一种硼化锆等离子喷涂原料及其制备方法

文档序号:10587380阅读:355来源:国知局
一种硼化锆等离子喷涂原料及其制备方法
【专利摘要】本发明属于耐高温隐身材料领域,产品适用于高速飞行物高温部位的隐身,尤其涉及一种超高温导电材料硼化锆。本发明通过在压环的基础之上添加适量的碳化硼制备大粒度硼化锆喷涂原料。制得的大粒度硼化锆喷涂原料粒度20?80μm,且其粒度大小可控,氧化物杂质含量≤0.1%,纯度≥90%,致密度高,熔点为3040℃,适合等离子喷涂以实现硼化锆的隐身功能。并且本发明方法中的烧结可采用经济便宜的无压石墨碳管炉即可,制作成本低。
【专利说明】
一种硼化锆等离子喷涂原料及其制备方法
技术领域
[0001] 本发明属于耐高温隐身材料领域,产品适用于高速飞行物高温部位的隐身,尤其 涉及一种超高温导电材料硼化锆,适用于离子喷涂原料。
【背景技术】
[0002] 通过等离子喷涂将高导电率的硼化锆喷涂成特殊的图形以改变雷达发射的电磁 波的反射角度,这样就可以避免目标物被雷达探测到,从而实现隐身。
[0003] 等离子喷涂所需要的原料粒度为20_80μπι,这要求硼化锆的粒度不能太小,太小颗 粒的硼化锆粉体在高温下火焰瞬间就将其吹没了,无法用于等离子喷涂,但目前的合成方 法合成出的硼化锆晶粒都太小。现有的合成方法主要有:先驱体法,合成的硼化锆晶粒粒度 大小为纳米级,最大的只能达到1-2μηι ;自蔓延高温合成法,合成的粒度为2-5μηι;碳热还原 法,在1500 °C左右合成的粒度大小也仅仅2μπι左右。而且上述方法合成的硼化锆材料的致密 度都过低、杂质含量都过高,无法直接用于等离子喷涂。
[0004] 若是采用碳热还原法将合成温度提得非常高、保温时间延得非常长在超高温条件 下来合成硼化锆,虽然能达到较高致密度,从而可以破碎出大粒度的硼化锆,但其氧化物杂 质含量太高,这些氧化物杂质会使硼化锆的导电率变得很低,使得这样合成出的的高致密 度并不是纯硼化锆的致密度,属于无效的致密度,若用来喷涂,无法实现硼化锆的隐身性 能。

【发明内容】

[0005] 针对上述存在的问题或不足,本发明提供了一种硼化锆等离子喷涂原料及其制备 方法。该方法不仅可以制备出20-80μπι范围内的大粒度硼化锆喷涂原料,还可以自由控制其 粒度的大小;且制备的大粒度硼化锆喷涂原料中氧化物杂质含量<〇. 1 %、纯度多90%,致 密度高,熔点为3040 °C,适合等离子喷涂以实现硼化锆的隐身功能。
[0006] 具体技术方案如下:
[0007] 步骤1、将纯度多99.7 %的硼化锆粉体和掺杂量为1 %~6%的碳化硼在酒精中湿 式球磨2~4小时混匀,取出混匀的产物放入烘箱60~80°C下经8~12h烘干,烘干后利用坩 埚研磨,然后通过100或200目滤筛收集。
[0008] 步骤2:在步骤1制得的粉体中加入4%~7%PVAL胶水,坩埚中研磨20~30min,之 后将含胶粉体全部通过1〇〇或200目滤筛收集。
[0009] 步骤3:将步骤2制得的含胶粉体每次称取4~10g在液压机上用10~15MPa的压力 压制成型,保压时间为10~20秒。
[0010]步骤4:将步骤3压制成型的产物进行烧结,烧结气氛为Ar,烧结方式:0到200 °C升 温速度为10~15 °C /min,200 °C到600 °C升温速度为2~5 °C /min即排胶,600 °C到最终烧结温 度的升温速度为10~15°C/min,最终烧结温度为1800°C~2000°C,然后在最终烧结温度保 温1~3h。
