低能氢方法和设备的制作方法

文档序号:3430018阅读:616来源:国知局
专利名称:低能氢方法和设备的制作方法
发明
背景技术
1.发明所属领域本发明涉及当通过提供跃迁催化剂,使氢原子(分子)的电子受激而衰减至低能级和小于“基态”的半径(较小的半长轴及半短轴),进而从氢原子(分子)中释放能量的方法和设备,所述催化剂起散能源阱的作用,用以消除与按照新的原子模型激发这些跃迁放出的电子能量的能量共振。这种跃迁催化剂在反应中不发生消耗。它从氢原子接受能量,又向周围释放能量。于是,这种跃迁催化剂回到原来的状态。所需碰撞过程是普遍存在的。例如,H+H形成H2的放热化学反应需要与第三物体M碰撞,以消除结合能。这个第三物体分配在所述放热反应中产生的能量,结果得到H2分子,并提高了系统的温度。类似地,经共振碰撞,使从氢原子的n=1态跃迁到氢原子的n=(1/整数)态成为可能,比如从n=1到n=1/2态。在这种情况下,碰撞时,电子与其它电子跃迁或电子转移反应,比如可以精确地吸收必须从氢原子(分子),一个共振能量阱中除去的能量的反应耦合。最后的结果是氢原子处于一个低能态,和系统温度的提高。以下把各种这类的反应称为收缩反应;把每次跃迁称为收缩跃迁;把用于消除与为影响每次跃迁所释放的氢电子能量能量共振的每个能量阱称为能量空穴,并把为影响或激发收缩跃迁由所述能量空穴消除的电子能量,称为共振收缩能。一种包含反应体离子的能量空穴,伴随着能量等于其振收缩能的吸热电子电离反应,所述反应体离子自发地再生,这种空穴在下文中称为电催化离子。一种包含两种反应体的能量空穴,伴随着电离能不同的两个粒种间的吸热电子转移反应等于共振收缩能,所述反应体自发地再生,这种空穴下称电催化耦合。
在电解槽能量反应堆、压缩气体能量反应堆及气体放电能量反应堆中应用的本发明包括一个氢源;固态、熔融态、液态及气态能量空穴源之一;盛有氢和能量空穴源的容器,其中通过氢与各能量空穴源的接触而发生收缩反应;还包括一个用于除去(分子)低能氢,以免放热收缩反应达到平衡的装置。本发明还包括重复这种收缩反应,以生成收缩原子(分子)的方法和设备,以提供多种具有诸如热稳定性高等新性质的新材料。2.相关背景技术的介绍现有的原子模型和理论不能解释某些观测到的物理现象。譬如,氢原子的薛定锷波函数不能解释星际物质或太阳物质的远紫外发射谱,以及在某些带有碳酸钾电解液的电解槽中,或某些带有含硝酸钾的氢附加催化剂的气体预燃室中伴随着生成低能氢原子或分子而发生的氢的异常放热现象;而这恰是本发明的部分内容。于是,在能量释放及材料方面的发展被大大局限于有限的实验室发现或不充分的商业应用。发明概述本发明包括从氢原子(分子)释放热能的方法及设备,这种方法和设备激发氢原子(分子)的电子,通过包括电化学反应体(电解离子或耦合)的反应体电子转移反应,使其衰减到低于“基态”能级的量子化势能级,所述电子转移反应从氢原子的(分子)中吸取能量以激发这些跃迁。另外,本申请包括通过提高反应速率-低能氢的生成速率,以加大功率输出的方法和设备。本发明还包括一种氢附加催化剂,一种多功能材料,它具有离解分子氢,给出自由氢原子的功能,它还伴随有支持可移动的自由氢原子的功能,和可以作为能量空穴源的功能。这种能量反应堆包括电解槽、压缩氢气池和氢气体放电槽。
一种优选的压缩氢气能量反应堆包括一个容器;一个氢源;一个控制压力和进入所述容器的氢流的装置;一种将分子氢离解成原子氢的材料,和一种处于气相可为能量空穴源的材料。气态能量空穴源包括那些在气体能量反应堆的工作温度升高的情况下升华、沸腾和/或挥发的物质,其中在气相条件下发生收缩反应。
本发明还包括用于按照本发明重复收缩反应,产生能量释放并提供具有诸如热稳定性高和反应率低等新性质的收缩原子和分子的方法和设备。低能态的原子和分子对热传递、低温应用是有用的,比如有浮力的气体、诸如斯特林发动机或透平机等发动机内的工作介质、氦的一般替代物,以及致冷剂等,通过吸收包括热能在内的能量,使电子受到激发而回到较高的能级。氢原子低于“基态”的跃迁一种新的原子理论在以下著述中得到阐述HydroCatalysisPower Corporation,Great Valley Corporate Center,41 GreatValley Parkway,Malvern,PA19355提供的,Mills.R.,The GrandUnified Theory of Classical Quantum Mechanics.(1995);Mills.R.,The Unification of Spacetime,the Forces,Matter,and Energy (Technomic Publishing Company,LancasterPA(1992));Mills.R.和Farrell,J.,The Grand Unified Theory(Science Press,Ephrata,PA,(1990));Mills.R.,Kneizys,S.,Fusion Technology,210,(1991),pp.65-81;Mills.R.,Good,W.,Shaubach,R.,“Dihydrino MoleculeIdentification”,Fusion Technology,25,103(1994);Mills.R.,Good,W.,“Fractional Quantum Energy Levels ofHydrogen”,Fusion Technology,Vol.28.No.4,November.(1995),pp.1697-1719.以及我的题为“能量/物质转换方法和设备”,序列号为08/467,051的在先美国专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/467,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引文的形式结合在本申请中。氢原子的分数量子能级实验部门给出的大量实验观察结果得到原子氢可在其能级低于传统的“基态”(n=1)的分数量子态下存在的结论。例如,以下被称为氢离子的分数量子能级氢原子的存在,对由Labov和Bowyer观察到的有关宇宙黑体物质的软X-射线发射[S.Labov和S.Bowyer,Astrophysical Journal,371(1991)810]和有关太阳的软X-射线发射[Thomas,R.J.,Neupert,W.,M.,Astrophysical Journal Supplement Series,Vol.91,(1994),pp.461-482;Malinovsky,M.,Heroux,L.,AstrophysicalJournal Supplement Series,Vol.181,(1973),pp.1009-1030;Noyes,R.,The Sun,Our Star,Harvard University Press,Cambridge,MA,(1982),p.172;Phillips,J.G.,Guide tothe Sun,Cambridge University Press,Cambridge,Great Britain,(1992),pp.118-119;120-121;144-145]给出了解释。
J.J.巴尔末于1885年表明,可以用完全经验的关系表示原子氢发射谱中所观察到的某些谱线的频率。这一研究后来曾被J.R.里德伯有所发展,他表明,原子氢的所有谱线可由下式给出v-=R(1nf2-1nt2)----(1)]]>其中R=109677cm-1,nf=1,2,3,…,ni=1,2,3,…,并且ni>nf。N.玻尔于1913年发展了有关按照里德伯方程排列给出能级的原子氢理论。根据完全不同的理论,E.薛定锷和W.海森堡于1926年各自独立地研究出一个同样的方程En=-e2n28πϵnaH=13.598eVn2----(2a)]]>n=1,2,3…(2b)其中aH是氢原子的玻尔半径(52.947pm),e是电子的电荷量,而ε0是真空介电常数。Mills理论预言方程(2b)应由方程(2c)替代,即n=1,2,3,…,and,n=12,13,14,…----(2c)]]>量子数n=1经常被用于描述氢原子的“基态”电子态。Mills在量子力学的最新发展中已证明,n=1态是“纯”光子跃迁“基”态(n=1态可吸收光子而到达被激发的电子态,但它不能放出光子而到达低能电子态),[Mills,R.,The Grand Unified Theoryof Classical Quantum Mechanics,(1995),TechnomicPublishing Company Lancaster,PA]。然而,借助“共振碰撞”机制,从基态到低能态的电子跃迁是可能的。这些低能态具有分数量子数n=(1/整数)。不产生光子却需要碰撞的过程是普遍存在的的。例如,H+H形成H2的放热化学反应就不发生光子的发射。相反,这种反应需要与第三体M碰撞,以除去结合能。该第三体通过放热反应分配能量,其结果得到H2分子,并使系统的温度增高。类似地,氢的n=1态和氢的n=(1/整数)态是非辐射的,但是,借助共振碰撞,两个非辐射态,如n=1和n=1/2态之间的跃迁是可能的。在这些情况下,碰撞过程中,电子与其它电子跃迁或电子转移反应耦合,这些反应可以吸收必须从氢原子除去的能量,即被称为能量空穴的共振能量阱。结果到达氢的低能态,并使系统的温度增高。氢原子的波动方程解最近,Mills通过根据第一原理得出一种新的原子理论而完成了通常称为量子力学的研究[Mills,R.,The Grand Unified Theoryof Classical QuantumMechanics,(1995),Technomic PublishingCompany,Lancaster,PA]。这一以下被简称为Mills理论的新理论将麦克斯韦方程、牛顿定律,以及爱因斯坦狭义和广义相对论统一在一起。这一理论的基本特点在于,所有粒子(原子大小的和宏观的粒子)都遵守同样的物理定律。尽管薛定锷曾假定一个边界条件当r→∞时,ψ→0,但在Mills理论中,从麦克斯韦方程得出此边界条件[Haus,H.A.,“On the radiation from pointcharges”,American Journal of Physics,54,(1986),pp.1126-1129.]对非辐射态而言,电流密度函数应不具有与光速下传播的波同步的空间-时间傅利叶分量。这个边界条件的应用导致各种粒子、原子、分子的一种物理模型,并且,按照最后的分析,导致宇宙学的一种物理模型。闭式数学结论只包含基本常数,而且和对物理量的计算值与实验室观察结论相符。另外,这个理论预言方程(2b)应被方程(2c)所替代。
用电荷密度(质量密度)函数来描述束缚电子,它是一个径向δ函数(f(r)=δ(r-rn))、两个角函数(球谐函数)和一个时间调和函数的乘积。因此,电子是一个下称电子轨道球的旋转二维球面,它可存在于离核只有规定距离情况下的束缚态。尤为明显的是,该轨道球包括运动电荷的一个二维球壳。该轨道球的相应电流图形包括一个相关的正交大国电流环无限序列。利用两组正交的两个正交大圆电流环叠式旋转的无限序列可在整个表面得到(Mills的

图1.4这所示的)这种电流图形[Mills,R.,The Grand UnifiedTheory of Classical OuantumMechanics,(1995),TechnomicPublishing Company,Lancaster,PA],其中坐标轴关于所述两个正交的大国旋转。所述无限序列的各个无限小转动都是关于新X-轴和新Y-轴的,所述二轴是由上述这种旋转形成的。对于两组叠式旋转之一,关于每个旋转的X-轴和Y-轴转过的角度之和总计为

π弧度。所述电流图形给出与自旋量子数对应的现象。
描述每个电子轨道球自旋运动的总函数由两个函数组成。一个函数是自旋函数,它在整个轨道球上是空间不变的,以一量子化的角速度自旋,并给出自旋角动量。另一个函数是调制函数,它可以是空间不变的—在这种情况下,不存在轨道角动量,并且所述电子轨道球的磁矩为一个玻尔磁矩—或者是空间不变的—在这种情况下,存在轨道角动量。所述调制函数也以一个量子化的角速度旋转。Mills计算了所述角速度、所容许的轨道球半径、能量及相关量的数值。
通过设定向心力等于电磁力来计算轨道球的半径。
所述轨道球是一个谐振腔,它俘获不连续频率的光子。轨道球半径随着电磁能的吸收而增加。对于可在所述轨道球谐振腔中受到激发的模式,麦克斯韦方程的解给出四个量子数,并且这种模式的能量是以实验室方式已知的氢能谱。
被激发态是不稳定的,因为电子加光子的电荷密度函数有一个径向偶极子函数分量,它与一电偶极子对应。所述偶极子具有与按光速传播的波同步的空间傅利叶变换分量;因此,它是辐射的。对于氢原子的n=1主量子态,以及对每个n=(1/整数)态来说,所述电子加光子的电荷密度函数从数学上讲,仅仅是一个径向δ函数。该δ函数不具有与按光速传播的波同步的空间傅利叶分量;因此,各自都是非辐射的。催化低能氢的电子跃迁将低于“基态”的各(分数量子)能态之间的跃迁与激发(整数量子)能态之间的跃迁相比较,可以理解,前者不受光子的作用,而后者则受到光子的作用。。跃迁对于时间是对移的。按照Mills的非辐射边界条件[Mills,R.,The Grand Unified Theory ofClassical QuantumMechanics,(1995),Technomic PublishingCompany,Lancaster,PA]给出光子的电流密度函数在相反过程中由光子建立。激发(整数量子)能态对应于这种情况。而按照非辐射边界条件不给出光子的电流密度函数,在相反过程中不由光子建立。低于“基态”的(分数量子)能态对应于这种情况。但是,原子碰撞可形成稳定态,以经历向下一个稳定态的跃迁。受与共振能量阱碰撞影响的两个非辐射态之间的跃迁与为形成一个双原子分子的两个原子的反应相类似,所述反应需要第三体的碰撞,以便除去结合能[N.V.Sidgwick,The Chemical Elements and TheirCompounds,Volume I,Oxford,Clarendon Press,(1950),p.17]。能量空穴概念Mills的非辐射边界条件和电子与光子间的关系给出作为参数n的函数而被量子化的“容许”氢能态。每个n值与一个容许跃迁对应,所述跃迁受共振光子的影响,所述光子激发电子跃迁。另外,传统的整数n值(1,2,3,…),分数值都是容许的,它们对应于具有中心力场(电荷)增强和氢原子尺寸减小的跃迁。这发生于比如电子与其它电子跃迁或电子转移反应耦合的时候,这种反应能吸收能量,即一个能量阱。这就是能量空穴的吸收。能量空穴的吸收打破了离心力与增长的电中心力之间的平衡。结果,电子经历向低能非辐射态的跃迁。
由于能量守恒,激发径向尺寸aH/(m+1)共振模式的氢原子共振能量空穴是m×27.2eV(3)其中m=1,2,3,4,…在能量空穴的共振吸收之后,轨道球半径aH缩减为aH/(m+1),并且在p次共振收缩之后,所述半径为aH/(mp+1)。换句话说,可将径向基态场看成傅利叶分量的叠加。通过m次装填光子,除去能量m×27.2eV的负傅利叶分量(其中m是整数),使球壳内正的电中心场增强。总电场是拉普拉斯方程在球坐标中的一个时间调和函数解。在这种情况下,在实现力的平衡及非辐射时的半径为aH/(m+1),其中m是整数。在从“基态”缩减到这一半径的过程中,释放的总能量为[(m+1)2-12]×13.6eV。两个稳定的受到与能量空穴碰撞影响的非辐射态之间的跃迁与两个原子形成双原子分子的反应类似,需要与第三体碰撞以除去结合能的[N.V.Sidgwick,TheChemical Elements and Their Compounds,Volume I,Oxford,Clarendon Press,(1950),p.17]。氢原子的全部势能阱被示于图1中。以下把从一个势能级到一个较低能级的跃迁所包含的放热反应称为临氢催化。
以下将其电子处于与一分数量子数对应的低于“基态”能级的氢原子称为氢离子原子。半径为a0/p(p为整数)的氢离子原子的符号是H[a0/p]。
图2中给出电子轨道球的尺寸,它是势能的函数。
一种有用的催化系统关键在于三个谐振腔的耦合,这种系统含有钾。例如钾的第二电离能是31.63eV。这个能量空穴对于共振吸收而言,显然是太高了。不过,当K+还原至K时,它放出4.34eV的能量。因此,K+到K2+与K+到K的组合具有27.28eV的净能量改变。

(5)并且,总反应为

要说明的是,原子收缩时放出的能量远大于丧失到能量空穴中的能量。而且,与普通化学反应相比,所释放的能量较大。能态的歧化低能氢原子,即氢离子可用很能够造成共振收缩的能量空穴源,因为激发和/或电离能为m×27.2eV(方程(3))。例如,在有关氢类原子的第三周期H[aH/3]与氢类原子的H[aH/2]收缩级联期间,这是作为造成共振收缩的能量空穴源而被电离的,这时,对于方程(3)中27.21eV,m=1的能量空穴吸收的方程由下式表示,即

<p>可用于本发明式I的修饰的B类脑膜炎球菌多糖N-酰基衍生多糖的具体(但非限定性)例子包括下列N-戊烯酰基(CH2=CH-CH2-CH2-CONH-);

和N-巴豆酰基(3-丁烯酰基)(CH2=CH-CH2-CONH-)

