 ma g-1
下的循环稳定性曲线。如图8所示,二硫化镍材料具有一定的循环稳定性,循环288周后,容量保持率为44%。材料的结构更有利于二硫化镍纳米颗粒与电解质之间的接触,加速电化学反应动力学。
76.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1