用光化学法从硫化氢制取氢的制作方法

文档序号:98846阅读:844来源:国知局
专利名称:用光化学法从硫化氢制取氢的制作方法
本发明涉及光分解作用,本发明的一个方面涉及用光化学法以硫化氢制取氢的产品,以及硫化氢光分解制取氢的方法。本发明的另一方面涉及在溶液中硫化氢进行的光分解,本发明的再一方面涉及溶液中对硫化氢光分解有用的碱性化合物。
使用可见光对硫化氢进行光分解是很重要的。因为这可使我们得以用极其丰富和极为便宜的能源—太阳能。很容易认识到,利用太阳能对被污染的水进行处理,分解其中有毒的污染物是相当经济的。人们也会认识到,把硫化氢作为硫与氢的经溶来源也是具有重要意义的。
因此,本发明的目的之一是为对硫化氢进行光分解制取氢提供一种方法,本发明的目的之二是为利用太阳能制取氢提供一种工艺方法;目的之三是为分解硫化氢提供一种方法,此方法依靠利用太阳能而且生态学上是健康的。
本发明的其它方面,目的及各种优点,在认真阅读了本,附图及所附的权利要求
后是不难明了的。
本发明提供一种从硫化氢的水溶液中制取氢的方法。在本方法中,硫化氢溶解在碱性水溶液中,在溶液中存在催化剂量的选自下列化合物,ZnO,ZnO-RuO2,Zn,Se,ZnSe和CuGaS2的条件下,用可见光照射该溶液。
为实现本发明的目的,可见光限定波长约为300nm~770nm的幅射光。辐射的可见范围在较短波长端部与紫外辐射重合,在较长波长端部与红外辐射重合。在本发明中,实用的辐射能源的波长范围应选在300nm~700nm,其最佳波长约为300nm~400nm。
虽然在本发明的工艺中,溶解硫化氢的碱性液体介质最好是碱性化合物的水溶液,而事实上,碱性液体介质可以是任何PH值为碱性并能溶解硫化氢的其它液态介质。用于添加一种可溶性化合物即能成为碱性的适用的硫化氢溶剂,有烷基吡咯烷酮类,如N-甲基吡咯烷酮;N-乙基吡咯烷酮及脂肪醇类,这些溶剂最好有1~5个碳原子。
虽然任何与能溶解硫化氢的溶剂兼容的碱性化合物都适于本发明,但碱金属和碱土金属的氢氧化物更适于本发明,因为这些化合物容易得到,也比较便宜。氢氧化铵也因同样理由属于适用于本发明的范围。
在本发明的工艺过程中,在水溶剂中,碱性化合物的量要足以产生可检出的碱性,对实施本发明是非常必要的。碱性化合物的浓度最好在约0.1摩尔/升水~10摩尔/升水之间,以2摩尔/升水~8摩尔/升水为最佳。
虽然任何量的催化剂ZnO,ZnO-RuO2,ZnS,ZnSe或CuGaS2,分散在溶有硫化氢的碱性水溶液中都可以对光解硫化氢起催化作用,其量最少每100克溶液中约含有0.2克至2克,当含量约为1.0克/100克溶液至1.3克/100克溶液时效果最佳。
认真阅读下面的例子及附图,定能够清楚地了解本发明图1是一个实施本发明的装置原理图。
图2显示出氢生产速度与溶有H2S的碱性溶液的当量浓度之间的关系。
图3显示了氢生产速度与硫化氢和溶有硫化氢的溶液中的碱性化合物两者摩尔比之间的关系。
下面的例子只是说明性的并不具有限定性。
例I在本实例中,描述了用光导致硫化氢溶液分解制取氢气的试验装置。图1是光解使用的装置,Oriel公司的250瓦或90瓦高压水银灯1是光源。在使用90瓦灯的例子中,数据已根据250瓦灯的光通量做了修定。发射的光通过派热克斯玻璃滤光器3(除光解室派热克斯窗之外),以便滤掉低于290nm波长的紫外辐射。250瓦水银灯的绝对量子效率由雷氏盐光化线强度测定计校准(见Journal of The Americal ChemicalSociety,88,394 ff(1966),该装置使用了三个通带过滤器。每个过滤器标准的光通量为通带(nm) 光通量(光量子/分)440 3.1×1018400 2.0×1019350 1.2×1019通过第三个过滤器的可见光通过派热克斯窗7进入光解室5。要光解的含有H2S的溶液9由磁搅拌棒11进行搅拌,含有H2S的进气由起泡管13引入,含有H2的产品气体由装有压力计17和气体循环泵19的管线15排出。产品气体中的一小部通过GC控制回路21分流到气相色谱分离仪,进行分析。
产品气体的大部分用泵打入250毫升的平衡容器23,然后重新循环到光解室5。新的H2S由辅属气体进口25引入。光解室装有一个热电偶管27,以测量溶液温度(一般为26℃~34℃)。
该光分解室的量子效率为
系数4是因为考虑到从H2S产生一个H2分子需要4个光量子(见1982年Helrelia Chimica Aefa 65,第243页)。假定所有进入光解室的光都被吸收。
例II
在本例中,NaOH的浓度为8摩尔的饱和H2S水溶液光解,溶液中还有各种分散的半导体光解催化剂,其浓度为每100克溶液含有1.0~1.3克。这些磨细的半导体粉末在NaOH水溶液中是用声频振荡器进行分散。实验中,悬浮液由磁搅拌棒来搅拌(见图1)。使用的大多数光催化剂由威斯康星州密尔沃基市的Cerac Ultrapure提供。有一些是在实验室制成的。
CdS/RuO2是用含有4.3克的Cd(NO3)3,0.004克的RuCl3和50毫升H2O的溶液与含有64克NaOH和 毫升H2O的饱和溶液混合的方法制备。