B类脑膜炎球菌多糖是从脑膜炎萘瑟球菌中,用本领域中已知的方法分离出的。在一种这样的方法中,B类脑膜炎球菌(981B株)是在发酵罐中于37℃生长,其中对每升蒸馏水用30克脱水Todd Hewitt Broth(Difco Laboratories Detroit,Michigan)。在发酵生长之前,冻干的菌株先在烛式瓶(candlejar)中,于37℃,在5%(v/v)Sheeps′Blood Agar(Difco Laboratories Detroit,Michigan)平板上生长。然后将细菌转移至锥形烧瓶中的1.0升ToddHewitt Broth(如上)中,在37℃于190rpm下振荡培养7小时。接着将接种物转移至发酵罐。在发酵生长(16小时)后,通过加入甲醛至终浓度为0.75%而杀死细菌。通过连续离心去除菌体,从上清液中分离出B类脑膜炎球菌多糖。然后基本上按Bundle等人,生物化学杂志(J.Biol.Chem.),249,4797-4801(1974)所述的方法进行纯化,不同点在于将粗制多糖溶液与冷的(4℃)90%苯酚(而不是50-60℃的热苯酚)进行搅拌,从而将蛋白质抽提出。后一步骤保证产生高分子量形式的GBMP。
大肠杆菌(018K1H7)(NRCC 4283)在发酵罐中,在含脱水Brain HeartInfusion(BHI;37克/升)(Difco Laboratories Detroit,Michigan)的蒸馏水中于37℃生长。在发酵生长之前,冻干的菌株先在锥形烧瓶中的50毫升BHI溶液(同上)中,在37℃于200rpm下振荡培养7小时。然后将这种生长物转移至1.5升BHI(同上)中并在与上述相同的条件下生长7小时。接着将接种物转移至发酵罐。
在分离和纯化大肠杆菌K1的荚膜多糖中所用的程序,与上述用于分离B类脑膜炎球菌多糖的程序是相同的。
应理解,上述的分离和纯化程序并不是唯一可用的程序,可以使用其他出版的程序,如Watson等人,免疫学杂志(J.Immunol.),81,331(1958)和上述美国专利4,727,136中所描述的程序。
氢类分子的中心力方程有轨函数解,它们是圆、椭圆、抛物线或双曲线。前两类解是与原子和分子轨迹相关的。如果满足在TheUnification of Spacetime,the Forces,Matter,and Energy,Mills,R.,Technomic Publishing Company,Lancaster,PA,(1992)的单电子原子范围内给定的非辐射边界条件,这些解是非辐射的。零辐射的数学表述是,描述电子运动的函数应该不具有空间-时间傅利叶分量,这种分量是与光速下传播的波同步的。当角频率为&omega;n=hmcrn2----(21)]]>时,轨道球的边界条件被满足。正如在The Unification of Spacetime,the Forces,Matter,andEnergy,Mills,R.,Technomic Publishing Company,Lancaster,PA,(1992)的单电子原子范围内所证实的那样,对于径向狄拉克δ函数与时间谐振函数的乘积函数这个条件被满足,其中角频率ω是常数,并由方程(21)给出。&omega;n=hmcrn2=&pi;LmcA----(22)]]>其中L是角动量,而A是闭合测地轨道的面积。考虑包含一个二维空间椭球体与一时间谐振函数乘积的中心力方程的解。所述乘积函数的空间部分是径向狄拉克δ函数与一椭球体方程的卷积。所述二函数卷积的傅利叶变换是这样一些函数各自的傅利叶变换的乘积于是,若&omega;n=&pi;hmcA=hmcab----(23)]]>则对于椭球-时间谐振函数,满足所述边界条件,其中椭圆的面积是A=πab(24)其中2a是半长轴长,2b是半短轴长。分子氢的几何形状是以核间轴为主轴的椭圆;于是,电子轨道为一二维空间的椭圆-时间谐振函数。正如由焦点处的质子中心力场所确定的那样,质量依从短程时间谐振。另外,关于核间轴的旋转对称确定,所述轨道为扁长的回转椭球。一般地说,下称椭球分子轨道(M.O.′s)的分子椭球轨道满足一般方程x2a2+y2b2+z2c2=1----(25)]]>椭球的各个半主轴为a,b,c。椭球坐标系中的拉普拉斯算符为(&eta;-&zeta;)R&xi;&delta;&delta;&xi;(R&xi;&delta;&phi;&delta;&xi;)+(&zeta;-&xi;)R&eta;&delta;&delta;&eta;(R&eta;&delta;o&delta;&eta;)+(&xi;-&eta;)R&zeta;&delta;&delta;&xi;(R&zeta;&delta;&phi;&delta;&zeta;)=0---(26)]]>椭球M.O.等效于一个表面由方程(25)给定的荷电导体。它带有总电荷q,势能为椭球坐标系中方程(26)的拉普拉斯算符解。
The Unification of Spacetime,the Forces,Matter,andEnergy,Mills,R.,Technomic Publishing Company,Lancaster,PA,(1992)的单电子原子(量子化)区段的激发态方式讨论轨道球的激发态。在椭球M.O.情况下,当不连续频率的光子落入M.O.的椭球谐振腔时,形成激发的电子态。光子改变M.O.的表面的有效电荷,所述中心力场在那里为椭球形的。在与基态椭球共焦的一系列椭球等势二维面处达到力的平衡。落入的光子是椭球坐标系中方程(26)的拉普拉斯算符解。
正如轨道球的情况那样,较高能态与较低能态是同样有效的。两种情况下的光子驻波是椭球坐标系中拉普拉斯算符解。对于椭球谐振腔而言,被容许的周界4aE与光子驻波波长λ间的关系为4aE=nλ(27)其中n是整数,并将k=a2-b2a----(28)]]>用于方程(27)的椭圆积分E中。使用方程(27)和(28),方程(23)所给定的容许角频率与光子驻波角频率ω之间的关系是&pi;hmcA=hmcna1nb1=hmcanbn=1n2&omega;1=&omega;n----(29)]]>其中n=1,2,3,4,…n=1/2,1/3,1/4,…ω1是关于n=1容许的角频率a1和b1是关于n=1容许的半长轴和半短轴。
由方程(29),与氢分子的“基态”以下跃迁相应的椭球场的量值为整数。氢类分子的势能方程为Vc=-2pe28&pi;&epsiv;0a2-b2lna+a2-b2a-a2-b2----(30)]]>Vp=p8&pi;&epsiv;0e2a2-b2----(31)]]>其中a=a0p----(32)]]>b=1p2a0----(33)]]>c&prime;=a2-b2=2a02p----(34)]]>并且,其中p为整数。由于能量守恒,造成跃迁

的氢类分子的谐振能量空穴是mp2×48.6eV(36)其中m和p都是整数。跃迁过程中,椭球场从量值p增加到p+m。相应的势能变化等于所述能量空穴吸收的能量。
能量空=-Ve-Vp=mp2×48.6eV (37)另外,随着核间距离的“收缩”,由氢类分子释放能量。跃迁过程中释放的总能量Er是Er=-13.6eV[(2(m+p)22-(m+p)22+(m-p)222)ln2+12-1-(m+p)22]]]>-13.6eV[(2p22-p22+p222)ln2+12-1-p22]----(38)]]>图3给出氧类分子及分子离子的总能量势阱示意图。包含从一个势能级到一个低于“基态”的较低能级跃迁的放热反应也被称为临氢催化。以下将氢类分子具有其电子处于与分数量子数对应的低于“基态”的能级者称为二氢分子。核间距离为2c&prime;=2a0/p]]>(p为整数)的二氢分子的符号是H2*[2c&prime;=(2a0)/p]]]>。图4给出氢类分子的尺寸作为总能量函数的示意图。
与第一个低于“基态”氢类分子对应的椭球场的量值为2。由于能量守恒,激发核间距2c&prime;=a0/2]]>的氢分子跃迁到第一个低于“基态”的氢分子谐振能量空穴由方程(30)和(31)给出,其中椭球场从量值1增加到量值2Vc=-2e28&pi;&epsiv;0a2-b2lna+a2-b2a-a2-b2=-67.813eV----(39)]]>Vp=e28&pi;&epsiv;0a2-b2=19.23eV----(40)]]>Energyhole=-Ve-Vp=m×486eV(41)换句话说,可将氢分子的椭球“基态”场考虑为傅利叶分量的叠加。除去能量m×48.6eV(42)的负傅利叶分量(其中m为整数),在每个焦点处,椭球壳内的正电场增加m倍质子的电荷。总电场是椭球坐标系中拉普拉斯算符的时间调和函数解。使核间距2c&prime;=2a0]]>的氢分子经历一次到低于“基态”能级的跃迁, 实现力平衡及非辐射的核间距为2c&prime;=2a0/(1+m)]]>。从“基态”减小到这个核间距时,放出总能量Er=-13.6eV[(2(1+m)22-(1+m)22+(1+m)222)ln2+12-1-(1+m)22]----(43)]]>+13.6eV[(22-2+22)ln2+12-1-2]]]>能量空穴(分子氢)在一个优选实施例中,由包含电化学反应体(电催化离子或耦合)的反应体电子转移反应给出能量空穴,每个都接近m×48.6eV,所述电化学反应体随着它们的电子受到激发而降到低于“基态”的量子化势能级,造成从氢分子放出热量。由电子转移反应除去的能量,即能量空穴,与为激发这种引起所释放的氢能量共振。氢分子来源可以是电解能量反应堆情况下水电解过程中阴极表面的产物,以及压缩气体能量反应堆或气体放电能量反应堆情况下的氢气或氢化物。能量反应堆在电解槽能量反应堆、压缩气体能量反应堆和气体放电能量反应堆中应用的本发明包括一个氢源;固态、熔融态、液态及气态能量空穴源之一;盛有氢和能量空穴源的容器,其中通过氢与各能量空穴源的接触而引起收缩反应;还包括一个用于除去(分子)低能氢,以免放热收缩反应出现平衡的装置。通过使所述能量空穴与共振收缩能一致,使所述收缩反应速率及净功率输出增加。一般来说,通过控制氢气的温度、压力,包含提供能量空穴的电催化离子及耦合的能量空穴源,所述电催化离子及耦合的平衡离子,以及其上发生收缩反应的表面面积,可使功率输出最佳化。本发明还包括一种氢附加催化剂,一种多功能材料,它具有离解分子氢,给出自由氢原子的功能,它还具有支持可移动的自由氢原子的功能,和可作为能量空穴源的功能。
一种优选的压缩氢气能量反应堆包括一个容器;一个氢源;一个控制压力和进入所述容器的氢流的装置;一种将分子氢离解成原子氢的材料,和一种处于气相可为能量空穴源的材料。气态能量空穴源包括在气体能量反应堆升高的工作温度下发生升华、沸腾,和/或具有挥发性的物质,其中在气相条件下发生收缩反应。
根据以下参照附图的描述和所附各权利要求,将使本发明的其它目的、特征和特点,以及工作方法和各有关部分的功能变得愈加清晰,它们都构成本说明书的一部分,其中相同的参考标号表示各图中的相应部分。附图简介图1是氢原子全部能阱的示意图;图2是起势能作用的电子轨道球尺寸的示意图;图3是氢分子H2[2c&prime;=2a0]]]>、 氢分子离子H2[2c′=2a0]+、双氢分子H2*[2c&prime;=a0/2]]]>、 及双氢分子离子H2*[2c′=a0]+的全部能阱的示意图;图4是作为总能量函数的氢类分子H2*[2c&prime;=2a0/p]]]>尺寸的示意图;图5是根据本发明的一种能量反应堆的示意图;图6是根据本发明的电解槽能量反应堆的示意图;图7是根据本发明的压缩气体能量反应堆的示意图;图8是根据本发明的气体放电能量反应堆的示意图;图9是根据在有含锶铌氧化物(Nb3+/Sr2+电催化耦合)的氧化镍粉末情况下,利用非常精确和可靠的量热法,并用热电偶将热能转换成电输出信号得出的从流动的氢过量放热的图线。优选实施例的详细描述关于原子的催化能量空穴结构单电子激发态通过一种核素的电子跃迁成激发态核素给出能量空穴,所述激发态核素包括原子、离子、分子以及离子的和分子的组合的连续激发态。在一个实施例中,所述能量空穴包括一种核素的电子激发态跃迁,从而使所允许的核素的跃迁能量近似等于m×27.21eV,其中m为整数。单电子转移通过一个电子在包括原子、离子、分子以及离子的和分子的组合在内的各参与核素间的转移给出能量空穴。在一种具体实施例中,所述能量空穴包括一个电子从一个核素到另一个核素的转移,从而使电子施主核素的电离能之和减去电子受主核素的电离能或电子亲和势能近似等于m×27.21eV,其中m为整数。单电子转移(两种核素)一种关键在于三个谐振腔耦合的有效催化系统包含钾。例如,钾的第二电离能是31.63eV。对于共振吸收来说,这样的能量空穴显然是过高的。不过,当K+降至K时,K+放出4.34eV。因此,K+至K2+和K+至K的组合具有27.28eV的净能量改变;方程(3)中的m=1。

(45)并且,全部反应为

应予说明的是,原子收缩时放出的能量远大于对能量空穴所失去的能量。再有,与普通化学反应相比,所述放能是大的。
对于钠或钠离子来说,约为27.21eV的非电催化反应是可能的。例如,通过以Na+替代K+,替换方程(45)中给出的反应,可吸收42.15eV的能量(47)另一种效果稍差的催化系统关键在于三个谐振腔的耦合。例如,钯的第三电离能是32.93eV。对于共振吸收来说,这样的能量空穴显然是过高的。不过,当Li+降至Li时,Li+放出5.392eV。因此,Pd2+至Pd3+和Li+至Li的组合具有27.54eV的净能量改变。


(49)并且,全部反应为

单电子转移(一种核素)通过包括原子、离子、分子以及离子的和分子的组合在内的各参与核素的一个电子到一真空能级的电离给出能量空穴。在一种具体实施例中,所述能量空穴包括一种核素的一个电子到真空能级的电离,从而使电子施主核素的电离能近似等于m×27.21eV,其中m为整数。
钛是一种催化剂(电催化离子),由于第三电离能为27.49eV,方程(3)中的m=1,所以它能引起共振收缩。于是,第p周期的收缩级联可由下式表示

(52)并且,全部反应为

铷也是一种催化剂(电催化离子)。第二电离能为27.28eV。

(55)并且,全部反应为

其它用以提供接近m×27.21eV(其中m为整数)能量空穴的单电子转移反应公开在我的发明题目为“能量/物质转换方法和设备”的美国专利申请中(序号No.08/467,051,1995.6.6申请),这是1995.4.3提出的序号为No.08/416,040的部分继续申请,而它又是1993.8.16提出的序号为No.08/107,357的部分继续申请,而它又是1993.6.11提出的序号为No.08/075,102(Dkt.99437)的部分继续申请,而它又是1990.12.12提出的序号为No.07/626,496的部分继续申请,而它又是1989.4.28提出的序号为No.07/345,628的部分继续申请,而它又是1989.4.21提出的序号为No.07/341,733的部分继续申请,这些专利均以引用方式结合在本申请中。多电子转移通过多个电子在包括原子、离子、分子以及离子的和分子的组合在内的各参与核素间的转移给出能量空穴。在一个实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于m×27.21eV,其中m和t均为整数。
通过多个电子在包括原子、离子、分子以及离子的和分子的组合在内的各参与核素间的转移给出能量空穴。在一个实施例中,所述能量空穴包括t个电子从一种核素到另一种核素的转移,从而使电子施主核素的t个相邻的电子亲和势和/或电离能减去电子受主核素的t个相邻的电离能和/或电子亲和势近似等于m×27.21eV,其中m和t均为整数。
在一个优选实施例中,电子受主核素为诸如MnOx、AlOx、SiOx等氧化物。优选的分子电子受主是氧,即O2。两个电子转移(一种核素)在一个实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到一真空能级的转移,使得两个电离能之和近似等于27.21eV。锌是一种催化剂(电催化离子),由于第一与第二电离能之和为27.358eV,方程(3)中的m=1,所以它能引起共振收缩。于是,第p周期的收缩级联可由下式表示

(58)并且,全部反应为

两个电子转移(两种核素)在另一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一原子或分子的转移,使得两个电离能之和减去参与的原子、离子和/或分子的两个电子亲和势之和近似等于27.21eV。一种催化系统关键在于一个原子的两个电子到一个包括钯和氧的分子的转移。例如,钯的第一与第二电离能分别是8.34eV和19.34eV。而氧分子的第一与第二亲和势分别是0.45eV和0.11eV。使两个电子转移所得的能量空穴当作共振能量用。于是Pd到Pd2+和O2到O22-的组合具有27.21eV的净能量改变。

(61)并且,全部反应为

其它的可被用于取代O2的原子、分子或组合是那些分别具有接近0.45eV和0.11eV的第一与第二亲和势的,比如含有O以形成O2-或者含有O2以形成O22-的混合氧化物(MnOx、AlOx、SiOx)。两个电子转移(两种核素)在又一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一原子、离子或分子的转移,使得两个电离能之和减去参与的原子、离子和/或分子的一个电离能及一个电子亲和势之和近似等于27.21eV。一种催化系统关键在于一个原子的两个电子到一个包括氙和锂的离子的转移。例如,氙的第一与第二电离能分别是12.13eV和21.21eV。而锂的第一电离能与第一电子亲和势分别是5.39eV和0.62eV。使两个电子转移所得的能量空穴当作共振能量用。于是Xe到Xe2+和Li+到Li-的组合具有27.33eV的净能量改变。

(64)并且,全部反应为

两个电子转移(两种核素)再一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一原子、离子或分子的转移,使得两个电离能之和减去参与的原子和/或分子的两个电离能之和近似等于27.21eV。一种催化系统关键在于第一离子的两个电子到一个包括银(Ag+)和银(Ag2+)的第二离子的转移。例如,银的第二与第三电离能分别是21.49eV和34.83eV。而银的第二和第一电离能分别是21.49eV和7.58eV。使两个电子转移所得的能量空穴当作共振能量用。于是Ag+到Ag3+和Ag2+到Ag的组合具有27.25eV的净能量改变。

(67)并且,全部反应为

三电子转移(两种核素)再一种实施例中,一种催化系统提供能量空穴,关键在于一个离子的三个电子到另一离子的转移,使得第一离子的电子亲和势及两个电离能之和减去第二离子三个电离能之和近似为27.21eV。一种催化系统关键在于一个离子的三个电子到一个包括Li-和Cr3+的第二离子的转移。例如,锂的电子亲和势、第一电离能与第二电离能分别是0.62eV、5.392eV和75.638eV。而Cr3+的第三、第二和第一电离能分别是30.96eV、16.50eV和6.766eV。使三个电子转移所得的能量空穴当作共振能量用。于是Li-到Li2+和Cr3+到Cr的组合具有27.42eV的净能量改变。


(70)并且,全部反应为

三电子转移(两种核素)再一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的三个电子到另一原子、离子或分子的转移,使得电子施主核素的三个相邻电离能之和减去电子受主核素的三个相邻电离能之和近似为27.21eV。一种催化系统关键在于一个原子的三个电子到一个包括Ag和Ce3+的离子的转移。例如,银的第一、第二和第三电离能分别是7.58eV、21.49eV和34.83eV。而Ce3+的第三、第二和第一电离能分别是20.20eV、10.85eV和5.47eV。使三个电子转移所得的能量空穴当作共振能量用。于是Ag到Ag3+和Ce3+到Ce的组合具有27.38eV的净能量改变。


(73)并且,全部反应为

附加的催化能量空穴结构单电子转移在又一种实施例中,能量空穴的能量等于对氢原子的“基态”以下跃迁所释放的总能量,这种跃迁是由一个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移提供的。在一种实施例中,所述能量空穴包括一个电子从一个核素到另一核素的转移,从而使电子施主核素的电离能之和减去电子受主核素的电离能或电子亲和势近似等于(m/2)27.21eV,其中m为整数。
对于与n=1到n=1/2的跃迁相应的m=3,一种有效的催化系统关键在于包含砷和钙的三个谐振腔的耦合。例如,钙的第三电离能是50.908eV。对于共振吸收来说,这一能量空穴显然是过高的。不过,当As+降到As时,As+释放9.81eV。于是Ca2+到Ca3+和As+到As的组合具有41.1eV的净能量改变。

(76)并且,全部反应为

多电子转移通过多个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于(m/2)27.21eV,其中m和t均为整数。分子的催化能量空穴结构单电子激发态通过一种核素的一个电子到一个包括原子、离子或分子以及原子的和分子的组合在内的激发态核素的跃迁,给出能量空穴。在一种实施例中,所述能量空穴包括一种核素的一个电子激发态跃迁,从而使受主核素的跃迁能量是mp2×48.6eV,其中m和p均为整数。单电子转移通过一个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括一个电子从一种核素到另一种核素的跃迁,从而使电子施主核素的电离能之和减去电子受主核素的电离能或电子亲和势近似等于mp2×48.6eV,其中m和p均为整数。单电子转移(两种核素)一种有效的催化系统关键在于包含铁和锂的三个谐振腔的耦合。例如,铁的第四电离能是54.8eV。对于共振吸收来说,这一能量空穴显然是过高的。不过,当Li+降到Li时,Li+释放5.392eV。于是Fe3+到Fe4+和Li+到Li的组合具有49.4eV的净能量改变。

(79)并且,全部反应为

应予说明的是,原子收缩时放出的能量远大于对能量空穴所失去的能量。再有,与普通化学反应相比,所述放能是大的。
一种有效的催化系统关键在于包含钪的三个谐振腔的耦合。例如,钪的第四电离能是73.47eV。对于共振吸收来说,这一能量空穴显然是过高的。不过,当Sc3+降到Sc2+时,Sc3+释放24.76eV的能量。于是Sc3+到Sc4+和Sc3+到Sc2+的组合具有48.7eV的净能量改变。