[0011] 步骤5:将步骤4烧制的产物手工破碎,每过半分钟通过180~600目孔径的滤筛筛 选硼化锆的粒度,其粒度大小为20-80μπι。
[0012] 所述步骤4中烧结设备采用无压石墨碳管炉,装样坩埚采用不加盖子的BNi甘埚。 [0013]硼化锆能够被破碎成大粒度颗粒必须要满足两点条件。其一,需要烧结出含有大 量晶界结构(见图1)的硼化锆,否则烧结之后的硼化锆一经破碎便立即成了未烧结时的粉 体粒度大小,不能得到大粒度的颗粒,因此,烧结温度控制在1800°C~2000°C,并长时间保 温;其二,需要制备出致密度达到60%~98%的硼化锆颗粒,若致密度太低,即使高温烧结 和长时间保温,硼化锆原料内部也不能形成大量晶界结构,因为原料粉体内部的颗粒之间 接触距离不够,无法通过晶界结构连接,仅仅靠的是范德华力连接,其结果就是烧结后的粉 体颗粒之间只是发生了团聚,而不是通过强力结合为一个整体,故达不到破碎成大颗粒的 效果。
[0014] 而达到高致密度的办法有两点,一是通过巨大的压力将原料压制成型进行烧结, 二是通过加入碳化硼除去原料硼化锆中的含氧杂质,实际测试中发现压力对致密度的影响 尤为明显,不添加碳化硼单靠压力就能使致密度最高达到80%左右,但是,虽然致密度能够 达标了,硼化锆中的含氧化物杂质却无法被除尽,这些氧化物杂质是绝缘体,会明显降低硼 化锆的导电率,且添加的碳化硼不只是靠除去含氧化物以增加致密度,其还能填充在硼化 锆颗粒的微小气孔内来增加致密度。因此本发明采用在压环的基础之上添加适量的碳化 硼,不过,碳化硼也不能添加过多,因为硼化锆中的氧化物杂质有限,虽然碳化硼具有很好 的高温导电性,但毕竟碳化硼在高温下的导电性不如硼化锆好,过多的碳化硼剩余也会造 成硼化锆的导电性能降低,从而影响其喷涂后的隐身效果。
[0015] 本发明方法中的烧结可采用经济便宜的无压石墨碳管炉即可。
[0016] 综上所述,本发明可实现制备20-80μπι范围内的大粒度硼化锆颗粒,且粒度大小可 控,氧化物杂质含量<0.1 %、纯度多90%,致密度高,制作成本低,适合等离子喷涂以实现 硼化锆的隐身功能。
【附图说明】
[0017] 图1为1950Γ时硼化锆中生成的晶界结构;
[0018] 图2为加压掺杂碳化硼后无压烧结并破碎的硼化锆与原料硼化锆的粒度对比图;
[0019] 图3为100目和600目滤筛收集到的破碎硼化锆颗粒的粒度分布。
【具体实施方式】
[0020] 步骤1:取纯度99.9 %的硼化锆3~20g装入ΒΝ坩埚,手工压实,编号为1;另取5份硼 化锆占96%、碳化硼(纯度97.97%,黑龙江省牡丹江市碳化硼厂)占4%在酒精中球磨两小 时混匀并烘干完成的样品各20~100g,,然后从其中一份样品取3~20g装入BNit埚,手工压 实,编号为2。在余下的4份样品中各自加入4%PVAL胶水,分别放入坩埚研磨20min混匀,使 用100或者200目滤筛收集装样,然后每份样品取3g,编号为3至6,将取出的4份样品在液压 机上依次使用5MPpa、1 OMPa、15MPa、20MPa压力压环后装入4个BNit埚,保压时间10秒。