ZnO/RuO2在黑暗中将0.5克的RuO4溶于20毫升H2O,另外将10克ZnO加到450毫升去掉气体的H2O中,每一种都要轮流搅拌并在声频振荡器中放置40分钟,这时把2.5毫升的RuO4溶液加到ZnO悬浮液中,随后,把该混合物搅拌10小时,同时用一只75瓦的泛光灯照射,以制备ZnO/RuO2。
CuGaS2制备,5.0克GaCl3(0.028摩尔)和6.58克Cu(NO3)2(0.028摩尔)均溶于H2O中,用起泡器使H2S通过该溶夜1小时,用过滤器收集沉淀,沉淀用气流 箱在160℃干燥,在含1%的H2S的氮气气氛中用400℃的温度加热3小时。
溶解在含分散半导体催化剂的8N NaOH碱性溶液中的H2S的光解结果综述于表1。
表1序号 分散的半导体 H2S/NaOH 速度a)注摩尔比 (ml/小时)1对照 Cd S 1加b)1.8 Cd S由Cd(NO3)2原位制备2对照 Cd S/Ru O21加 3.8 Cd S来自Cd(NO3)2Ru来自RuCl33对照 Cd Se 1加 0.9 Cerac Ultrapure提供4对照 Cd O 0.5c)0.0 Cd O在1加条件由Cd S形成5发明 Zn O 1加 5.96发明 Zn O/Ru O21加 5.4 以Ru Cl3的形式添加Ru O27发明 Zn S 1加 0.9 Cerac Ultrapule提供8发明 Zn Se 1加 2.5 同上9对照 Zn Te 1加 - 溶液中分解10发明 Cu Ga S21加 1.9 实验室制备11对照 Ti O2/Ru O21加 0.312对照 Si C 0.5 0.0 Cerac Uetrapure提供13对照 Al AS 0.5 0.0 同上14对照 Ga P 0.5 0.0 同上15对照 Fe2O30.5 0.0 1小时后分解16对照 空白 1加 0.8
a)速度为观测6小时以上的平均值。
b)“1加”指溶液上方存在气相H2S的饱和溶液。
c)当H2S/NaOH的比为0.5时,使用了N2气体。
表1的数据表明,用在8N NaOH水溶液中分散ZnO,ZnO/RuO2,ZnS,ZnSe或CuGaS2的方式进行本发明,产生氢气的速度比使用几种Cd的化合物(见Chemical and EngineeringNews,P40~42 Ju1y 27 1981)的速度高,或者类似。在本发明中使用了分散相比只用NaOH效果好,有几种表中列举的半导体分散相实际上抑制了用H2S光解生产氢气。
例III对一种光解催化剂分散相(0.5克CdS/RuO2在150克的NaOH溶液中)研究了NaOH的浓度和H2S/NaOH的比例对产生氢气速度的影响。其结果示于图2,碱溶液的规定浓度应至少为0.1N,以便能以令人满意的速度产生氢。较为合适的NaOH浓度要超过1N,最佳值约为6~8N。
图3表明较为合适的H2S/NaOH的摩尔比值约为10或更高。可以相信,H2S和H2S的复合是产生氢气的有效物种,这种复合降低了分解H2S所需要的能量。
例IV在本例中说明了,在分散的半导体光解催化剂存在下,光波长度对于光诱导分解溶于8N NaOH中的H2S的光量子效率的影响。表II总结了所测量的光量子效率。
表II分散的光催化剂 350nm 通带过滤 400nm 带通过滤Cd S 1.1% 0.2%Cd S/1% Ru O23.3% 1.1
ZnO 5.1% 0.0Cu Ga S21.0 0.0表II的数据表明CdS,ZnO和CuGaS2有在波长小于400nm时才有效。只有CdS/RuO2在400毫微米时有效。如前面的实验一样,紫外光(<300nm)已被派热克斯滤光器滤掉。
权利要求
1.从H2S的水溶液中制取氢的方法包括a)在碱性水溶剂中溶解H2S,产生硫化氢的碱性水溶液;b)在催化剂量的选自ZnO,ZnO-RuO2,ZnS,ZnSe和CuGaS2中的化合物存在下,用可见光照射上述H2S碱性水溶液。
2.权利要求
1所述方法,其中碱性化合物在碱性水溶液中的浓度为0.1摩尔/升至10摩尔/升。
3.权利要求
2所述方法,其中所述的碱性化合物从NaOH和NH4OH中选取。
4.权利要求
3所述方法,其中所说的碱性化合物是NaOH。
5.权利要求
4所述方法,其中所说的碱性水溶液中的碱性化合物的浓度为2摩尔/升至8摩尔/升。
6.权利要求
1所述方法,其中所述的光解催化剂的量为0.2克至2.0克/每100克溶液。
7.权利要求
3所述方法,其中所说的催化剂量为0.2克至2.0克/每100克溶液。
8.权利要求
5所述方法,其中所说的催化剂量为0.2克至2.0克/每100克溶液。
专利摘要
在催化剂量的ZnO,ZnO-RuO
文档编号C01B3/04GK86102648SQ86102648
公开日1986年12月10日 申请日期1986年4月15日
发明者约翰·亨利·科茨 申请人:菲利普石油公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1