(82)并且,全部反应为

一种有效的催化系统关键在于包含钇的三个谐振腔的耦合。例如,镓的第四电离能是64.00eV。对于共振吸收来说,这一能量空穴显然是过高的。不过,当Pb2+降到Pb+时,Pb2+释放15.03eV的能量。于是Ga3+到Ga4+和Pb2+到Pb+的组合具有48.97eV的净能量改变。


(85)并且,全部反应为

单电子转移(一种核素)通过包括原子、离子或分子以及原子的和分子的组合在内的各参与核素的一个电子到一真空能级的转移,给出能量空穴。在一种实施例中,所述能量空穴包括一种核素的一个电子到一个真空能级的电离,从而使电子施主核素的电离能近似等于mp2×48.6eV,其中m和p均为整数。多电子转移通过多个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于mp2×48.6eV,其中m、p和t均为整数。
通过在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的多电子转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种核素到另一种核素的转移,从而使电子施主核素的t个相邻电子亲和势和/或电离能之和减去电子受主核素的t个相邻电离能和/或电子亲和势近似等于mp2×48.6eV,其中m、p和t均为整数。
在一个优选实施例中,电子受主核素为诸如MnOx、AlOx、SiOx等氧化物。优选的分子电子受主是氧,即O2。两个电子转移(一种核素)在一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一原子或分子的转移,使得两个电离能之和近似等于mp2×48.6eV,其中m和p均为整数。两个电子转移(两种核素)在另一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一个原子或分子的转移,使得两个电离能之和减去参与的原子、离子和/或分子的两个电子亲和势之和近似等于mp2×48.6eV,其中m和p均为整数。两个电子转移(两种核素)在又一种实施例中,一种催化系统提供能量空穴,关键在于一个原子、离子或分子的两个电子到另一原子、离子或分子的转移,使得两个电离能之和减去参与的原子、离子和/或分子的一个电离能及一个电子亲和势之和近似等于mp2×48.6eV,其中m和p均为整数。其它能量空穴在又一种实施例中,通过包括电化学反应体(电催化离子或耦合)的反应体电子转移反应给出能量空穴,每个都接近由方程(30)给出的m×67.8eV,-mXVc=-mX-2e28&pi;&epsiv;0a2-b2lna+a2-b2a-a2-b2]]>=mX67.813eV(87)所述电化学反应体引起从氢原子随着它们的电子受到激励,致其降到低于“基态”的量子化势能级而放出热量。由电子转移反应所除去的能量,即能量空穴,与为激励这种跃迁所释放的氢的能量共振。氢分子的来源是电解能量反应堆情况下水电解过程中阴极表面上的产物,以及压缩气体能量反应堆或气体放电能量反应堆情况下的氢气或氢化物。
通过一个或多个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于m×67.8eV,其中m和t均为整数。
一种有效的催化系统关键在于包含镁和锶的三个谐振腔的耦合。例如,镁的第三电离能是80.143eV。对于共振吸收来说,这一能量空穴显然是过高的。不过,当Sr2+降到Sr+时,Sr2+释放11.03eV。于是Mg2+到Mg3+和Sr2+到Sr+的组合具有69.1eV的净能量改变。


(89)并且,全部反应为

另一种有效的催化系统关键在于包含镁和钙的三个谐振腔的耦合。在这种情况下,当Ca2+降到Ca+时,Ca2+释放11.871eV。于是Mg2+到Mg3+和Ca2+到Ca+的组合具有68.2eV的净能量改变。