[0021]步骤2:将上步中的1至6号样品放入石墨碳管炉在Ar气氛中无压烧结,烧结方案:0 到200°C升温速度为10°C/min,200°C到600°C升温速度为5°C/min(缓慢升温排胶),600°C到 1950 °C升温速度为10 °C/min,最后在1950 °C保温2h,停止烧结后降温速度为30 °C/min。 [0022]步骤3:利用阿基米德排水法测各个环样的致密度(见表1)。
[0024] 表 1
[0025] 步骤4:将无压烧结的6个环样分别手工破碎,每过半分钟用100目标准分样筛收集 能通过滤筛的产品,破碎收集完全后使用粒度仪(型号为MS3000)检测收集到的产品的粒度 (见图2)。
[0026]结果分析一 :1号环样致密度很低,仅为53.53%,烧结破碎后的粒度(Dv(50)为 23 · 7μπι)与烧结前原料硼化锆的粒度(Dv(50)为15 · 2μπι)相比基本无增长,破碎的过程中发 现颗粒之间的连接力度非常小,微粒之间基本是团聚在一起,而不是靠大量的晶界(见图2) 坚固地连接在一起,因此,未压环且未加碳化硼的烧结基本未能起到增大粒度的作用;2号 环样的致密度也较低,为59.87%,虽能研磨出少量大粒度的颗粒(Dv(50)为142μπι),但硼化 锆内部仍有大量颗粒之间仅仅只是发生了团聚,这些团聚的颗粒同1号环一样在破碎后几 乎无粒度增长;3号样品的致密度达到67.84%,使用坩埚破碎后通过100目滤筛收集后用粒 度仪测得粒度的Dv (50)为213μπι,说明掺杂4 %碳化硼、5MPa压环、1950 °C烧结的条件下制备 大粒度的硼化锆颗粒已经可以基本实现,若继续破碎并用孔径更小的滤筛筛选便可符合等 离子喷涂的颗粒要求,对比图1中1、2、3号环样的粒度趋势也可以看出压力和碳化硼的加入 明显增大了制备大粒度硼化锆颗粒的可能性;4至6号样品的致密度比3号样品的致密度更 大,分别为72.87 %、75.81 %、81.48 %,样品经破碎滤筛过后测得的粒径分布同3号样品一 致,由此它们也可通过更细孔径的滤筛破碎筛选至符合等离子喷涂的颗粒要求。
[0027]步骤5:取硼化锆占96%、碳化硼占4%在酒精中球磨两小时并烘干完成的样品 30g,同步骤1、2,加胶研磨滤筛并在15Mpa下压制4个4g的环样,分别无压烧结至1800°C、 1850°C、1900°C、1950°C并保温两小时,待降温取出后测出致密度(见表2)。
[0029]表2
[0030] 结果分析二:在1800°C到1950°C范围内,随着烧结温度的提高掺杂4%的碳化硼的 硼化锆环样的致密度依次提高。
[0031] 进一步的实验如下:
[0032] 步骤6:配制6份样品各50g(配方见表3)。配制方法:在酒精中球磨两小时将硼化锆 与碳化硼混合均匀,取出混合物80°C下经12小时烘干,然后每份样品各取30g,分别加入4% PVAL胶水,玛瑙坩埚中研磨混合20min后同步骤4的方法使用100目滤筛收集样品,最后从6 份样品的每份样品中分别取4g样品,编号1至6装样,将所有取得的样品通过液压机在15MPa 压力下压制成环。
[0034] 表 3
[0035] 步骤7:从6份样品中各取一个环样放入石墨碳管炉中无压烧结,烧结方案同步骤 2〇
[0036]步骤8:利用阿基米德排水法测出各个配方在1950°C烧结后的环的致密度(见表 4)〇
[0038]表4
[0039] 步骤9:将掺杂6%B4C在1950°C烧结的环手工破碎测粒度(Dv(50)为208μπι),滤筛 产物的方法同步骤4。