(92)并且,全部反应为

在四个其它的实施例中,其中的理论公开在我的序号为No.08/107,357美国专利申请中(1993.8.16申请),该参考文献以引用方式结合在本申请中,包含有能量空穴,每个近似为n×EreV,具有0级振动,其中Er由方程(38)给出;n×31.94eV,其中的31.94eV由美国专利申请序列No.08/107,357给出,n和m为整数。ED=E(2H[a0])-Erzero ocder-Evib2=-27.21+31.94=4.73eV----(222)]]>并且通过包括电化学反应体(电催化离子或耦合)的反应体电子转移反应给出95.7eV(对应于方程(4 3)中m=1,具有0级振动,由美国专利申请序列No.08/107,357的方程(254)和(222)中的差-Er0级-(Evib/2)给出。)ED=E(2H[a02])-Erzero ocder-Evib2=-108.8+127.66=18.86eV----(254)]]>所述电化学反应体引起氢分子随着它们的电子受到激励,致其降到低于“基态”的量子化势能级而从中放出热量。由电子转移反应所除去的能量,即能量空穴,与为激励这种跃迁所释放的氢的能量共振。氢分子的来源是电解能量反应堆情况下水电解过程中阴极表面上的产物,以及压缩气体能量反应堆或气体放电能量反应堆情况下的氢气或氢化物。
通过一个或多个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于m×31.94eV(方程(222)),其中m和t均为整数。
通过一个或多个电子在包括原子、离子或分子以及原子的和分子的组合在内的各参与核素之间的转移,给出能量空穴。在一种实施例中,所述能量空穴包括t个电子从一种或多种核素到一种或多种核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于m×95.7eV,其中m和t均为整数。能量反应堆图5表示本发明的一种能量反应堆50,它包括装有能量反应混合物54的容器52、热交换器60和蒸汽发生器62。热交换器60吸收当由可收缩材料组成的反应混合物收缩时收缩反应所释放的热能。此热交换器与蒸汽发生器62交换热能,所述蒸汽发生器从热交换器60吸收热能,产生蒸汽。能量反应堆50还包括汽轮机70,它从蒸汽发生器62接受蒸汽,并给功率发生器80供给机械功率,功率发生器80将蒸汽的能量转换成电能,这些能量可为负荷90所接受而作功,或用于消耗。
能量反应混合体54包括放能材料56和能量空穴源58,其中放能材料56包括氢同位素原子源或分子氢同位素源,所述能量空穴源58以谐振方式除去约m×27.21eV,造成原子氢“收缩”和约m×48.6eV,造成分子氢“收缩”,其中m为整数,这里的收缩反应是由氢与能量空穴源接触引起的。所述收缩反应释放热能,并使原子和/或分子收缩。
氢源可为氢气,包括热离解的水的离解,水的电解,来自氢化物的氢,或来自金属-氢溶液的氢。各实施例中的能量空穴源可以是一种或多种电化学的、化学的、光化学的、热的、自由基的、声学的或者核反应或非弹性光子或粒子散射反应。在后两种情况下,本发明的能量反应堆包括一个粒子源75b和/或光子源75a,用以供给所说的能量空穴。在这些情况中,能量空穴响应由所述光子或粒子所致的受激发射。在图7和8分别表示的压缩气体能量反应堆及气体放电反应堆优选实施例中,光子源75a将氢分子离解成氢原子。光子源至少产生一种能量约为m×27.21eV、(m/2)×27.21eV或40.8eV的光子,随着氢原子经历所述收缩反应,而引起能量的受激发射。在另一种优选实施例中,光子源75a至少产生一种能量约为m×48.6eV、95.7eV或m×31.94eV的光子,随着氢分子经历所述收缩反应,而引起能量的受激发射。在各种反应混合体中,一个经过选择的外部能量装置75,比如电极,可被用于供给静电势或电流(磁场),以减小反应体吸收能量空穴的激活能。在另一种实施例中,混合体54还包括一个面层或材料,用以离解和/或吸收放能材料56的原子和/或分子。这样的面层或材料用以离解和/或吸收氢、氘或氚,它们包含元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Ht、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。在一种优选实施例中,用以收缩氢原子的能量空穴源包括催化能量空穴材料58,这种材料通常包括电催化离子及耦合,它们提供约为m×27.21eV±1eV的能量空穴。在一种优选实施例中,用以收缩氢分子的能量空穴源包括催化能量空穴材料58,这种材料通常包括那些提供约为m×48.6eV±5eV的能量空穴的电催化离子及耦合。所述电催化离子及耦合包括公开在我的题为“能量/物质转换方法和设备”,序列号为08/467,051的美国在先专利申请(1995.6.6申请)中的那些电催化离子及耦合,该申请是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续中请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用的方式结合在本申请中。
再一个实施例是包含一个能量空穴源的容器52,所说能量空穴源包括成熔融态、液态、气态或固态的电催化离子及耦合(能量空穴源),以及一个包括氢化物和气态氢的氢源。在反应堆收缩氢原子的情况下,该实施例还包括一个用以将分子氢离解成原子氢的装置,所述原子氢包含元素、化合物、合金,或过渡元素、内过渡元素、铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物,或者包括光子源75提供的UV光的电磁辐射。
在电解槽能量反应堆、压缩气体能量反应堆及气体放电能量反应堆中应用的本发明包括一个氢源;固态、熔融态、液态及气态能量空穴源之一;装有氢和能量空穴源的容器,其中通过氢与能量空穴源的接触而发生收缩反应;还包括一个用于除去(分子)低能氢,以免放热收缩反应出现平衡的装置。该能量发明还在下列文献中有所描述,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的美国在先专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请。还有我的出版物Mills.R.,Kneizys,S.,Fusion Technology,210,(1991),pp.65-81;Mills.R.,Good,W.,Shaubach,R.,“Dihydrino Molecule Identification”,Fusion Technology,25,103(1994);Mills.R.,Good,W.,“Fractional QuantumEnergy Levels of Hydrogen”,Fusion Technology,Vol.28.No.4,November.(1995),pp.1697-1719.这些参考文献均以引用方式结合在本申请中。电解能量反应堆一种电解能量反应堆在下文中有所描述,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的美国在先专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用方式结合在本申请中。本发明能量反应堆的一种优选实施例包括一个电解槽,构成图5的反应容器52,包括熔融电解槽。电解槽100被一般性地表示于图6中。通过电源110所带动的电源控制器108将电压加给阳极104和阴极106,使电流通过电解溶液102,所述溶液中有电催化离子及耦合,用以提供等于共振收缩能量的能量空穴(包括在以引用方式结合在本申请中的我的美国在先专利申请中描述的电催化离子及耦合)。也可以利用振动装置112将超声能或机械能送给阴极106和电解溶液102。可以利用加热器114给电解溶液102供送热量。本发明的电解槽100可由压力调节装置116来控制,所述槽可为封闭的。本发明反应堆还包括一个用于除去(分子)低能氢,以免放热收缩反应达到平衡的装置101,如一个选择性通流阀。
在一种优选实施例中,通过以氢源121加给氢的过压,而使所述电解槽在零电压隙下工作,其中的过压可由压力控制装置122和116控制。在阴极106处可使水被还原成氢和氢氧化物,而在阳极104处可使氢被氧化成质子。一种电解槽能量反应堆的实施例具有反向燃料电池的结构,以在真空下除去低能氢。这种实施例的首选阴极106具有改型的气体扩散层,并有一气路机构,它包括第一泰氟隆薄膜过滤器与第二碳纸/泰氟隆薄膜过滤器复合层。另一种实施例包括一个反应容器,除了与所述容器100顶部的冷凝器140相连外,可使它被封闭。该槽可在沸点下工作,以便可使从沸腾电解液102蒸发的蒸汽在冷凝器140中冷凝,并使冷凝水返回容器100。低能态氢可以通过冷凝器140顶部被排出。在一种实施例中,所述冷凝器包含一个氢/氧复合器145,它与所放出的电解气体接触。氢与氧重新复合,所得到的水可回到容器100。放热反应所放出的热导致以电解方式还原的氢原子(分子)的电子经历到“基态”以下能级的跃迁,并且,可以用图5的热交换器60除去由于以电解方式产生的常态氢和氧的复合所放出的热量,所述热交换器可与冷凝器140相连。
在没有外部电场存在的情况下,在真空中激发氢原子(分子)经历收缩跃迁的能量空穴是m×27.21eV(m×48.6eV),其中m为整数。当原子(分子)处在与真空不同的介质中时,可改变这种共振收缩能量。一个例子是被阴极106吸收的氢原子(分子)存在于含水的电解溶液102中,溶液中有所加给的电场和固有电场,或者由外部磁场发生器75提供的磁场。在这些情况下,所需的能量空穴可能稍有不同于m×27.21eV(m×48.6eV)。因此,在这些条件下工作时,可以选择包括电催化离子和耦合反应体的能量空穴源,具有与共振收缩能量共振的氧化还原(导致转移)能量。在使用镍阴极106电解含水溶液102的情况下,其中电解槽在1.4至5V范围的电压内工作,于是,为了收缩氢原子(分子),K+/K+和Rb+(Fe3+/Li+和Sc3+/Sc3+)电催化离子和耦合是优选的具体实例。
阴极给出氢原子(分子),并且收缩反应发生在阴极表面,氢原子(分子)和能量空穴源(电催化离子和耦合)在这里接触。因此,收缩反应可能与阴极表面面积有关。对于给每单位面积以恒定氢原子(分子)浓度的恒定电流密度而言,表面面积的增加,增多了可用于经历收缩反应的反应体。另外,阴极表面面积的增加,降低了电解槽的电阻,这提高了电解的效率。包括镍阴极的电解槽优选阴极具有表面面积大、受压面及硬化面,如冷压延或冷加工面大,而且粒度极限值大。
在电解槽能量反应堆的一种优选实施例中,可用以下方法将能量空穴源引入阴极,即包括将能量空穴源冷加工到阴极表面在内方法的机械方式;包括将能量空穴源熔融到阴极表面,以及蒸发能量空穴源溶液中的溶剂与阴极表面接触在内方法的热方式;和包括电解沉积、离子轰击及真空沉积在内方法的静电方式。
收缩反应的速率可由阴极106的成分决定。氢原子(分子)是反应体,用以经收缩反应降低能量。因此,阴极必须有效地提供高浓度的氢原子(分子)。阴极106可由任何元素、化合物、合金,或导体与半导体的混合物组成,所述半导体包括过渡元素及混合物,锕系和镧系元素及混合物,以及IIIB族和IVB族元素及混合物。过渡金属使氢气离解成原子,其或多或少的范围取决于所述金属。镍和钛容易离解氢分子,也是用来收缩氢原子的优选实例。这种阴极可以改变被吸收的氢原子(分子)能量,以及影响所述收缩反应的能量。可以选择一种阴极材料,它提供能量空穴与共振收缩能之间的共振。在以碳酸盐作为用以催化氢原子的抗衡离子K+/K+电催化耦合情况下,阴极材料与所述反应速率的关系是Pt<Pd<<Ti.Fe<Ni当这些材料吸收氢原子时,此关系可以是相反的放能次序。因此,对于电催化耦合而言,可以通过使用弱吸收氢原子的阴极,对这些原子的电能干扰小,来提高反应速率。
另外,若介质为非线性介质,如被磁化的铁磁介质,则可使各谐振腔的耦合及它们之间能量转移的加强得到提高。因此,通过增强氢原子的共振收缩能量与包含电催化离子或耦合之能量空穴的耦合,顺磁阴极或铁磁阴极、非线性磁化介质提高所述反应的速率。另一种选择,可由磁场发生器75施加一磁场。阴极处的磁场改变被吸收的氢的能量,并伴随着改变共振收缩能。磁场还通过改变反应中所涉及到的电子能级而干扰电催化反应(能量空穴)。选择阴极的磁特性以及由磁场发生器75施加磁场强度,以使收缩反应速率-功率输出得到优化。首选的铁磁性阴极为镍。
清洁具有镍阴极的电解槽阴极的首选方法是,在一种含有大约0.57MX2CO3(X是包括K+在内的电解液阳离子)的碱性电解液中阳极氧化处理所述阳极,并将阴极浸在H2O2稀释液,比如接近3%的H2O2中。这种清洁方法的另一种实施例中,以与第一电极同样材料的第二电极实行循环伏安法。然后可用蒸馏水将阴极整个漂洗。阴极表面上的有机材料抑制电解反应,从而使以电解方式所得氢原子(分子)的电子经历到低于“基态”能级的跃迁。采用这种方法清洁,从阴级表面除去有机材料,并将氧原子加到该阴极表面上。通过减少氢重新结合成分子氢,并减小金属与氢原子(分子)间的结合能,实现被吸收的氢的收缩能与包括K+/K+(Sc3+/Sc3+)电催化耦合的能量空穴源所提供的能量空穴的共振,通过氧化阴极,在包括镍表面的金属表面上掺杂氧原子,并在H2O2中清洗阴极,从而增加功率输出。
不同的阳极材料有不同的水氧化超电势,这可以改变欧姆损失。低超电势阳极将使效率提高。包括镀钛的,且空间稳定的阳极为首选阳极。在K+/K+电催化耦合情况下,其中用碳化物作为抗衡离子,镍是首选阳极。对于在碱性溶液中使用镍阴极而言,镍也是首选阳极。相对于铂,镍是便宜的,并且在电解过程中,可使新的镍被电镀到阴极上。
一种清洁包括镍铂阳极的空间稳定阳极的优选方法是把该阳极放入接近3M HCl中约5分钟,再以蒸馏水漂洗之。
在氢原子收缩情况下,阴极106表面的氢原子形成氢气,它们可在阴极表面上形成气泡。这些气泡在氢原子与电催化离子或耦合之间起界层作用。可以通过振动阴极和/或电解液102,或者通过由振动装置112施加超声波,使所述界层得到改善;还通过给电解液102施加润湿剂,以减小水的表面张力。使用具有光滑表面的阴极或丝状阴极,可防止气体附着。另外,由电源控制器108通断电路提供的周期性电流提供对氢原子的周期性补充,这些氢原子是随着扩散到所述溶液中而形成氢气,但又要避免可能形成界层的过量氢气形成,所消耗的。
收缩反应可以是与温度相关的。温度每升高10℃,部分化学反应的速率翻一倍。温度增高时,氢原子(分子)与电催化离子或耦合间的碰撞速率也增高,这将提高收缩反应的速率。随着温度偏离室温越大,可使反应体的动能分布充分改变,造成能量空穴与共振收缩能不同程度地相一致。所述速率可与这些能量的一致或共振的程度成正比。可将温度调整得使收缩反应速率-能量生成的速率最优化。在K+/K+电催化耦合情况下,一种优选实施例可以使得通过用加热器114加给热量而超过室温条件下发生反应。
收缩反应可能与电流密度有关。在某些情况下,提高电流密度可以是等效的,而且反应体的能量随着电流密度而增加。因此,通过提高反应体的碰撞速率,可使所说的速率提高;不过,所述速率的增加或减小,与被增加的反应体能量对能量空穴与共振收缩能相符的影响有关。另外,在氢原子收缩的情况下,借助欧姆加热,被增大的电流离解更多的能量,并能引起氢气泡的形成。但是,高气流可能消除气泡,这将使各种氢气界层削弱。可用电源控制器108调整所述电流密度,以使多余能量的生成最优。在一种优选实施例中,所述电流密度可在每平方厘米1至1000安培的范围。
含水电解液102的pH值可改变收缩反应的速率。在使电催化离子或耦合带正电的情况下,pH值的增加将减小负阴极处的水合氢离子的浓度;从而使电催化离子或耦合阳离子的浓度增加。反应体浓度的增加,增大了反应的速率。在Rb+或K+/K+(Sc3+/Sc3+)离子或耦合的情况下,首选pH值可以是碱性的(7.1-14)。
电解液102的电催化离子或耦合的抗衡离子,通过改变跃迁状态的能量,可以改变收缩反应的速率。例如,K+/K+电催化耦合与氢原子的跃迁状态复合有两个正电荷,并包含三体碰撞,这可能是不适宜的。带两个负电荷的氧离子可结合两个钾离子;于是,给出一个低能的中性跃迁状态复合,其形成取决于一次二元碰撞,这可能是非常有利的。所述速率可取决于作为所述复合组成部分的钾离子与氧离子的分开距离。分开的距离越大,越不利于它们之间的电子转移。钾离子的并列靠紧会提高所述速率。在采用K+/K+耦合情况下的反应速率与抗衡离子的关系可为OH-<PO43,HPO32-<SO42<<CO32-于是,可将包含碳化物的平面二价氧离子首选为K+/K+电催化耦合的抗衡离子,所述碳化物具有两个以上K+的结合点,而为K+离子提供并列靠紧。碳化物的抗衡离子也可以是Rb+电催化离子的优选抗衡离子。
包括一个周期性电流通断电解电路的电源控制器108,通过使作为时间函数的电场最佳化,提供最大的反应体能量相符性,将增加多余热能,给出最佳的氢原子(分子)浓度,却使电阻电解功率损失最小,并且,在氢原子收缩情况下,使氢气分界层的形成最小化。调整频率、占空因数、峰值电压、阶跃波形、峰值电流、及补偿电压,以达到最佳的收缩反应速率和收缩反应功率,却使电阻及电解功率损失最小。在以碳酸盐为抗衡离子、镍为阴极、铂为阳极而可以使用K+/K+电催化耦合情况下,一种优选的实施例可为采用脉冲方波,它的偏置电压约为1.4-2.2V、峰值电压约为1.5-3.75V、峰值电流约为每平方厘米阴极表面面积1mA-100mA、占空因数约为5%-90%、频率在1Hz-1500Hz范围。
通过重复收缩反应可释放其余的能量。经过收缩的原子(分子)扩散到阴极的晶格中。可采用阴极106,这将有助于多次氢原子(分子)收缩反应。一种实施例是使用一种阴极,可使之对于电催化离子或耦合产生裂缝和多孔,以便能接触已扩散到晶格中的被收缩的原子(分子),所述晶格包括金属的晶格。另一个实施例是使用改换电解过程中给出氢原子(分子)的材料层的阴极,这包括过渡金属和电催化离子或耦合,使氢原子(分子)周期性地、重复扩散,与电催化离子或耦合接触。
所述反应可与介质的介电常数有关。介质的介电常数改变阴极处的电场,并随之改变反应体的能量。介电常数不同的溶剂有不同的溶解能量,而且溶解的介电常数还可降低电解的过电压,改善电解的效率。可为电解液102选择一种含水的溶剂,使能量空穴及共振收缩能量的相符性最佳,并使电解效率最高。
反应溶液中氢的溶解度可正比于溶液上方氢的压力。提高这种压力,就增加了阴极106处反应体氢原子(分子)的浓度,从而提高了反应的速率。但是,在氢原子收缩的情况下,这还有助于氢气界层的发展。可由压力调节装置116控制氢的压力,使收缩反应的速率最好。
在一种优选的实施例中,电解槽的阴极106包含催化材料,这包括在下面的压缩气体能量反应堆一节中所述的氢附加催化剂。在另一种实施例中,阴极包含多个中空的导槽,它们有一薄膜导体外层,使得低能氢通过此薄膜扩散,收集在各导槽中,在其中经历歧化反应。
可用至少在图6的容器100及冷凝器140和图5的热交换器60中存在的热电偶监视热能的输出。输出功率可以通过计算机监视及控制系统来控制,所述系统监视各个热元件,并控制各装置,以改变功率输出。压缩气体能量反应堆压缩气体能量反应堆包括图7中的第一容器200,它包括一个氢源,所述的氢包括来自金属-氢溶液的氢、来自氢化物的氢、来自包括热离解在内的水的离解的氢、来自水的电解的氢,或者氢气。在收缩氢原子的反应堆情况下,本反应堆还包括一个将分子氢离解成原子氢的机构,例如一种离解材料,它包括元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物,或者包括由光子源205产生的包括UV光在内的电磁辐射,使被离解的氢原子(分子)接触能量空穴源,这里的能量空穴包括熔融态、液态、气态或固态能量空穴,它们包含有在以下文献中所述的电催化离子或耦合,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的在先美国专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用的方式结合在本申请中。所述压缩气体反应堆还包括用于除去(分子)低能氢的装置201,比如选择性排放阀,以免放热收缩反应达到平衡。一种具体实施例包括热管,作为图5中的热交换器60,它在冷部位具有低能氢排放阀。
本发明压缩气体能量反应堆的一种优选实施例包括带内表面240的第一反应容器200,该内表面由将分子氢离解成原子氢的材料组成,它们包括元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。在另一种实施例中,所述内表面240可由质子导管组成。可将第一反应容器200封装在第二反应容器220内,在可由压力测量和控制装置222及223控制的压力下接受源221的氢。一种优选的实施例中,氢的压力可在10-3大气压到100大气压范围内。第一反应容器200的壁250对氢为可渗透的。外表面245和/或外面的反应容器220有一等于共振收缩能的能量空穴源。在一种实施例中,能量空穴源可以是含有成熔融态、液态或固态之能量空穴的混合物或溶液。在另一实施例中,可使电流通过具有能量空穴源的材料。所述反应堆还包括控制反应速率的装置,如电流源225,还包括加热第一反应容器200和第二反应容器220的加热装置230。在一种优选实施例中,外面的反应容器220装有氧,内表面240有一层或多层镍、铂或钯的涂层。可给外表面245涂以一层或多层铜、碲、砷、铯、铂或钯,以及诸如CuOx、PtOx、PdOx、MnOx、AlOx、SiOx等的氧化物。可使电催化离子或耦合被自发地还原,或者经一包括加热装置230及电流源225的还原装置使其被还原。
在另一实施例中,所述压缩气体能量反应堆只包括单独一个反应容器200,它具有不渗透氢的壁250。在收缩氢原子的反应堆情况下,在内壁240上涂敷一种或多种离解氢的材料,包括过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨),并有包括一种或多种铜、碲、砷、铯、铂或钯以及诸如CuOx、PtOx、PdOx、MnOx、AlOx、SiOx等氧化物在内的能量空穴源。在另一实施例中,能量空穴源可为一非弹性光子或粒子散射反应。在一种优选实施例中,光子源205供给能量空穴,这里的能量空穴对应于光子所激发的辐射。在收缩氢原子的反应堆情况下,光子源205将氢分子离解成氢原子。当氢原子经历收缩反应时,产生的约为m×27.21eV、(m/2)×27.21eV或40.8eV中至少一种能量光子的光子源引起能量的受激发射。在另一优选实施例中,当氢分子经历收缩反应时,产生的约为m×48.6eV、95.7eV或m×31.94eV中至少一种能量光子的光子源205引起能量的受激发射。
包括一个镍表面的压缩气体能量反应堆的优选内表面240及外表面245具有表面面积大、受压面及硬化面,如冷压延或冷加工面大,以及大量粒面界面等特点。
在一种压缩气体能量反应堆的实施例中,可以如下方法将能量空穴源掺入内表面240及外表面245中,包括包括将能量空穴源冷加工到散射表面材料中的机械式方法,包括将能量空穴表面熔入表面材料(熔融)的热方法。其他掺入方法包括干式注入、能量空穴源溶液以与表面材料接触的方式蒸发(沉积)、离子轰击、真空沉积、注入、浸出、包括电解沉积的静电掺入,以及电镀等。清洗内表面240及包含镍表面的外表面245的首选方法是,用碱性电解液注入内容器和外容器,所述碱性电解液包括接近0.57M的X2CO3(X是包括K+在内的电解液碱金属正离子),再用H2O2的稀释液注入内容器和外容器。然后可用蒸馏水通体冲洗所述内容器和外容器中的每一个。在一种实施例中,可再将至少容器200或容器220之一注以含接近0.57M的K2CO3溶液的能量空穴溶液。
在另一种实施例中,将构造上的和/或结构上的助聚剂加入能量空穴源内,以提高收缩反应速率。
在一种所述压缩气体能量反应堆操作方法的实施例中,可在受压力控制装置222控制的压力下将氢从源221引入第一容器内。在收缩氢原子的反应堆情况下,可利用离解物质或包括光子源205所提供的包含UV光在内的电磁辐射,将分子氢离解成原子氢,使被离解的氢原子接触能量空穴源,所述能量空穴源包括熔融态、液态、气态或固态能量空穴源。当原子(分子)氢的电子受到能量空穴激发而经历到低能级的跃迁时,原子(分子)氢释放能量。另外,氢在内表面240上离解,通过第一容器200的壁250扩散,以及在外表面245上与能量空穴源接触,或者作为氢原子或重新结合的氢分子而接触包括熔融态、液态、气态或固态能量空穴源在内的能量空穴源。当原子(分子)氢的电子受到能量空穴激发而经历到低能级的跃迁时,原子(分子)氢释放能量。可使电催化离子或耦合自发地被还原,或者借助一包括加热装置230和电流源225在内的还原装置而使其被还原。借助一个除去(分子)低能氢装置,可从容器200和/或容器220除去所述(分子)低能氢,所述装置比如是一个选择性排放阀机构201,这样可防止得放热收缩反应达到平衡。为控制反应速率(功率输出),可使电流从电流源225通过具有等于共振收缩能的能量空穴源的物质,和/或由加热装置230使第一反应容器200及第二反应容器220被加热。可由热电偶监视热量输出,所述热电偶至少存在于第一容器200、第二容器220和图5中的热交换器60中。输出功率可以通过计算机监视及控制系统来控制,所述系统监视各个热元件,并控制各装置,以改变功率输出。可由装置201除去(分子)低能氢,以免放热收缩反应达到平衡。
一种制备本发明电解系统的电解物质的方法,所述系统的关键在于将一个电子从一个阳离子转移到另一个可能的为收缩氢原子而造成的能量空穴,本方法包括以下步骤·使阳离子的氧化物与氢离解物质混合;·通过反复地烧结和磨碎,使彻底混合。陶瓷电解物质的实例盖在Ni粉末上的锶铌氧化物(SrNb2O6)为制备陶瓷电解物质盖在Ni粉末上的锶铌氧化物(SrNb2O6),将2.5kg的SrNb2O6加到1.5kg的-300目的Ni粉末上。混合这些物质,得到均匀混合物。可将粉末在大气压下于1600℃的炉窑内烧结或煅烧24小时。使该物质冷却并被碾碎,以除去结块。将该物质在1600℃条件下于空气中重新煅烧24小时。使物质冷却至室温,并使之粉末化。
一种制备本发明电解系统的电解物质的方法,所述系统的关键在于将一个电子从一个阳离子转移到另一个可能的为收缩氢原子而造成的能量空穴,本方法包括以下步骤·将阳离子的离子盐溶解成溶剂。在一种优选的实施例中,将离子盐溶解在去离子软化水中,至浓度为0.3到0.5摩尔;·用已溶解的盐溶液均匀地浸湿离解材料;·排干多余溶液;·在干燥箱内,在最好是220℃温度条件下干燥湿的离解材料;·将已干燥的电解物质碾碎成粉末。离子电解材料的实例盖在Ni粉末上的碳酸钾(K2CO3)为制备化学电解物质盖在Ni粉末上的碳酸钾(K2CO3),取1升0.5M的K2CO3水溶液倒在500克-300目的Ni粉末上。搅拌这些材料,除去Ni颗粒周围的空气囊。排干多余溶液,使这种粉末在200℃条件下于干燥箱内干燥。如果需要,可碾碎所述材料,以除去结块。氢附加催化剂在一种优选实施例中,用于催化收缩反应的氢原子源包括一种氢附加催化剂。
按照本发明的氢附加催化剂包括·氢离解物质或机制,它形成自由氢原子或质子;·输导物质,自由氢原子落在它上面,它承载自由的、移动的氢原子,并为氢原子或质子流提供路径或导管;·能量空穴源,它催化收缩反应;以及·可供选择的承载物质。这样的氢离解物质包括离解氢、氘或氚的表面或材料,它包括元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。所述输导物质,自由氢原子落在它上面,它承载自由的、移动的氢原子,并为氢原子流提供路径或导管,它包括镍、铂、碳、锡、铁、铝和铜,以及它们的化合物、混合物或合金。在一个实施例中,所述承载物质,前一种物质作为混合物、化合物或溶液被嵌入其中,它包括碳、硅、镍、铜、二氧化钛、氧化锌、氧化铬、氧化镁、氧化锆、氧化铝、氧化硅铝和沸石。在一种实施例中,通过电镀,将一种或多种其它组分沉积在所述承载物质上。为引起原子氢“收缩”,能量空穴源首选是约为m×27.21eV,和/或为引起分子氢“收缩”,则约为m×48.6eV,其中m为整数,这种能量空穴源包括下述文献中所描述的电催化离子或耦合,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的在先美国专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用方式结合在本申请中。所述附加催化剂的能量空穴的抗衡离子包括在“Handbook of Chemistry and Physics”Robert C.Weast,Editor,58th Edition,CRC Press,West PalmBeach,Florida.(1974)pp.B61-B178中给出的那些,它们也以引用的方式结合在本申请中。有机离子包括苯甲酸、邻苯二甲酸盐、水杨酸盐、芳基磺酸盐、烷基硫酸盐、烷基磺酸盐、烷基羧酸盐,以及酸的阴离子,它们形成酸酐,包括亚硫酸盐、硫酸盐、碳酸盐、碳酸氢盐、亚硝酸盐、硝酸盐、高氯酸盐、亚磷酸盐、亚磷酸氢盐、亚磷酸二氢盐、磷酸盐、磷酸氢盐、和磷酸二氢盐。在另一个实施例中,阴离子可与它的酸及它的酸酐平衡。
使氢附加催化剂的官能度与作为包括一个以上官能度的混合物、溶液、化合物或合金的分离形式或作为联合形式的其它官能度结合。例如,在一个实施例中,氢的离解物质和能量空穴源都包括均匀的催化剂,每种催化剂含有一种组分,并使这些官能度与无承载物质的输导物质混合。而在另一实施例中,氢的离解物质和能量空穴源都包括非均匀的催化剂,每种催化剂包含两种组分,并且这种非均匀的催化剂与包敷承载物质的输导物质混合。在第三种示范性实施例中,可使能量空穴源被嵌入输导物质中,而且可使这种复合物质与氢的离解物质混合,可将它们嵌入相同的或不同的无承载物质的输导物质中。
一种制备本发明氢附加催化剂材料的方法包括以下步骤·利用初始浸湿的方法混合附加催化剂的各个组分;·通过烧结,彻底混合所述组分。
另一种制备本发明氢附加催化剂材料的方法包括以下步骤·溶解或扩散各组分,以便在适当的溶媒,如水中混合,并干燥所述溶液或混合物;·可通过干燥除去所述溶媒,或者可使湿混合物、悬浮物或溶液凝结,也可使所述溶媒升华;·通过烧结,彻底混合所述组分。
一种制备本发明氢附加催化剂材料的初始浸湿方法,所述催化剂包含用于收缩氢原子的能量空穴源,其关键在于使电子从一个阳离子转移到另一个,它包括以下步骤·使所需重量的阳离子盐溶入所需体积的溶媒中,在一种优选实施例中,使所述离子盐溶解到去离子水中;·通过用被溶解的盐溶液均匀地浸湿输导氢离解物质,使该物质的细孔刚好被充满,制备初始浸湿的输导氢的离解物质。所需溶媒的总体积可以是所需的量,而且最终物质中阳离子盐的重量百分比可由所需体积溶媒中溶解的所需阳离子盐的重量确定。·机械地混合被浸湿的物质,确保均匀地浸湿;·最好在150℃的温度条件下,于干燥箱内干燥初始浸湿的输导-氢离解物质。在一种实施例中,可使所述物质被加热,直至阳离子的抗衡离子以化学方式还原成氧化物;·将包含输导氢离解-能量空穴源物质的已干燥物质磨碎成粉末;·可选择地以机械方式将已干燥并已被粉末化的物质进一步与氢离解材料混合,所述氢离解材料包括与输导物质及承载物质混合的粉末。离子氢附加催化剂材料的实例以40%(重量)硝酸钾(KNO3)盖在1%Pd-石墨碳粉上为制备1千克离子氢附加催化剂材料;以40%(重量)硝酸钾(KNO3)盖在1%Pd-石墨碳粉上,将0.40kg的KNO3溶入1升H2O中。初始浸湿每克-300目的石墨粉末需要1ml H2O,并且每克石墨碳粉末需要0.67克KNO3,以达到最终物质中40%(重量)KNO3的含量。可将含水的KNO3溶液慢慢加入0.6kg1%Pd--300目的石墨碳粉上,混合成稀浆。然后将这种稀浆置于蒸发皿上,可将该蒸发皿放入150℃的干燥箱内1小时。加热,使水从稀浆中蒸发。可将被包敷KNO3的1%Pd-石墨碳碾碎成粉末。
另一种初始浸湿制备本发明氢附加催化剂材料的方法包括以下步骤,其中所述催化剂包含能量空穴源,用于氢原子,其关键在于将一个电子从一个阳离子转移至另一个上。·使所需重量的阳离子盐溶解到所需体积的溶媒中。在一种优选的实施例中是将所述离子盐溶入去离子水中;·通过用已溶解的盐溶液均匀地浸湿输导物质,制备初始浸湿的输导物质,使物质的细孔刚好被充满。所需溶媒的总体积可以是所需的量,而且最终物质中阳离子盐的重量百分比可由溶解在所需体积溶媒中的所需阳离子盐的重量确定;·机械地混合被浸温的物质,确保均匀地浸湿;·最好在150℃的温度条件下,于干燥箱内干燥初始浸湿的输导物质。在一种实施例中,可使所述物质被加热,直至阳离子的平衡离子以化学方式还原成氧化物;·将包含输导物质和能量空穴源的已干燥物质磨碎成粉末;·以机械方式将已干燥并已被粉末化的物质与氢离解材料混合,所述氢离解材料包括与输导物质及承载物质混合的粉末。离子氢附加催化剂材料的实例以40%(重量)硝酸钾(KNO3)盖在5%(重量)石墨碳粉1%Pd-石墨碳粉上为制备1克离子氢附加催化剂材料的实例以40%(重量)硝酸钾(KNO3)盖在5%(重量)石墨碳粉1%Pd-石墨碳粉上,使0.67kg的KNO3溶入1升H2O中。初始浸湿每克-300目的石墨粉末需要1mlH2O,并且每克石墨碳粉末需要0.40克KNO3,以达到最终物质中40%(重量)KNO3的含量。可将含水的KNO3溶液慢慢加入0.55kg石墨碳粉上,混合成稀浆。然后将这种稀浆置于蒸发皿上,可将该蒸发皿放入150℃的干燥箱内1小时。加热,使水从稀浆中蒸发。可将被包敷KNO3的石墨碳碾碎成粉末。粉末被称重。可使1%Pd--300目石墨碳粉约50克(5%(重量)的包敷KNO3的石墨)混合成包敷KNO3的石墨碳粉末。示范性催化剂物质工作方式的实例可将所述催化剂物质置于可加压的容器200中。可用惰性气体,如He、Ar、Ne冲洗该容器,以除去容器中的空气污物。在以氢使容器被加压之前(通常是20-140PSIG),将容器及其内腔加热到工作温度,通常是100℃到400℃。
在一种具体实施例中,能量空穴源为被掺入碳中的钾离子(K+/K+)或铷离子(Rb+)。在另一种实施例中,能量空穴源为电催化离子或耦合的汞齐合金及其被还原的金属形式,如铷离子(Rb+)及铷金属,或钾离子(K+/K+)及钾金属。
在一种具体实施例中,氢原子源是一种包含氢气流的氢离解装置,在一个被升高的如1800℃温度条件下,将所述氢气流吹到热丝或热栅上,比如吹到包括Ti、Ni、Fe、W、Au、Pt或Pd的丝或栅的耐熔金属上。这种离解装置给出氢原子以及氢离子,而且所述原子的动量使它们与能量空穴源接触。或者是氢原子或离子溅射到所述附加催化剂上。在所述压缩气体反应堆的一个优选实施例中,可借助压力控制装置222和泵装置223保持低的压力,以使最少的氢原子重新结合成分子氢,并除去(分子)低能氢。
在一种具体实施例中,氢原子源是水,它借助水离解物质离解成氢原子和氧,所述水离解物质比如是元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。在另一个实施例中,利用热源及温度控制装置230,可使所述水离解物质保持在一个被升高的温度下。在一种包含氢附加催化剂的实施例中,氢源可来自包括天然气在内的碳氢化合物,可以通过还原比如镍、钴、铁,或铂族金属等物质而使天然气被重新形成氢原子或二氧化碳。在另一个实施例中,利用热源及温度控制装置230,可使被重新形成的物质保持在一个被升高的温度下。在又一个实施例中,氢原子源可来自金属氢化物的分解,可以通过用热源及温度控制装置230控制所述金属氢化物的温度控制这种分解。可以采用包括电镀另一种物质,比如氢的离解物质在内的方法,包敷所述氢化物。
在一种优选实施例中,可使收缩反应的生成物,(分子)低能氢被除去,以防止生成物的阻滞作用。于是,可使被助长的供能反应速率得到提高。一种除去低能(分子)氢的机制是供给具有低能氢清除剂的反应混合物。这种清除剂吸收生成物,即低能氢或与之反应,而且可从反应混合物中除去所得的核素。在另一个实施例中,借助与惰性的分子或原子,如流过容器200的氦的置换,可除去被吸收在催化剂上的低能氢。
正如Satterfield所描述的那样[Charles N.Satterfield,Heterogeneous Catalysis in Industrial Practice,SecondEdition,McGraw-Hill,Inc.,New Yopk,(1991)],催化剂技术的其它目的、特点和特性,以及有关元素的制备方法、工作及功能被用于本发明,并且以引用的方式结合在本申请中。催化剂技术对本发明的通过催化反应释放能量的压缩气体能量反应堆的应用,其中氢原子的电子经历向低能态的跃迁,包括用于绝热反应堆、流化床反应堆、输运线反应堆、集组反应堆、带有包括管内流体和围绕各管的催化剂物质之热交换装置的可逆集组反应堆,以及包括催化剂物质的流化床的集组反应堆或可逆集组反应堆。此外,一种实施例中包括使成为溶剂化物的能量空穴源,包含氢附加催化剂的悬浮氢离解物质,以及氢气,收缩反应堆包括喷淋床反应堆、泡柱反应堆或悬浮液反应堆。
例如,在一种优选实施例中,流化床反应堆200包括氢附加催化剂物质以40%(重量)硝酸钾(KNO3)盖在具有5%(重量)的1%Pd-石墨碳粉上。反应氢气可通过精细固体催化剂材料床,所说固态催化剂物质的颗粒尺寸最好为约20至100μm,它们被很好地搅动,并假设具有很多流体的特性。旋流分离器275使细屑返回床上。氢的压力及流速可由压力及流速控制装置222控制。最好是在大气压或略高些的压力下,相应的最大线速度可小于60cm/s。气体能量空穴源一种优选的氢气能量反应堆,用于通过电催化反应和/或歧化反应释放能量,其中氢原子的电子经历在气相状态下的到低能态的跃迁,所述反应堆包括图7的容器200,它可容纳真空或超过大气压的压力;一个氢源221;一个用于控制容器内压力及氢流的装置222;一个气相状态下的原子氢源,和一个气相状态下的能量空穴源。
反应容器200包括一个由诸如陶瓷、不锈钢、钨、铝、因科洛依合金及因科镍合金等耐温材料制成的真空或压力容器。
在一种实施例中,气相的氢原子源是一个氢离解装置,它包括在一个被升高的如1800℃温度条件下,被吹到热丝或热栅280上的氢气流,比如吹到包括Ti、Ni、Fe、W、Au、Pt或Pd的丝或栅的耐熔金属上。这种离解装置给出氢原子以及氢离子,而且所述原子的动量使它们与能量空穴源接触。在气态-能量空穴源气体反应堆的一个优选实施例中,可借助压力控制装置222和压力测量及泵装置223保持低的压力,以使最少的氢原子重新结合成分子氢。通过测量热丝或热栅中消耗的功率可测量所述压力,借助伺服电路285,可使所述热丝或热栅在恒定的电阻下工作,所述伺服电路包括电压及电流测量装置、电源、和电压及电流控制器,其中已经标定了氢的压力与所述热丝或热栅功率消耗的关系曲线。在另一个实施例中,所述原子氢源包括一种或多种氢离解物质,它们通过分子氢的离解给出氢原子。这样的氢离解物质包括面层或材料,用以离解氢、氘或氚,它们包含诸如盖在碳上的钯或铂等氢溢出物质,以及元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。在一种实施例中,通过控制温度及氢的压力,以提供气相的原子氢,而保持氢和氢化物的非平衡条件。在另一实施例中,原子氢源包括一个钨的毛细管,可以通过电子轰击,将其出口端处加热到1800-2000K,有如Bischler所描述的原子氢源[Bischler,U.;Bertel,E.,J.Vac.Sci.Technol.,A.(1993),11(2),458-60],它以引用方式结合在本申请中。在又一实施例中,可利用氢收缩反应释放的能量,使所述钨毛细管被加热。再一个实施例中,原子氢源包括一个感应耦合的等离子体流管,有如Gardner所描述的那样[Gardner,W.L.,J.Vac.Sci.Technol.,A.(1995),13(3,Pt.1),763-6],它以引用方式结合在本申请中,而且可用Gardner的传感器测量氢离解的百分率。
可将能量空穴源置于化学上耐用的开口容器中,如所述反应容器内的陶瓷舟290。或者也可将能量空穴源置于一个具有气态能量空穴源到所述反应容器之连接通路的容器中。
所述气态能量空穴源包括那些在被升高的气体能量反应堆工作温度下的发生升华、沸腾,和/或挥发的物质,其中的收缩反应在气相下发生。例如,RbNO3和KNO3每个都在大大低于各自分解温度的温度下挥发。[C.J.Hardy,B.O.Field,J.Chem.Soc.,(1963),pp.5130-5134]。在一种实施例中,离子氢附加催化剂材料以40%(重量)硝酸钾或硝酸铷盖在具有5%(重量)的1%Pd-石墨碳粉上,可在能使硝酸钾或硝酸铷挥发的温度下工作。所述生成物,即低能氢原子的歧化反应释放另外的热能。
在一种优选的实施例中,能量空穴源是热稳定的铷或钾的盐,如RbF、RbCl、RbBr、RbI、Rb2S2、RbOH、Rb2SO4、Rb2CO3、Rb3PO4和KF、KCl、KBr、KI、K2S2、KOH、K2SO4、K2CO3、K3PO4、K2GeF4。另外首选的为使原子氢“收缩”的接近m×27.21eV能量空穴源,和/或使分子氢“收缩”的接近m×48.6eV能量空穴源(m为整数)包括下述文献中所述的电催化离子及耦合,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的在先美国专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用方式结合在本申请中。抗衡离子包括在“Handbook of Chemistry and Physics”,Robert C.Weast,Editor,58th Edition,CRC Press,West Palm Beach,Florida.(1974)pp.B61-B178中给出的那些,该文献也以引用方式结合在本申请中。首选的阴离子对氢的还原及热分解可以是稳定的,并且在所述能量反应堆的工作温度下可为挥发的。