[0040] 步骤10:为证明已能做到硼化锆粒度可根据喷涂要求自由控制,将步骤9中测试粒 度过后剩余的样品继续手工破碎,每过半分钟用600目的滤筛过滤收集产品,最后测出其粒 度的Dv(50)为20.9μπι,属于20到80μπι的粒度区间,符合等离子喷涂的粒度要求(见图3)。 [0041 ] 结果分析三:1至4号环样放在加了盖子的BNi甘埚内烧结,5、6号环样放在未加盖子 的坩埚内烧结,发现前四个环样的致密度依次降低,后两个环样的致密度突然变得很高,由 此可见加了盖子造成坩埚内气氛比较密闭的原因使前四个环样的致密度变化规律异常。碳 化硼除去氧化物杂质时会生成易挥发的氧化硼,其在800°C时开始气化,而坩埚内生成的气 体不易排出去,加之排胶时也生成了大量气体,这两部分气体造成环样不能及时有效地收 缩,加入的碳化硼越多生成的气体也就越多,进而就更不利于环在烧结过程中收缩体积,故 1至4号坩埚随碳化硼的增多致密度反而下降,而5、6坩埚内生成的气体能及时有效地排放, 所以其体积能收缩得更小,致密度相应更大,因此,实际操作中去掉坩埚盖子烧结更有利于 增加硼化锆的致密度。
[0042]根据以上实验中的结果,显然致密度能够达到67.84%的硼化锆的烧结产物都能 破碎出大粒度,继而也就都可以选择不同的孔径的滤筛或者球磨方案根据等离子喷涂要求 自由控制粒度大小。
【主权项】
1. 一种硼化锆等离子喷涂原料,其特征在于:该硼化锆等离子喷涂原料粒径20-80μπι, 粒度大小自由可控,氧化物杂质含量<0.1 %,纯度多90%,致密度高,熔点3040°C。2. 如权利要求1所述硼化锆等离子喷涂原料的制备方法,包括以下步骤: 步骤1、将纯度多99.7 %的硼化锆粉体和掺杂量为1 %~6%的碳化硼在酒精中湿式球 磨2~4小时混匀,取出混匀的产物放入烘箱60~80 °C下经8~12h烘干,烘干后利用坩埚研 磨,然后通过100或200目滤筛收集; 步骤2、在步骤1制得的粉体中加入4 %~7 % PVAL胶水,坩埚中研磨20~30min,之后将 含胶粉体全部通过100或200目滤筛收集; 步骤3、将步骤2制得的含胶粉体每次称取4~IOg在液压机上用10~15MPa的压力压制 成型,保压时间为10~20秒; 步骤4、将步骤3压制成型的产物用坩埚承载进行烧结,烧结气氛为Ar,烧结方式:0到 200°C升温速度为10~15°C/min,200°C到600°C升温速度为2~5°C/min即排胶,600°C到最 终烧结温度的升温速度为10~15°C/min,最终烧结温度为1800°C~2000°C,然后在最终烧 结温度保温1~3h; 步骤5、将步骤4烧制的产物手工破碎,每过半分钟通过180~600目孔径的滤筛筛选硼 化锆的粒度,制得粒度大小为20-80μπι的硼化锆等离子喷涂原料。3. 如权利要求2所述硼化锆等离子喷涂原料的制备方法,其特征在于:所述步骤4中烧 结采用无压石墨碳管炉。4. 如权利要求2所述硼化锆等离子喷涂原料的制备方法,其特征在于:所述步骤4中烧 结时,装样坩埚采用不加盖子的BNi甘埚。5. 如权利要求1所述硼化锆等离子喷涂原料,其特征在于:适用于等离子喷涂以实现硼 化锆的隐身功能。
【文档编号】C04B35/58GK105948757SQ201610286598
【公开日】2016年9月21日
【申请日】2016年5月4日
【发明人】梁迪飞, 陈志科, 王昕 , 邓龙江
【申请人】电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1