下述化合物被首选为气体能量反应堆中的气态能量空穴源。温度越高,造成提高反应速率的能量空穴源的蒸汽压力越高;但是,总压力的增强,将提高氢原子到氢分子的重新结合速率。在各种示范性的情况下,满足所述能量反应堆的工作温度可以是给出最佳反应速率的温度。在一种具体实施例中,容器的温度可为比能量空穴源(在能量空穴源包括电子在两个核素间转移的情况下是电催化耦合)的(最高)熔点高约50℃。理论的压力可保持在约200毫托,而且可用图7的热丝或热栅280使分子氢被离解。单离子催化剂(电催化离子)单离子催化剂(电催化离子)可产生用于收缩氢原子的能量空穴。原子符号(n)后面的数字是原子的第n级电离能量。例如Rb++27.28eV=Rb2++e。(熔点=(MP);沸点=(BP))催化离子n第n级电离能Mo2+327.16MoI2Ti2+327.49TiCl2(MP=升华H2,BP=d475℃真空)(TiCl4/Ti金属)Rb1+227.28RbNo3(MP=310℃,BP=升华)Rb2S2(MP=420℃,BP=挥发>850)RbI(MP=647℃,BP=1300℃)二离子催化剂(电催化耦合)二离子催化剂(电催化耦合)可产生用于收缩氢原子的能量空穴。离子后面括号中的数字(n)是原子的第n级电离能。例如K++31.63eV=K2++e和K++e=K+4.34eV。(熔点=(MP);沸点=(BP))氧化空穴n 第n级还原的原子n 第n级的原子能电离能电离能(ev) (ev) (ev)Sn4+ 5 72.28 Si4+4 45.1427.14SnCl4(MP=-33℃,BP=114.1℃)SiCl4(MP=-70℃,BP=57.57℃)Pr3+ 4 38.98 Ca2+2 11.8727.11PrBr3(MP=691℃,BP=1547℃)CaBr3(MP=730℃sld,BP=806-812℃)Sr2+ 3 43.60 Cr2+2 16.5027.10SrCl2(MP=875℃,BP=1250℃)Crl2(MP=856℃,BP=800亚真空℃)Cr3+ 4 49.10 Tb3+321.9127.19CrF3(MP=>1000℃,BP=1100-1200℃升华)TbI3(MP=946℃,BP>1300℃)Sb3+444.20Co2+217.0627.14SbCl3(MP=73.4℃,BP=283℃)CoCl2(MP=724℃在HCl气中,BP=1049℃)Bi3+ 445.30Ni2+ 218.1727.13BiCl3(MP=230-232℃,BP=447℃)NiCl2(MP=1001℃,BP=973℃升华)Pd2+ 332.93In1+ 15.7927.14PdF2(MP=挥发)InCl(MP=225℃,BP=608℃)La3+ 449.95Dy3+ 322.8027.15LaCl3(MP=860℃,BP>1000℃) DyCl3(MP=718℃,BP=1500℃)La3+ 449.95Ho3+ 322.8427.11LaI3(MP=772℃)HoI3(MP=989℃,BP=1300℃)K1+231.63K1+ 14.3427.28KNO3(MP=334℃,BP=subl)KNO3(MP=334℃,BP=subl)K2S2(MP=470℃)K2S2(MP=470℃)KI(MP=681℃,BP=1330℃)KI(MP=681℃,BP=1330℃)V3+446.71Pd2+ 219.4327.28VF3(MP>800℃,BP升华)PbF2(MP=855℃,BP=1290℃)VOCl(BP=127℃)PbI2(MP=402℃,BP=954℃)Lu3+445.19Zn2+217.9627.23LuCl3(MP=905℃,BP=升华750℃)PbCl2(MP=283℃,BP=732℃)As3+ 450.13Ho3+322.8427.29AsI3(MP=146℃,BP=403℃)HoI3(MP=989℃,BP=1300℃)Mo5+ 668.00Sn4+440.7327.27MoCl5(MP=194℃,BP=268℃)SnCl4(MP=-33℃,BP=114.1℃)Sb3+ 444.20Cd2+216.9127.29SbI3(MP=170℃,BP=401℃)CdI2(MP=387℃,BP=796℃)Ag2+ 334.83Ag1+17.5827.25AgF2(MP=690℃,BP=700℃ d)AgF(MP=435℃,BP=1159℃)La3+449.95Er3+322.7427.21LaI3(MP=772℃,BP=1000℃)ErI3(MP=1020℃,BP=1280℃)V4+ 565.23B3+ 337.9327.30VCl4(MP=-28℃,BP=148.5℃)BCl3(MP=-107.3℃,BP=12.5℃)Fe3+454.80Ti3+327.4927.31FeCl3(MP=306℃,BP=315℃ d)TiCl3(MP=440℃ d,BP=660℃)Co2+333.50Ti1+16.1127.39CoI2(MP=515真空℃,BP=570℃vac)TlI(MP=440℃ d,BP=823℃)CoF2(MP=1200℃,BP=1400℃)TlF(MP=327℃ d,BP=655℃)Bi3+445.30Zn2+217.9627.34BiBr3(MP=218℃,BP=453℃)ZnBr2(MP=394℃ d,BP=650℃)As3+450.13Dy3+322.8027.33AsI3(MP=146℃,BP=403℃)DyI3(MP=955℃ d,BP=1320℃)Ho3+442.50Mg2+215.0327.47HoCl3(MP=718℃,BP=1500℃)MgCl2(MP=714℃,BP=1412℃)K1+ 231.63Rb1+14.1827.45KI(MP=618℃,BP=1330℃)RbI(MP=647℃,BP=1300℃)Cr3+449.10Pr3+321.6227.48CrCl3(MP=1150℃,BP=1300℃升华)PrCl3(MP=786℃,BP=1700℃)Sr2+343.60Fe2+216.1827.42SrCl2(MP=875℃,BP=1250℃)FeCl2(MP=670℃,BP升华)Ni2+335.17Cu1+17.7327.44NiCl2(MP=1001℃,BP=973℃升华)CuCl(MP=430℃,BP=1490℃)Sr2+343.60Mo2+ 216.1527.45SrCl2(MP=875℃,BP=1250℃)MoCl2Y3+ 461.80Zr4+ 434.3427.46YCl3(MP=721℃,BP=1507℃)ZrCl4(MP=437℃,BP=331℃升华)Cd2+337.48Ba2+210.0027.48CdI2(MP=387℃,BP=796℃)BaI2(MP=740℃)Ho3+442.50Pb2+215.0327.47HoI3(MP=989℃,BP=1300℃)PbI2(MP=402℃,BP=954℃)Pd2+332.93Li1+15.3927.54PdF2(MP=挥发)LiF(MP=845℃,BP=1676℃)Eu3+442.60Mg2+215.0327.56EuCl3(MP=850℃)MgCl2(MP=714℃,BP=1412℃)Er3+442.60Mg2+215.0327.56ErCl3(MP=774℃,BP=1500℃)MgCl2(MP=714℃,BP=1412℃)Bi4+556.00Al3+328.4527.55BiCl4(MP=226℃)AlCl3(MP=190℃,BP=177.8℃升华)Ca2+350.91Sm3+ 323.4027.51CaBr2(MP=730℃ sld,BP=806-812℃)SmBr3(MP升华>1000℃)V3+ 446.71La3+ 319.1827.53VaF3(MP>800℃,升华)LaCl3(MP=860℃,BP>1000℃)Gd3+444.00Cr2+ 216.5027.50GdI3(MP=926℃,BP=1340℃)CrI2(MP=856℃,BP=800℃升华真空Mn2+333.67Ti1+16.1127.56MnI2(MP=638℃真空,BP=500℃升华真空)TlF(MP=327℃,BP=655℃)Yb3+443.70Fe2+216.1827.52YbBr3(MP=956℃,BP=d)FeBr2(MP=684℃ d)Ni2+335.17Ag1+17.5827.59NiCl2(MP=1001℃,BP=973℃升华)AgCl(MP=455℃,BP=1550℃)Zn2+339.72Yb2+212.1827.54ZnCl2(MP=283℃,BP=732℃升华)YbCl2(MP=702℃,BP=1900℃)Se4+568.30Sn4+440.7327.57SeF4(MP=-13.8℃,BP>100℃)SnCl4(MP=-33℃,BP=114.1℃)SnF4(MP=705℃升华)Sb3+444.20Bi2+216.6927.51SbI3(MP=170℃,BP=401℃)BiI2(MP=400℃,BP=升华真空)Eu3+442.60Pb2+215.0327.57EuF3(MP=1390℃,BP=2280℃ )PbCl2(MP=501℃,BP=950℃)
在一种可由氢还原阴离子的实施例中,阴离子在化学上是稳定的。例如,将还原生成物加到气体容器中,使阴离子稳定。在另一个实施例中,可使阴离子被连续替换或瞬时替换。在硝酸盐离子的情况下,可使生成的氨自容器中被除去,被氧化成硝酸盐,再返回容器。在一种实施例中,可以通过收集在冷凝器中而从容器中除去生成的氨,并可在被升高的温度,如912℃下在铂或铱的屏极上被氧化成硝酸盐。在另一个实施例中。可通过降低氢的压力而使蒸汽相催化氢的收缩反应最佳化,以维持硝酸盐离子到氨的反应。在一种实施例中,可通过氢原子在图7的热丝或热栅280上的离解,而产生氢原子的低压。借助氢源221、氢流控制装置222和氢的压力测量及真空装置223维持分子氢的低压。通过调节由流量控制器222通过入口的供给量对由压力测量及泵装置223在出口处泵出的量,可使氢的压力保持在低压下。可调节压力,使输出功率为最大,而使硝酸盐的减少为最小。最好的氢压力可小于大约1托。在一种实施例中,气相氢原子源可以是氢离解装置,包括吹到热丝或热栅280上氢气的蒸汽,所述热丝或热栅280是比如包括处于比如1800℃高温下的Ti,Ni,Fe,W,Au,Pt或Pd的热丝或热栅在内的耐热金属。可使氢分子源朝向所述热丝或热栅上方和在气体能量空穴源上。所述压力和氢原子流阻滞能量空穴源(如硝酸盐离子)的抗衡离子碰撞,去接触所述热丝或热栅。因此,可防止阴离子在所述热丝或热栅的热离解或还原。在另一个实施例中,可保持负电位作为围绕所述热丝或热栅的栅极287。此栅极允许来自所述热丝或热栅的氢原子通过,并排斥由于接触所述热丝或热栅的阴离子。于是,可防止阴离子(抗衡离子)的热分解或化学分解。
在一种实施例中,能量空穴源是包括气相阳离子-阴离子对的电催化离子或电催化耦合,其中阳离子-阴离子对被图5的外部源装置75,它包括比如粒子源75b和/或光子源75a和/或热源、超声能源、电场源或磁场源离解。在一种优选实施例中,由图7的热源230使所述阳离子-阴离子对热离解,或由光子源205使其光离解。
在具有气态能量空穴源的气体能量反应堆的另一个实施例中,由喷雾装置295使能量空穴源雾化,给出气态能量空穴源。在喷雾器的一个优选实施例中,利用加热装置,如加热舟装置299使原子沸腾、升华或蒸发,并使气态原子被电离,形成包括我的在先专利申请的电催化离子或电催化耦合在内的能量空穴源,该文献以引用方式结合在本申请中。在一种实施例中,利用加热装置230、利用包括热丝或热栅的氢原子源280、或者利用一个感应耦合的等离子体流管,使原子热电离。例如,图7中所示的气体能量容器包括舟290中的铷或钾金属,它具有可以通过由加热装置230和/或299控制该舟的温度而被控制的蒸汽压。氢分子在热丝或热栅280上被离解成原子。利用相同的或不同的热丝或热栅280,可使气相的铷(钾)金属电离成Rb+(K+)。Rb+(K+/K+)电催化离子(耦合)用为能量空穴源,以收缩氢原子。在另一个实施例中,热丝或热栅280包括一种或多种金属,并且可用金属电镀,蒸发掉作为能量空穴源的阳离子。例如,Mo2+离子(Mo2+电催化离子)由于热的钼丝或钼栅280进入能量容器200的气相。热的钼丝或钼栅280还将氢分子离解成氢原子。再一个例子是,Ni2+和Cu+离子(Ni2+/Cu+电催化耦合)由于热镍和热铜,或热的镍-铜合金的丝或栅280进入能量容器200的气相。在另一实施例中,图5的光子源75a和粒子源75b包括电子束、诸如气相原子类的电离核素,以形成包括以引用方式结合在本申请中的我的在先专利申请的电催化粒子或电催化耦合的能量空穴源。在另一实施例中,通过挥发比如离子核素类的反应体,以化学方式电离原子或离子,所述核素氧化或还原所述原子或离子,以形成能量空穴源。
通过控制气相能量空穴源(电催化离子或耦合)的量和/或通过控制原子或低能氢的浓度,可控制气体能量反应堆的功率。通过控制所述反应堆中存在的挥发能量空穴源(电催化离子或耦合)的最初量,和/或通过用温度控制装置230控制所述反应堆的温度,这一温度确定挥发的能量空穴源(电催化离子或耦合)的蒸汽压,控制气态能量空穴源(电催化离子或耦合)的浓度。通过改变催化氢收缩还原的速率,反应堆的温度还控制所述功率。通过控制由原子氢源280提供的原子氢的量,可使原子氢的浓度得到控制。例如,通过控制所述热丝或热栅、由电子轰击加热的钨毛细管、或感应耦合等离子体流管上,或经过它们的氢流;通过控制感应耦合等离子体流管中消耗的功率;通过控制所述热丝或热栅,或者由电子轰击加热的钨毛细管的温度;通过控制氢的压力和被保持在非平衡条件下的氢化物的温度;以及通过控制由泵装置223除去被重新组合的氢原子的速率,可使气相氢原子的量得到控制。其它的用以控制所述收缩反应速率的装置可以采用通过以非活性气体源299、非活性气体流量控制装置232、及压力测量和泵装置223控制非活性气体的压力。非活性气体,如惰性气体与能量空穴源(电催化离子或耦合)和氢原子间的碰撞竞争,或者与所得低能氢的歧化反应之间的碰撞竞争。惰性气体包括He、Ne和Ar。其它的这种反应不活泼的“抑制反应”的气体包括二氧化碳和氮。
利用氢值控制装置222节制进入所述容器内的氢,而用压力测量装置222和223监视压力,还可控制氢的局部压力。在一种优选的实施例中,通过以气体流量反应堆的加热装置230控制温度,可使氢的压力得到控制,这里所说的反应堆还包括储存氢的机构,比如金属氢化物或包括金属盐的氢化物、氢化钛,钒、铌和钽的氢化物,锆和铪的氢化物,稀土氢化物,钇和钪的氢化物,过渡元素的氢化物,金属间的氢化物,以及它们的合金在内的其它氢化物,这些在有如以下文献给定的技术中为已知的,即W.M.Mueller,J.P.Blackledge,and G.G.Libowitz,Metal Hydrides,Academic Press,New York,(1968),Hydrogenin Ietermetalic Compounds I,Editedby L.Schlapbach,Springer-Verlag,Berlin,and Hydrogen inIetermetalic Compounds II,Edited by L.Schlapbach,Springer-Verlag,Berlin,它们都以引用方式结合在本申请中。利用温度控制及测量装置230,可使所述容器的温度得到控制,使得与氢存储物质处于平衡状态的氢的蒸汽压可为所需的压力。在一种实施例中,通过控制温度及氢的压力,以给出原子氢,可维持氢及氢化物的非平衡条件。在几个实施例中,储存氢的机构可以是具有约800℃工作温度的稀土氢化物,具有约700℃工作温度的镧的氢化物,具有约750℃工作温度的钆的氢化物,具有约750℃工作温度的钕的氢化物,具有约800℃工作温度的钇的氢化物,具有约800℃工作温度的钪的氢化物,具有约850-900℃工作温度的镱的氢化物,具有约450℃工作温度的钛的氢化物,具有约950℃工作温度的铈的氢化物,具有约700℃工作温度的镨的氢化物,具有约600℃工作温度的锆-钛(50%/50%)的氢化物,具有约450℃工作温度的碱金属/碱金属氢化物的混合物,如Rb/RbH或K/KH,以及具有约900-1000℃工作温度的碱土金属/碱土氢化物的混合物,如Ba/BaH2。
可用至少存在于容器200中的热电偶和图5中的热交换器60监视热输出。可用经低能氢跃迁发射的光子或电子的紫外或电子光谱分析法,用低能氢的X-射线光电子能谱分析法(XPS),以及用分子低能氢(二氢化物)的质谱分析法,喇曼或红外线光谱分析法,监视收缩反应的速率。当比常态氢结合能高时,用XPS证实低能氢原子和分子。通过记录作为电子枪能量函数的离子电流,可用质谱分析法证实二氢化物,作为具有质量电荷比为2(m/e=2)的核素,它有比常态氢高的电离势能。在低温下可用气体色层分离谱仪证实二氢化物,比如,在液氮温度下采用活性炭柱的色层分离谱仪,或者采用具有将从正氢分开成段的柱的色层分离谱仪,比如,在液氮温度下,采用Rt-氧化铝柱或HayeSep柱。当与常态氢相比,分子具有较高的振动和转动能级时,可由喇曼或红外线光谱分析法证实二氢化物。输出功率可由计算机监视与控制系统控制,该系统监视热元件、能谱仪、和气体色层谱仪,并控制收缩装置,以改变功率输出。(分子)低能氢可被装置201除去,以免放热收缩反应达到平衡。
在具有气态能量空穴源的气体能量反应堆的另一实施例中,由高温分解反应,如碳氢化合物的燃烧得到氢原子,其中催化能量空穴源可为具有氢原子的气相。在一种优选实施例中,高温分解反应发生在内燃机中,从而包含碳氢化合物或氢的燃料包括能量空穴源,燃烧期间,它被蒸发(成为气体)。按照一种优选的方式,能量空穴源(电催化离子或耦合)是铷或钾的热稳定盐,如RbF、RbCl、RbBr、RbI、Rb2S2、RbOH、Rb2SO4、Rb2CO3、Rb3PO4,和KF、KCl、KBr、KI、K2S2、KOH、K2SO4、K2CO3、K3PO4、K2GeF4。电催化离子或耦合的附带的抗衡离子包括有机阴离子,包括浸润剂或乳化剂。在另一种实施例中,包含碳氢化合物或氢的燃料还包括作为化合物的水,以及成为溶剂化合物的能量空穴源,它包括被乳化的电催化离子或耦合。在高温分解反应过程中,水用为另外的氢原子源,它们经历被能量空穴源催化的收缩反应,其中水可以热方式或催化方式在比如汽缸或活塞顶的表面(它们可由将水离解成氢和氧的物质组成)上被离解成氢原子。水离解物质包括元素、化合物、合金,或过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。气体能量反应堆(气相氢收缩反应)的功率密度。
方程的编号以下参照由Mills所给出的编号[Mills,R.,TheGrand Unified Theory of Classical Quantum Mechanics,(1995),Technomic Publishing Company Lancaster,PA]。为发生共振收缩,歧化反应的速率rm,m.p′与反应体之间的碰撞速率及共振能量转移的效率有关。它由速率常数km,m.p′(方程(5.47))、氢原子或氢化物原子的总数NH、以及共振收缩能量从施主氢化物原子到受主氢化物原子提供的能量空穴的转移效率E(方程(6.33))的乘积给出。E=11+[rR0]6----(6.37)]]>R06=(8.8&times;10-25)J&eta;-4&phi;D0&kappa;2]]>其中r是施主与受主间的距离,J是施主氢原子的共振收缩能量分布与受主氢原子提供的能量空穴分布间的叠加整数,η是介电常数,而κ2是施主和受主跃迁矩相互取向的函数。低能氢原子的电跃迁只通过非辐射能量转移而发生;因此,方程(6.37)的施主荧光的量子产额ΦD等于1。引起共振收缩的歧化反应速率rm,m.p′是rm,m,p=ENH4&pi;122nH(aHp)23kTmH----(6.38)]]>方程(6.38)中的(1/2)因子是对碰撞的双重计数的修正[Levine,I.,Physical Chemistry,McGraw-Hill,Book Company,New Yopk,(1978),pp.420-421]。功率pm,m.p′由方程(6.38)的跃迁速率与方程(5.27)的歧化反应能量的乘积给出。Pm,m,p=ENH2V4&pi;12(aHp)23kTmH[2pm+m2-m&prime;2+1]X2.2X10-18W----(6.39)]]>其中V是体积。对于气相状态下的歧化反应而言,能量转移效率为1。将E=1,p=2,m=1,m′=2,V=1m3,N=3×1021,T=675K(6.40)代入方程(6.39)所给出的功率是pm,m.p′=1GW(1kW/cm3)(6.41)在通过催化能量空穴源与氢或氢化物的原子的反应发生氢到低能态反应的情况下,反应速率与反应体之间的碰撞速率及共振能量转移的效率有关。对于每单位体积含nH个氢或氢化物原子,每个都具有半径aH/p和速度vH,并且每单位体积含nc个电催化离子,每个都具有半径r催化剂和速度vc的气体来说,单位体积的氢或氢化物原子/电催化离子的碰撞速率ZH[aH/p]催化剂由Levine给出[Levine,I.,Physical Chemistry,McGraw-Hill,Book Company,New Yopk,(1978),pp.420-421]ZH[aHp]Catalyst=&pi;(aHp+rCatalyst)2[(vH)2+(vC)2]1/2nHnC----(6.42)]]>可由温度T计算平均速度v平均[Bueche,F.J.Introduction toPhysics for Scientists and Engineers,McGraw-Hill,BookCompany,New Yopk,(1986),pp.261-265]。

其中κ是玻兹曼常数。把方程(5.44)代入方程(5.42),则光源温度T给出单位体积的碰撞速率ZH[aH/p]催化剂ZH[aHp]Catalyst=&pi;(aHp+rCatalyst)2[3kT(1mH+1mC)]1/2nHnC----(6.44)]]>由单位体积的碰撞速率

体积V、以及方程(6.37)给出的共振能量转移效率E的乘积给出引起共振收缩的催化反应速率rm,prm,p=E&pi;(aHp+rCatalyst)2[3kT(1mH+1mC)]1/2NHNCv----(6.45)]]>由方程(6.45)的跃迁速率与方程(5.8)的跃迁能量之积给出功率pm,pPm,p=E&pi;(aHp+rCatalyst)2[3kT(1mH+1mC)]1/2NHNCv[2mp+m2]X2.2X10-18W----(6.46)]]>在气相催化收缩反应情况下,其中能量空穴源是采用氢或氢原子、电离能为27.21eV的单个阳离子,其能量转移效率为1。铷(Rb+)是一种具有27.28eV第二电离能的电催化离子。以E=1,p=1,m=1,V=1m3,NH=3×1021,Nc=3×1021,mc=1.4×10-25kg,rc=2.16×10-10m,T=675K(6.47)代入方程(6.46),则由方程(5.9)、(5.10)及(5.8)所给反应的功率是pm,p=55GW(55kW/cm3)(6.48)在氢到低能态的催化反应发生在表面上的情况下,由于被吸收的氢或氢化物原子及电催化离子的不同表面相互影响,所以能量转移效率小于1。具有E=0.001(6.49)由方程(6.46)和(6.47)给出的功率是pm,p=55MW(55W/cm3)(6.50)有效性稍逊的催化系统关键在于三个谐振腔的耦合。例如,电子转移发生在两个包含氢或氢化物原子能量空穴的阳离子之间。反应速率与催化阳离子与氢或氢化物原子之间的碰撞速率及每次收缩反应伴随有电子转移的共振能量转移效率有关。由单位体积的碰撞速率ZH[aH/p]催化剂、体积V、以及方程(6.37)给出的共振能量转移效率Ee的乘积给出引起共振收缩的催化反应速率rm,p,其中r由反应容器中的阳离子之间的平均距离给出,rm,p=Ec&pi;(aHp-rCatalyst)2[3kT(1mH+1mC)]1/2NHNCv----(6.51)]]>(6.51)由方程(6.51)的跃迁速率与方程(5.8)的跃迁能量之积给出功率pm,pPm,p=Ec&pi;(aHp+rCatalyst)2[3kT(1mH+1mC)]1/2NHNCv[2mp+m2]X2.2X10-18W----(6.52)]]>关键在于三个谐振腔耦合的催化系统包含钾。例如,钾的第二电离能是31.63eV。这个能量空穴对于共振吸收而言,显然是太高了。不过,当K+还原至K时,它放出4.34eV。因此,K+到K2+与K+到K的组合具有27.28eV的净能量改变。考虑氢或氢化物原子的气相催化收缩反应的情况,以钾离子为具有27.28eV能量空穴的电催化耦合。能量转移效率由方程(6.37)给出,其中r由反应容器中的阳离子之间的平均距离给出。当K+浓度为3×1022(K+/m3)时,r接近5×10-9m。当方程(5.8)中的J=1,ΦD=1,κ2=1,τD=10-13秒(根据KH+的振动频率),且m=1时,能量转移效率Ec接近0.001。以
E=0.001,p=1,m=1,V=1m3,NH=3×1022,Nc=3×1021,mc=6.5×10-26kg,rc=1.38×10-10m,T=675K(6.53)代入方程(6.52),则由方程(5.13)、(5.14)及(5.8)所给反应的功率是pm,p=300GW(300W/cm3)(6.54)气体放电能量反应堆气体放电能量反应堆包括带臭氧发生器型电容器的图8的充有氢同位素气体的辉光放电真空电离室300;一个氢源322,它通过控制阀门325将氢供给电离室300;还包括一个电压及电流源330,产生通过阴极305与阳极320间的电流。在一种带臭氧发生器型电容器气体放电室的实施例中,可用介电绝缘套,如玻璃或陶瓷屏蔽所述电极之一。在一种优选的实施例中,所述阴极还包含一个引起原子氢“收缩”的约m×27.21eV的能量空穴源,和/或一个引起分子氢“收缩”的约m×48.6eV的能量空穴源,其中m为整数(包括下述文献所述的电催化离子和耦合,即我的题为“能量/物质转换方法和设备”,序列号为08/467,051的在先美国专利申请(1995.6.6申请),它是1995.4.3提出的序列号为08/416,040申请的部分继续申请,而它又是1993.8.16提出的序列号为08/107,357申请的部分继续申请,而它又是1993.6.11提出的序列号为08/075,102(Dkt.99437)申请的部分继续申请,而它又是1990.12.12提出的序列号为07/626,496申请的部分继续申请,而它又是1989.4.28提出的序列号为07/345,628申请的部分继续申请,而它又是1989.4.21提出的序列号为07/341,733申请的部分继续申请,它们都以引用方式结合在本申请中。)对于收缩氢原子首选的阴极305是钯阴极,从而可由钯的电子离子将共振能量空穴提供给放电电流。对于收缩氢原子来说第二种首选的阴极305,包含一个借助电子转移到放电电流的能量空穴源,它至少包括铍、铜、铂、锌和碲中的一种,还包括一种诸如包括光子源350给出的包含UV光的电磁辐射源的氢离解机构,或一种氢离解物质,后者包括过渡元素与内过渡元素,铁、铂、钯、锆、钒、镍、钛、Sc、Cr、Mn、Co、Cu、Zn、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、La、Hf、Ta、W、Re、Os、Ir、Au、Hg、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Vb、Lu、Th、Pa、U、活性炭(碳)、以及含Cs的碳(石墨)的混合物。所述反应堆还包括一个当为对氢原子(分子)给出能量空穴而使电子从供给电子的核素转移时,控制放电电流中消耗的能量的装置,它包括压力控制装置325和电流(电压)源330。所述气体放电能量反应堆还包括一个用于除去(分子)低能氢的装置301,如一选择性排放阀,以免放热收缩反应达到平衡。
在气体放电能量反应堆的另一实施例中,能量空穴源可为一种非弹性光子或粒子散射反应。在一种优选的实施例中,光子源350供给能量空穴,这里的能量空穴与光子的受激发射对应。在收缩氢原子的反应堆情况下,光子源350将氢分子离解成氢原子。产生接近m×27.21eV、(m/2)×27.21eV或40.8eV中至少一种能量的光子的光子源引起能量的受激发射,同时使氢原子经历所述的所述反应。在另一优选实施例中,产生接近m×48.6eV、95.7eV或m×31.94eV中至少一种能量的光子的光子源引起起能量的受激发射,同时使氢分子经历所述的所述收缩反应。
在另一种实施例中,可由图5的磁场发生器75施加一个磁场,以产生气态离子的磁化等离子体,这可以是一种非线性介质。当所述介质为非线性的时,可加强谐振腔的耦合及其间的能量转移的增加。因此,可使(氢原子的共振收缩能量向能量空穴、电催化离子或耦合转移的)反应速率提高,还通过提供并调节所加磁场的强度控制该速率。
在气体放电能量反应堆工作方法的一种实施例中,可通过控制阀325将源322的氢引入电离室300内。电流源330产生电流,通过阴极305与阳极320之间。所述氢接触该阴极,这一阴极包含引起原子氢“收缩”的约为m×27.21eV的能量空穴源,和引起分子氢“收缩”的约为m×48.6eV的能量空穴源,其中m为整数。在一种优选实施例中,电子从存在于阴极305上的供给电子的核素被转移到放电电流,以便为氢原子(分子)提供能量空穴。在收缩氢原子的反应堆情况下,借助阴极305上的离解材料,或借助一个包括光子源350提供的UV光的电磁辐射源,可使分子氢被离解原子氢,使得被离解的氢原子接触一个包括熔融态、液态、气态或固态模量空穴源的能量空穴源。随着原子(分子)氢的电子被能量空穴激发,而经历到低能级的跃迁,原子(分子)氢释放能量。通过用压力控制装置325控制源322的气体压力,和用电流(电压)源330控制电压,可使当电子从供给电子的核素被转移时放电电流中消耗的能量得到控制,以提供等于氢原子(分子)共振收缩能量的能量空穴。可用至少存在于阴极305、阳极320及图5中热交换器60中的热电偶,监视热能输出。利用计算机监视及控制系统可使输出功率得到控制,该系统监视各热元件,并控制所述装置,以改变功率输出。(分子)低能氢可被装置301除去,以免放热收缩反应达到平衡。
在气体放电能量反应堆的另一实施例中,首选阳极305包含催化物质,这包括压缩气体能量反应堆部分所述的附加催化剂。
气体放电能量反应堆的又一实施例包括一个气态能量空穴源,其中所述收缩反应发生在气相情况下,而且借助分子氢气的放电给出气态氢原子。在另一实施例中,可借助产生气态能量空穴源(电催化离子或耦合)的放电电流提供气态能量空穴源,比如在钾金属中放电,形成K+/K+;铷金属中放电,形成Rb+;或钛金属中放电,形成Ti2+。该实施例包括充有氢同位素气体的辉光放电真空电离室300。辉光放电容器可在一个被升高的温度下工作,以致可使能量空穴源(电催化离子或耦合)被升华、沸腾或挥发成气相。在一种实施例中,能量空穴源(电催化离子或耦合)的抗衡离子可以是氢化物的阴离子(H-),比如铷的氢化物(Rb+电催化离子)和/或钾的氢化物(K+/K+电催化耦合)。
在一种实施例中,能量空穴源可以是一种包含气相阳离子-阴离子对的电催化离子或电催化耦合,其中阳离子-阴离子对被图5的外部源装置75离解,例如包括粒子源75b和/或光子源75a,和/或热源、超声能源、电场源或磁场源。在一种优选实施例中,利用图5的热源75,使阳离子-阴离子对被热离解,或者利用图8的光子源350,使阳离子-阴离子对被光离解。致冷装置本发明的再一种实施例包括致冷装置,它包括本发明图6的电解槽、图7的压缩氢气容器,以及图8的氢气放电容器,其中,供给一个低能原子(分子)氢源来代替常态氢源。按照有如以下反应式所给的那些催化收缩反应的反过程,采用热能吸收,使低能氢原子反应到较高能态这些反应包括(4-6);(7-9);(10-12);(13-15);(16-18);(48-50);(51-53);(54-56);(57-59);(60-62),(63-65),(66-68),(69-71),(72-74)和(75-77)。按照有如以下反应式所给的那些催化收缩反应的反过程,采用热能吸收,使低能氢分子反应到较高能态,这些反应式包括(78-80);(81-83);(84-86);(88-90),和(91-93)。在本实施例中,图6、7和8的装置101、201和301分别用于除去常态氢,比如一个选择性排放阀,以免放热收缩反应达到平衡。至少包含低能氢原子和/或低能氢分子的物质结构本发明还包括包含低能氢原子的分子。低能氢可与周期表的,或公知的有机分子或无机分子,或者化合物、金属、非金属或半导体的所有原子反应,形成含有低能氢原子和分子的有机分子或无机分子,或者化合物、金属、非金属或半导体。带低能氢的反应体包括中性原子、负或正的电荷原子离子及分子离子、以及其它粒子。例如,低能氢可与水或氧反应,形成含低能氢和氧的分子,另外低能氢可与单个离子氦反应,形成含氦和低能氢的分子。低能氢还可与金属反应。在一种电解槽能量反应堆的实施例中,工作期间在阴极处产生的低能氢,通过与阴极反应,可被并入阴极中;于是就能得到金属-低能氢物质。在所有这样的反应中,通过加热和/或加压,可使反应速率及生成物产额得到提高。
利用常态氢的燃烧,可从氢气中净化低能氢分子(二氢化物)。可使氧与拟被净化的试样混合,也可使所述试样被燃烧。在二氢化物净化方法的第二种实施例中,可使试样流过氢复合器上方,在蒸汽条件下与常态氢反应,生成水。在第三种实施例中,使低能氢分子(二氢化物)被收集在本发明电解能量反应堆的阴极上,比如包括镍阴极或碳阴极在内的金属阴极。可将此阴极在一容器中被加热至第一温度,通过外部加热或使电流流过该阴极,造成常态氢优先断气。可使常态氢被泵出,然后再将阴极加热至第二个较高的温度,在此温度下,可使二氢化物气体被放出,并被收集。在第四种实施例中,利用包括低温条件下的气体色层分离法在内的冷冻过滤,比如在液氮温度下采用活性炭柱的气体色层分离法,和采用将从正氢分开成段的柱的色层分离法,如在液氮温度下,采用Rt-氧化铝柱或HayeSep柱,使气体试样受到净化,其中常态氢可被保持比二氢化物高的量。在第五种实施例中,利用冷冻蒸馏使气体试样被净化,其中可将常态氢被液化,或从气态低能氢(二氢化物)中分离。通过在液氦温度下液化,可使二氢化物被浓缩。目前理论的实验证明实施例1Mills和Good的论文[Mills.R.,Good,W.,“FractionalQuantum Energy Levels of Hydrogen”,Fusion Technology,Vol.28.No.4,November.(1995),pp.1697-1719.]叙述了以非常精确和可靠的热测量方法,热通量量热器确定含水碳酸钾电解过程中释放的多余热能;叙述了处于分数量子能级氢原子-氢离子的利用X-射线光电子能谱分析法(XPS)的实验证实;叙述了处于分数量子能级氢原子-氢离子的利用来自暗物质的软X-射线发射的实验证实;叙述了利用具有离子能量确定特性的高分辨率磁扇质谱仪对处于分数量子能级氢分子-二氢化物分子的实验证实,并给出综述。概述在另一文献[由HydroCatalysis Power Corporation提供的Mills.R.,The Grand Unified Theory of Classical QuantumMechanics.(1995),Technomic Publishing Company,LancasterPA,Great Valley Corporate Center,41 Great Valley Parkway,Malvern,PA 19355,R.Mills;Unification of Spacetime,theForces,Matter,and Energy(Technomic Publishing Company,Lancaster,PA,1992)]给出预言氢的分数量子能级及放热反应,从而得到低能氢的完整理论。
在含水碳酸钾电解过程中,观察到多余的功率和热能。在单槽杜瓦瓶中完成了含水碳酸钾在镍阴极下脉冲电流电解的热通量量热器。24.6瓦的平均功率输出超过4.73瓦的平均输入功率(电压×电流)大于5倍。整个实验过程中的总输入能量(电压乘电流的积分)是5.72MJ;而总输出能量是29.8MJ。若使电解由碳酸钾变为碳酸钠,则观察不到多余的热能。将热源分配给电催化放热反应,从而氢原子的电子被导致经历到正常“基态”以下量子能级的跃迁。这些低能态与分数量子数n=1/2,1/3,1/4,…对应。在提供27.2eV能量阱的钾量子对(K+/K+电催化耦合)存在的情况下,到这些低能态的跃迁就被激发。
n=1/2的氢原子的符号H(n=1/2)已被公告。含水碳酸钾电解槽及含水碳酸钠电解槽的镍阴极试样已由XPS进行分析。只在碳酸钾电解槽情况下存在中心在54.6eV的宽脉冲。H(n=1/2)的结合能(真空条件下)是54.4eV。因此,理论的与测量的H(n=1/2)结合能极好地符合。
在Mills等人关于由Extreme UV Center of the University ofCalifornia,Berkeley的Labov和Bowyer观察的星际空间暗物质软X-射线辐射[S.Labov and S.Bowyer,Astrophysical Journal,371(1991)810]的另外的说明中可发现有关氢离子H(n=1/8)的实验证实。实验谱与基于所提出跃迁的能量值之间的符合是值得注意的。
两个H(n=1/2)原子的反应产物,即二氢化物分子为质谱仪所证实。(Shrader Analytical &amp; Consulting Laboratories)在轻水K2CO3电解液与镍阴极的电解作用过程中所发出的冷冻过滤气体的质量谱证明与常态分子氢H2(n=1)的15.46eV相比,二氢化物分子H(n=1/2)具有约63eV的较高电离能。后燃气体的高分辨率(0.001AMU)磁扇质谱仪分析证实在70eV处存在两个极小质量的峰,在25eV处存在一个峰。分子氢的同样分析证实只在25eV处有一个峰和70eV处有一个峰。在70eV处后燃试样的情况下,一个峰被分配为氢分子离子的峰H2+(n=1),一个峰被分配为二氢化物分子的峰H2+(n=1/2),后者具有略大些的磁矩。实施例2在1994年1月版的Fusion Technology,[Mills.R.,Good,W.,Shaubach,R.,“Dihydrino Molecule Identification”,FusionTechnology,25,103(1994)]中Mills等人评述并提出三组热生成物和包括HydroCatalysis Power Corporation(Experimentd#1-#3)和Thermacore,Inc.(Experimentd#4-#14)工作在内的“尘埃”证实的数据。概述Mills等人报告实验数据支持Mills理论,即放热反应存在,其中氢原子和氘原子的电子被激发,经氧化还原能量与能量空穴共振的电化学反应体K+与K+、Pd2+与Li+或Pd与O2,降低到“基态”以下的量子势能级。脉冲电流量热计与含水碳酸钾(K+/K+电催化耦合)在镍阴极处的连续电解均被实行。41瓦的多余功率输出超过电解电压及电流给出的总输入功率8倍。所述放热反应的“尘埃”是具有低于被预言形成分子的“基态”能量的电子的原子。由于缺少与氧的反应能力、由于冷冻过滤而与分子氘的分离、以及由于质谱分析,使所预言的分子被发现。
在轻水K2CO3(K+/K+电催化耦合)电解液与镍阴极的电解作用过程中所放出气体的燃烧未被完成。未燃烧气体的质谱分析(AirProducts &amp; Chemical,Inc.)证明,由氢相比,对于m/e=2的生成物效率,主要给出升至m/e=2峰的核素必须有一个差m/e=1。而且,未燃烧气体的m/e=2峰的另外的质谱分析证明,二氢化物分子H2(n=1/2)具有比H2高的电离能。
按照Mills等人对原始数据的分析,the China Lake Neval AirWarfare Center Weapons Division的Miles观察过二氘化物分子作为核素,具有核质比为4,并有比常态氘分子为高的电离能。Miles曾用质谱仪分析由电解槽(钯阴极和LiOD/D2O电解液;27.54eV的电催化耦合)产生的多余功率所生出的被冷冻过滤的气体。[B.F.BUSH,J.J.LAGOWSKI,M.H.MILES,and G.S.OSTROM,“Helium Production During the Electrolysis of D2O in ColdFusion Experiments”,J.Electroanal,Chem.,304,271(1991);M.H.MILES,B.F.BUSH,G.S.OSTROM,and J.J.LAGOWSKI,“Heat and Helium Production in Cold Fusion Experiments”,Proc. Conf.The Science of Cold Fusion,Como,Italy,June29-July 4,1991,p.363,T.BRESSANI,E.DELGIUDICE,and G.PREPARATA,Eds.,SIF(1991);M.H.MILES,R.A.HOLLING,B.F.BUSH,J.J.LAGOWSKI,and R.E.J.MILES,“Correlationof Excess Power and Helium Production During D2O and H2OElectrolysis Using Palladium Cathodes”,J.Electroanal,Chem.,346,99(1993);M.H.MILES,and B.F.BUSH,“Search forAnomalous Effects Involving Excess Power and Helium DuringD2O Electrolysis Using Palladium Cathodes,”Proc.3rd Int.Conf.Cold Fusion,Nagoya,Japan,October 21-25,1992,p.189]。
用不透氢的金层涂在一侧并用氧化物包覆(MnOx,AlOx,SiOx)的钯片在NTT实验室被装以氘或氢。只在存在混合的氧化物包层(Pd/O2电催化耦合)时,才有热能可从轻的和重的氢处被观察到。高分辨率(0.001AMU)四极质谱仪分析将电流加到包有钯片装以MnOx的氘(99.9%)时放出的气体,表明在Mills等人分配给氘分子D2(n=1/2)的D2峰上存在一个大的台肩。[E.YAMAGUCHI and T.NISHIOKA,“Direct Evidence for Nuclear Fusion Reactions inDeuterated Palladium,”Proc.3rd Int.Conf.Cold Fusion,Nagoya,Japan,October 21-25,1992,p.179;E.YAMAGUCHI andT.NISHIOKA,“Helium-4Production from Deuterated Palladiumat Low Energies,”NTT Basic Research Laboratories and IMRAEurope S.A.,Personal Communication(1992)]。实施例3宾州大学用非常精确和可靠的热测量,即热能到电输出信号的热电偶转换方法确定,在存在含有氧化锶铌(Nb3+/Sr2+电催化耦合)的氧化镍粉末的情况下,有多余的热能从流动的氢释放[Phillips,J.,“A Calorimetric Investigation of the Reactionof Hydrogen with Sample PSU #1,September 11,1994,AConfidential Report submitted to HydroCatalysis PowerCorporation provided by HydroCatalysis Power Corporation,Great Valley Corporat Center,41Great Valley Parkway,Malvern,PA 19355]。以氢流过催化剂上方,观察到多余的功率和热能,而且随着流速的增大而增加。但以氦流过催化剂/氧化镍混合物上方,或者以氢流过只有氧化镍的上方,则无多余功率被观察到。如图9所示,约10cc的含氧化锶铌的氧化镍粉末在523°K条件下直接产生0.55W的稳定状态的输出功率。若把气体从氢转换成氦,则功率立刻就降下来。转换恢复为氢,则多余的功率输出持续增加,直至氢源的筒在约40,000秒时被排空。随着没有氢流,输出功率也就落到0。
热源被分配给电催化的放热反应,从而使氢原子的电子被引至经历到低于正常“基态”的量子能级的跃迁。这些低能态对应于分数量子数n=1/2,1/3,1/4,…。在存在铌和锶离子对(Nb3+/Sr2+电催化耦合)的情况下,到这些低能态的跃迁受到激发,并提供27.2eV的能量阱。实施例4在Mills的“来自星际空间暗物质和太阳部分的氢光谱”论文中[Mills,R.,The Grand Unified Theory of Classical QuantumMechanics,(1995),Technomic Publishing Company Lancaster,PA]描述了借助来自暗物质和太阳的软X-射线辐射,处于分数量子能级的氢原子-氢化物的实验证实;给出有关太阳中微子问题、日冕温度问题、氢911.8A(埃)线变宽问题、“辐射区”到“对流区”跃迁温度问题、冷一氧化碳云问题、星体年龄问题、太阳旋转问题、太阳光闪烁问题,以及氢的行星电离能源问题的结论,并描述了借助COBE得到的自旋/核超精细结构能量(对此尚无其它令人满意的测定存在),处于分数量子能级的氢原子-氢化物的实验证实。
概述如Mills论文中表1所示[Mills,R.,The Grand Unified Theoryof Classical Quantum Mechanics,(1995),TechnomicPublishing Company Lancaster,PA],氢跃迁到低于“基态”的电子能态,它们对应于由Mills理论预言的分数量子数,与星际空间的远紫外背景谱线相吻合。另外,氢的歧化反应产生离子氢、高能电子以及氢的电离辐射。这种测定解答了暗物质本性的疑题,以及许多天体观察的估计,如扩散的Hα辐射广泛存在于整个系星,并需要912A(埃)通量的广布源[Labov,S.,Bowyer,S.,“Spectralobservations of the extreme ultraviolet background”,TheAstrophysical Journal,371,(1991),pp.810-819]。
在Mills关于由Extreme UV Center of the University ofCalifornia,Berkeley的Labov和Bowyer观察的星际空间暗物质软X-射线辐射的另外说明,可发现有关氢化物H(低到n=1/8)的其它实验证实[S.Labov and S.Bowyer,Astrophysical Journal,371(1991)810]。实验谱与基于所提出跃迁的能量值之间的符合是值得注意的。
通过测定对低能氢跃迁的太阳光输出主要部分,使对于估算自pp系的太阳能输出的太阳中微子缺少疑题得到解答。太阳光球(的温度)为6000K;而根据对强电离重元素所发射的X-射线的测定,日冕的温度超过106K。尚无令人满意的高能转移机构被公知,所述机理要解释相对于光球的温度,日冕的温度过高。利用存在与日冕相关联的能源,使这一疑题得到解答。保持日冕处在超过106K的温度的能量是由有如反应式(13-15)给出的低能氢歧化反应释放的。在Mills的表2中,以从1→1/2 H的跃迁至1/9→1/10H的跃迁的连续能量方式给出由具有初始低能态量子数p和半径aH/p的氢离子原子到具有低能态量子数(p+m)和半径aH/(p+m)的跃迁所释放的能量,所述跃迁受到具有初始低能态量子数m′,初始半径aH/m′和最终半径aH的氢离子原子催化。计算值与实验值之间的符合是令人满意的。此外,表2中的很多线并无上述的符合,或者所述符合是不能令人满意的[Thomas,R.J.,Neupert.W.,M.,AstrophysicalJournal Supplement Series.Vol.91,(1994),pp.461-482;Malinovsky,M.,Heroux,L.,Astrophysical Journal,Vol.181,(1973),pp.1009-1030;Noyes,R.,The Sun,Our Star,HarvardUniversity Press,Cambridge,MA,(1982),p.172;Phillips,J.H.,Guide to the Sun,Cambridge University Press,Cambridge,Great Britain,(1992),pp.118-119;120-121;144-145]。所计算的4×1026W功率与所观察到的4×1026W功率相吻合。
太阳光HI911.8A(埃)线的加宽(911.8A(埃)至600A(埃))是根据连续产生HI911.8A(埃)的光球表面(T=6000K)的正常电子能量,并根据氦连续谱线的相对宽度HeI504.3A(埃)(HeI504.3A(埃)至530A(埃))和HeII277.9A(埃)(HeII277.9A(埃)至225A(埃))所预言的加宽的6倍。[Thomas,R.J.,Neupert.W.,M.,Astrophysical Journal Supplement Series.Vol.91,(1994),pp.461-482;Stix,M.,The Sun,Springer-Verlag,Berlin,(1991),pp.351-356;Malinovsky,M.,Heroux,L.,Astrophysical Journal,Vol.181,(1973),pp.1009-1030;Noyes,R.,The Sun,Our Star,Harvard University Press,Cambridge,MA,(1982),p. 172;Phillips,J.H.,Guide to the Sun.CambridgeUniversity Press,Cambridge,Great Britain,(1992),pp.118-119;120-121;144-145]。后面各线是均衡地非常窄的;此外,相应的起始点温度必须更高,因为所述跃迁是比较高能的。此外,日珥谱的HI911.8A(埃)连续谱线大约是平静太阳的同一谱线宽度的一半。另外,在日珥中,温度升高到高于10,000K。利用宽度机理对包含作为反应体的氢原子的能量歧化反应的符合,可使对于较高能级氢连续谱线的过分宽度的反常光谱特征问题得到解答。
随着反应产物,即低能氢朝向太阳中心扩散,它可被重新离子化。在具有温度为2×106K,0.7太阳半径,即0.7Rs处,音速以及从“辐射区”到“对流区”跃迁的速度突变,与低能氢的电离温度相符。
另一个光谱学的奥秘涉及色球层在波长4.7μm处的预先分配给一氧化碳的红外吸收带,尽管在所观察的区域内它的存在是难以置信的,所述区域的温度超过一氧化碳将会破裂成构成它的碳原子和氧原子时的温度。利用宽4.7μm的特性与低能氢分子离子的温度加宽的旋转跃迁符合,可使这个问题得到解答。4.7μm吸收线对H2*[2c′=3a0]+的J=0到J=1旋转跃迁符合给出有关冷一氧化碳云问题的结论。
星系演变模型导致对某些星体的年龄估计大于宇宙的年龄。Mills理论预言了目前存在的星系老于随着发生在收缩阶段星球演变所存在的膨胀已消逝的时间。
狭义相对论对核心的角动量损失问题给出结论,这与当代太阳模型及日光地震学数据相符。对于发展的空间时间机理,光子的动量转移给出有关太阳核心旋转慢的问题的结论。
另外,歧化反应的其他星体论据是由于被称为A星系的年轻星系的远紫外辐射的发射。它们看来像是具有大气层上或日冕的能量、紫外发射,尽管天文学相信没有这样的星系能够加热这些区域。
许多近期的星系,特别是dM星系,被公知为在可见波段及X-射线波段时时地闪烁。利用根据20倍AU显微镜的星体的the ExtremeUltraviolet Explorer(EUVE)Deep Survey望远镜,使一种极为明显的闪烁得以被观察[Bowyer,S.,Science,Vol.263,(1994),pp.55-59]。远紫外发射线被观察,对于这点并无满意的相符。这些谱线与氢到低于“基态”的电子能级的跃迁相吻合,所述那些能级对应于Mills论文中表3中的分数量子数。在闪烁过程中,这些分配给低能氢跃迁的谱线的强度明显增加。作为太阳光闪烁的机理,所述数据是由低能氢的歧化反应构成的。
歧化反应的行星论据是,在从太阳的过量吸收情况下,由木星、土星和天王星发射能量。木星是个巨大的气态氢的球体。土星和天王星也由大量的氢构成。利用红外辐射谱仪从所有这三个行星测得了H3+[J.Tennyson,Physics World,July,(1995),pp.33-36]。氢的歧化反应产生离子化电子、能量、以及被电离的氢原子。离子化电子和光子均可与分子氢反应,生成H3+。
自旋/核超精细结构的低能氢跃迁能与COBE所得的某些谱线严密地吻合。[E.L.Wright,et.al.,The Astrophysical Journal,Vol.381,(1991),pp.200-209;J.C.Mather,et.al.,TheAstrophysical Journal,Vol.420,(1994),pp.439-444],对于这些谱线尚无其它令人满意的证实。实施例5宾州大学用非常精确和可靠的热测量,即热能到电输出信号的热电偶转换方法确定,在存在离子氢附加催化剂材料以40%(重量)硝酸钾(KNO3)盖在5%(重量)的1%Pd-石墨碳粉末(K+/K+电催化耦合)上的情况下,有多余的热能从流动的氢释放[Phillips,J.,“Additional Calorimetric Examples of Anomalous Heat fromPhysical Mixtures of K/Carbon and Pd/Carbon”,January 1,1996,A Confidential Report submitted to Hydro Catalysis PowerCorporation provided by Hydro Catalysis Power Corporation,Great Valley Corporat Center,41 Great Valley Parkway,Malvern,PA19355]。以氢流过催化剂上方,观察到多余的功率和热能。但以氦流过催化剂混合物上方,则无多余功率被观察到。再现观察热产生的速率,它高于从进入容器所有的氢转换成水所期待的速率,并且所观察到的总能量比如果容器内的所有催化物质经“公知”的化学反应都转换到最低能态时所期待的值超过4倍。因此,可再现观察“异常”的热能,即不能用普通化学解释的热能的量及持续时间解释。实施例6从具有气态能量空穴源的压缩气态能量容器来的多余热能已被HydroCatalysis Power Corporation在有碘化钼(MoI2)存在的情况下(Mo2+电催化离子)用低压氢被观察到,其中的碘化钼(MoI2)在所述容器为210℃的工作温度下被挥发。将热量计置于大型对流干燥箱内,干燥箱使容器的周围温度保持在工作温度下。所述容器有一个40cc的不锈钢外壳,它由2英寸厚的熔融陶瓷热绝缘材料包围着。容器用真空不漏水的法兰密封,法兰有两个带孔的布法罗密封压盖,用于与离解分子氢的金属丝相联系,并为一个K型热电偶穿一个孔,该容器有一个1/16英寸的氢入口,该入口与一1/4英寸的不锈钢管相连,此管与氢源相连。所述法兰由一个铜密封垫密封。容器底部有1/4″的真空部分,它与一个不锈钢管相连,该管在容器与真空泵及真空压力计之间有一个阀门。将少于1克的MoI2催化剂置于容器中的陶瓷舟内。估计催化剂的蒸汽压在210℃的工作温度下是约为50毫托。通过相对于在出口处被泵出的量调节经入口送入的氢,人为地将氢的压力控制在约200至250毫托,所述出口处的压力在输出管内即受到真空压力计的监视。对于每次运行来说,严格地使总压力(包括实验运行情况下MoI2的压力)在250毫托。
通过测量容器温度与干燥箱周围温度之间的差,并对由把能量加给容器内部由钨丝所得到的校正曲线比较这一结果,来确定输出的功率。当使氢流过热的钨丝(=2000℃)上方时,从所述装有少于1克的MoI2的40cc不锈钢反应外壳观察到0.3瓦的多余能量。但是,当使氦流过所述热的钨丝上方时,或者当使氢流过所述热的钨丝上方,容器中却没有MoI2存在时,则没有多余的功率被观察到。再现观察热产生的速率,它高于从进入容器所有的氢转换成水所期待的速率,并且所观察到的总能量比如果容器内的所有催化物质经“公知”的化学反应都转换到最低能态时所期待的值超过30倍。因此,可再现观察“异常”的热能,即不能用普通化学解释的热能的量及持续时间解释。
用质谱仪使所述反应堆的氢的量受到监视。在相应于使氢流过所述热丝上方情况下所得到的多余能量时,可观察到有较高电离质量的两种核素;而在控制运行期间,使氢流过热的钨丝上方,容器中却没有MoI2存在,则未观察到有较高电离质量的两种核素。有较高电离质量的两种核素被分配给二氢化物,即2H[aH/p]&RightArrow;H2*[2c&prime;=2a0/p]]]>。
权利要求
1.一种反应器,包括一个外壳,可容纳真空或超过大气压的压力;有效数量的形成气态跃迁催化剂的物质,用以催化氢原子到低于n=1能态的跃迁,其中n是所述氢原子内电子的能量状态;一个气相的氢原子源;用于从所述物质形成所述气态跃迁催化剂的装置;用于在多种条件下,在所述容器内使所述气态跃迁催化剂与所述氢原子接触,从而所述氢原子经历到低于n=1能态的跃迁并释放能量的装置。
2.一种如权利要求1所述的反应器,其特征在于,在所述氢原子经历所述向低能态跃迁时,所述气态跃迁催化剂适于从所述氢原子吸收约27eV的倍数的能量。
3.一种如权利要求1所述的反应器,其特征在于,在所述氢原子经历所述向低能态跃迁时,所述气态跃迁催化剂适于具有与所述氢原子释放的能量的共振吸收。
4.一种如权利要求1所述的反应器,其特征在于,所述氢原子源包括含氢气体和用于离解所述含氢气体的装置。
5.一种如权利要求4所述的反应器,其特征在于,所述氢原子源包括热丝和含氢气体蒸汽、热栅和含氢气体蒸汽、由电子轰击被加热至1800-2000K的钨毛细管和含氢气体蒸汽、被维持在非平衡条件下的氢化物、及感应耦合的等离子体流管和含氢气体蒸汽中的至少一个。
6.一种如权利要求1所述的反应器,其特征在于,所述氢原子源包括含氢气体蒸汽和使所述含氢气体蒸汽离解成自由氢原子的第二催化剂。
7.一种如权利要求6所述的反应器,其特征在于,所述氢离解催化剂包括一种以上从过渡元素、镧系元素及活性炭组中选择的元素。
8.一种如权利要求1所述的反应器,其特征在于,还包括用于从经历所述跃迁的氢原子吸收能量的装置。
9.一种如权利要求1所述的反应器,其特征在于,还包括用于除去处于低于n=1能态的分子氢的装置。
10.一种如权利要求1所述的反应器,其特征在于,还包括用于盛装所述物质的舟或器皿,和用于使所述舟或器皿与所述容器相连的机构。
11.一种如权利要求10所述的反应器,其特征在于,所述舟或器皿还包括用于加热其中所盛物质的机构。
12.一种如权利要求1所述的反应器,其特征在于,所述气态跃迁催化剂是一种离子混合物,它阻滞氢的还原。
13.一种如权利要求1所述的反应器,其特征在于,所述物质适于在被加热时升华、沸腾、或挥发。
14.一种如权利要求1所述的反应器,其特征在于,所述物质包括铷或钾的盐。
15.一种如权利要求1所述的反应器,其特征在于,所述物质包括铷的盐,选自一组RbF、RbCl、RbBr、RbI、Rb2S2、RbOH、Rb2SO4、Rb2CO3、Rb3PO4中。
16.一种如权利要求1所述的反应器,其特征在于,所述物质包括钾的盐,选自一组KF、KCl、KBr、KI、K2S2、KOH、K2SO4、K2CO3、K3PO4、K2GeF4中。
17.一种如权利要求1所述的反应器,其特征在于,当所述物质被加热时,所述物质适于提供大于选自由(Rb+)、(Mo2+)及(Ti2+)构成的一组的阳离子的0的蒸汽压。
18.一种如权利要求1所述的反应器,其特征在于,当所述物质被加热时,所述物质适于提供一对具有大于0蒸汽压的阳离子,所述一对选自如下构成的一组(Sn4+,Si4+)、(Pr3+,Ca2+)、(Sr2+,Cr2+)、(Cr3+,Tb3+)、(Sb3+,Co2+)、(Bi3+,Ni2+)、(Pd2+,In+)、(La3+,Dy3+)、(La3+,Ho3+)、(K+,K+)、(V3+,Pd2+)、(Lu3+,Zn2+)、(As3+,Ho3+)、(Mo5+,Sn4+)、(Sb3+,Cd2+)、(Ag2+,Ag+)、(La3+,Er3+)、(V4+,B3+)、(Fe3+,Ti3+)、(Co2+,Ti+)、(Bi3+,Zn2+)、(As3+,Dy3+)、(Ho3+,Mg2+)、(K+,Rb+)、(Cr3+,Pr3+)、(Sr2+,Fe2+)、(Ni2+,Cu+)、(Sr2+,Mo2+)、(Y3+,Zr4+)、(Cd3+,Ba2+)、(Ho3+,Pb2+)、(Pd2+,Li+)、(Eu3+,Mg2+)、(Er3+,Mg2+)、(Bi4+,Al3+)、(Ca2+,Sm3+)、(V3+,La3+)、(Gd3+,Cr2+)、(Mn2+,Ti+)、(Yb3+,Fe2+)、(Ni2+,Ag+)、(Zn2+,Yb2+)(Se4+,Sn4+)(Sb3+,Bi2+)和(Eu3+,Pb2+)。
19.一种如权利要求1所述的反应器,其特征在于,所述物质包括可被蒸发或挥发成离子的盐。
20.一种如权利要求19所述的反应器,其特征在于,所述盐包括一种或多种阳离子和一种以上选自由卤化物、硫酸盐、磷酸盐、碳酸盐、氢氧化物及硫化物构成的一组中的阴离子。
21.一种如权利要求1所述的反应器,其特征在于,从所述物质形成所述气态跃迁催化剂的装置至少包括利用热能、电子束能、光子能、超声能、电场或磁场之一。
22.一种如权利要求1所述的反应器,其特征在于,所述物质适于给出气态原子,所述形成气态跃迁催化剂的装置还包括用于使所述气态原子离子化以形成所述气态跃迁催化剂的机构。
23.一种如权利要求1所述的反应器,其特征在于,还包括用于加热所述物质的装置,从而当所述物质被加热时使所述物质适于给出气态原子,而且所述形成跃迁催化剂的装置包括使所述气态原子离子化的机构。
24.一种如权利要求1所述的反应器,其特征在于,所述物质包括一个丝,当它运行时,形成所述气态跃迁催化剂。
25.一种如权利要求1所述的反应器,其特征在于,所述形成气态跃迁催化剂的装置包括一个丝,并使所述物质包敷在该丝上。
26.一种如权利要求11所述的反应器,其特征在于,所述物质在被加热时适于给出气态原子,而且所述形成跃迁催化剂的装置包括使所述气态原子离子化的机构。
27.一种如权利要求10所述的反应器,其特征在于,所述物质包括可被蒸发或被挥发成离子的盐。
28.一种如权利要求1所述的反应器,其特征在于,还包括不起反应的气体,通过控制所述不起反应气体的量,使功率得到控制。
29.一种如权利要求1所述的反应器,其特征在于,所述氢原子源包括用于碳氢化合物或水热解的装置。
30.一种如权利要求29所述的反应器,其特征在于,该容器包括一个内燃机汽缸。
31.一种如权利要求1所述的反应器,其特征在于,还包括控制该容器功率输出的装置,所述功率输出控制装置包括用于控制所述气态跃迁催化剂或所述氢原子的量的机构。
32.一种如权利要求31所述的反应器,其特征在于,所述控制气态跃迁催化剂的量的装置包括控制该容器温度的机构,其中所述物质适于具有与该容器温度有关的蒸汽压。
33.一种如权利要求10所述的反应器,其特征在于,还包括控制该容器功率输出的装置,所述功率输出控制装置包括用于控制所述舟或器皿温度的机构,其中所述物质适于具有与所述舟或器皿温度有关的蒸汽压。
34.一种如权利要求31所述的反应器,其特征在于,通过控制来自所述氢原子源的氢原子流,使所述氢原子的量得到控制。
35.一种如权利要求5所述的反应器,其特征在于,还包括控制该容器功率输出的装置,所述功率输出控制装置包括这样的机构,它用于控制热丝、由电子轰击加热的钨毛细管、或所述感应耦合等离子体流管中至少一个上方所述含氢的气体流;或用于控制所述感应耦合等离子体流管中消耗的功率;或用于控制所述热丝或由电子轰击加热的钨毛细管的温度;或用于控制氢的压力和所述被保持在非平衡条件下的氢化物的温度。
36.一种如权利要求1所述的反应器,其特征在于,还包括控制该容器功率输出的装置,所述功率输出控制装置包括用于监视被释放的能量的量的机构。
37.一种如权利要求1所述的反应器,其特征在于,还包括控制该容器功率输出的装置,所述功率输出控制装置包括一个计算机监视与控制系统,它至少监视热元件、能谱分析仪或气体色层谱仪之一。
38.一种获得氢原子能量的方法,包括以下步骤挥发一种物质,以形成一种气态跃迁催化剂;提供氢原子;和使所述气态跃迁催化剂与所述氢原子在多种条件下接触,使所述氢原子经历到低于n=1能态的跃迁,并从所述氢原子释放能量,其中n是自由氢原子内电子的能量状态,并且所述气态跃迁催化剂是用于催化氢到低于n=1能态跃迁的催化剂。
39.一种如权利要求38所述的方法,其特征在于,所述提供氢原子的步骤包括使含氢气体离解成氢原子。
40.一种如权利要求38所述的方法,其特征在于,所述提供氢原子的步骤包括使含氢气体通过一个热丝上方、使含氢气体通过一个热栅上方、使含氢气体通过一个由多种轰击加热至1800-2000K的钨毛细管、或者使一种氢化物保持在非平衡条件下、或使含氢气体通过一个感应耦合等离子体流管中的一种。
41.一种如权利要求38所述的方法,其特征在于,所述提供氢原子的步骤包括使含氢气体与使所述含氢气体蒸汽离解成自由氢原子的第二催化剂接触。
42.一种如权利要求38所述的方法,其特征在于,当所述氢原子经历向低能态跃迁时,所述气态跃迁催化剂从所述氢吸收许多的约27eV的倍数的能量。
43.一种如权利要求38所述的方法,其特征在于,所述气态跃迁催化剂适于具有在所述氢原子经历向低能态跃迁时,与所述氢原子释放的能量的共振吸收。
44.一种如权利要求38所述的方法,其特征在于,还包括在一个容器中实施该方法的步骤,所述容器包括一个具有容纳真空或超过大气压压力的能力的外壳。
45.一种如权利要求38所述的方法,其特征在于,还包括控制所述容器功率输出的步骤。
46.一种如权利要求45所述的方法,其特征在于,所述控制所述容器功率输出的步骤包括控制进入所述容器的氢原子流。
47.一种如权利要求38所述的方法,其特征在于,还包括吸收所释放能量的步骤。
48.一种如权利要求38所述的方法,其特征在于,还包括除去具有低于n=1能态的分子氢的步骤。
49.一种如权利要求38所述的方法,其特征在于,挥发一种物质,以形成一种气态跃迁催化剂的步骤包括挥发所述物质,形成气态原子,并使所述气态原子离子化。
50.一种制造氢离子的方法,包括以下步骤挥发一种物质,以形成一种气态跃迁催化剂;形成氢原子;和使所述气态跃迁催化剂与所述氢原子在多种条件下接触,使所述氢原子经历到低于n=1能态的跃迁,并从所述氢原子释放能量,从而形成所述氢离子,其中n是自由氢原子内电子的能量状态,并且所述气态跃迁催化剂是用于催化氢到低于n=1能态跃迁的催化剂。
51.一种如权利要求50所述的方法,其特征在于,还包括收集并纯化所述氢离子的步骤。
全文摘要
通过提供能量阱或机构,使氢原子(分子)的电子受激而衰减至量子化的低能级和小于“基态”的半径(较小的半长轴及半短轴),从氢原子(分子)中释放能量的方法和设备,用以除去与激发这些跃迁放出的氢能共振。借助一个以上电子在包括原子、离子、分子,及离子与分子的混合物在内的参与核素间的转移,可提供能量阱、能量空穴。在一种实施例中,对于原子(分子)氢低于“基态”的跃迁而言,能量空穴包括t个电子从一种或多种施主核素到一种或多种受主核素的转移,从而使电子施主核素的电离能和/或电子亲和势之和减去电子受主核素的电离能和/或电子亲和势之和近似等于mX27.21eV(mX48.6eV),其中m和t均为整数。本发明还包括氢附加催化剂,即一种多官能度物质,具有离解分子氢,给出自由氢原子的官能度,其具有承载动态的自由氢原子的官能度和可为能量空穴源的官能度。能量反应堆包括一个或多个电解容器、一个加压氢气容器、和一个氢气排放容器。一种优选的加压氢气能量反应堆包括一个容器、一个氢源、一个控制容器内压力和氢流的装置、一种使分子氢离解成原子氢的物质、和一种可为气相的能量空穴源的物质。气态能量空穴源包括那些在被升高的气体能量反应堆工作温度下升华、沸腾和/或挥发的能量空穴源,其中氢向低能态电子跃迁的放热反应发生在气相条件下。
文档编号C01B3/00GK1187146SQ9619448
公开日1998年7月8日 申请日期1996年5月31日 优先权日1995年6月6日
发明者R·L·米尔斯, W·R·古德, A·I·波波夫, J·菲利普斯 申请人:黑光电力有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1