一种阻燃定形相变材料及其制备方法

文档序号:3695578阅读:96来源:国知局
专利名称:一种阻燃定形相变材料及其制备方法
技术领域
本发明属于无卣膨胀型阻燃相变材料技术领域,特别涉及同时含有膨胀型复配阻燃 剂和金属粉的定形相变材料及其制备方法。
技术背景据《传热和传质》(Heat and Mass Transfer, 32, 1997, P307 )介绍,石蜡和高密 度聚乙烯体系的相变材料中高密度聚乙烯形成的空间网络结构对石蜡起到了很好的封装 效果。但石蜡和高密度聚乙烯都属于易燃材料,因此这种材料的大量使用会带来安全隐 患,同时由于该材料的导热系数小,导致能量的利用率低。《国际传热传质杂志》(Inter. J. Heat and Transfer, 44, 2001, P2727 )介绍了以膨胀石墨作为支撑材料制备的具有 高导热系数的石蜡-膨胀石墨定形相变材料,其导热系数可达到4-70Wm—'K—'。虽然由膨胀 石墨作为定形成分具有孔隙率高、导热系数高、密度低等特点,得到的复合相变材料导 热性能好、储能密度大,但该材料存在着易受热变形及定形差等缺陷。目前对相变材料阻燃性能的研究还刚处于起步阶段。理论上讲,制备同时具有定形 好、阻燃性能优异和导热性能好的相变材料,就可以拓展相变材料的应用领域,但至今 尚未见到现有技术中有类似这样的技术被公开。发明内容本发明的目的是提出一种阻燃定形相变材料及其制备方法,以克服现有相变材料不 能同时具有定形性能好、阻燃性能优异和导热系数高的缺陷,拓展相变材料的使用领域。本发明的阻燃定形相变材料,其特征在于各组分按质量百分比为石蜡50-60%,膨 胀型阻燃剂15-20 % ,高密度聚乙烯15-20 %和金属粉1-10%;所述膨胀型阻燃剂、石蜡 和金属粉均匀分散在高密度聚乙烯形成的空间网状结构中。本发明的阻燃定形相变材料的制备方法,其特征在于将占总体系质量百分比50-60% 的石蜡、15-20%的膨胀型阻燃剂和l-l(W的金属粉混合均匀后,加入到占总体系质量百 分比15-20%的熔融的高密度聚乙烯后,再熔融共混均匀;将所得到的混合物粉碎后,经 挤出机熔融挤出后造粒,成型,即得到阻燃定形相变材料。所述膨胀型阻燃剂由酸源与炭源和气源按质量比3-2: 1.5-1: 1组成,其中酸源选 自磷酸铵、聚磷酸铵、脲磷酸盐、三聚氰胺磷酸盐或/和芳基磷酸酯,炭源选自季戊四醇、 季戊四醇双聚体、季戊四醇三聚体、酚醛树脂、糊精或/和淀粉,气源选自三聚氰胺、双 氰胺、脲醛树脂或/和聚酰胺。所述金属粉选自铁、锌、铝或镁。在本发明的阻燃定形相变材料中,由于高密度聚乙烯能形成空间网络结构,能对石 蜡起到很好的封装效果。降低高密度聚乙烯的含量不利于材料的定形;而增加高密度聚 乙烯含量则石蜡含量降低,不利于相变材料的储能。所以本发明使用的原料中,高密度 聚乙烯的加入量占总体系质量百分比15-20%为宜。本发明中采用的膨胀型阻燃剂占总体 系质量百分比15 ~ 20 % ,这是因为若膨胀型阻燃剂含量太低则阻燃效果较差,而若含量 太高则会导致相变材料的储能性能降低。本发明中采用的金属粉的含量为1-10%,这是因 为若金属粉含量太低则材料的导热性能降低,同时与膨胀型阻燃剂的协同阻燃效果降低, 而若金属粉含量太高则会导致材料的阻燃性能下降。本发明同时将膨胀型阻燃剂和金属粉引入到定形相变材料中,该相变材料的微观结 构为膨胀型阻燃剂、石蜡和金属粉均匀分散在高密度聚乙烯形成的空间网状结构中。 高密度聚乙烯形成的空间网络结构能对石蜡起到很好的封装效果;而金属粉均匀分散在 阻燃定形相变材料中,由于金属的导热性能优异,给相变材料的热传导提供了更好的渠 道,从而有效的改善了相变材料的导热性能。同时金属粉和膨胀型阻燃剂具有协同阻燃 性能,克服了阻燃剂添加量较大,阻燃效率低等缺点,降低了材料的成本,提高了石蜡 的含量,为适应不同用途提供了选择的可能。


图1为实施例2中的产物断面放大1000倍的微观结构的扫描电镜照片。
具体实施方式
实施例1:将开放式炼胶机升温到180。C,使占总体系质量百分比19%的高密度聚乙烯全部滚动 熔融后,再将混合均匀的占总体系质量百分比60%的石蜡,l(W的聚磷酸铵,5%的季戊四醇,5%的三聚氰胺和1%的铁粉逐渐加入到高密度聚乙烯中,加完后再熔融共混io分钟后, 取出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的共混物加入到螺杆挤 出机中熔融挤出后造粒,成型,即得到本发明的阻燃定形相变材料。将本实施例中制备得到的阻燃定形相变材料压板,裁切成100mm X 100 mm X 3mm的 标准样板,用锥形量热仪对该材料进行燃烧性能检测,测得其总热释放为81. 9MJ/m2,最 大热释放为375. 25KW/m2,平均热释放为238. 63KW/m2,燃烧时间为366S。差示扫描量热 仪测得本实施例所制备得到的材料其相变焓为76. 75KJ/ kg ;材料的导热系数为 0. 38WnT'K—!。对比例1:将开放式炼胶机升温到175。C,使占总体系质量百分比20%的高密度聚乙烯全部滚动 熔融后,再将混合均匀的占总体系质量百分比60°/。的石蜡,l(W的聚磷酸铵,5%的季戊四 醇和5%的三聚氰胺逐渐加入到高密度聚乙烯中,加完后再熔融共混10分钟后,取出混合 物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的共混物加入到螺杆挤出机中熔 融挤出后造粒,成型即得到用于作为对比的阻燃定形相变材料。将该作为对比的阻燃定形相变材料压板,裁切成100mm X 100 mm X 3 mm的标准样 板,用锥形量热仪对该材料进行燃烧性能检测,该材料的总热释放为90. 4MJ/m2,最大热 释放速率为627. 35KW/nf,平均热释放速率为348KW/m2,燃烧时间为241S。差示扫描量热 仪测得该对比材料的相变焓为79. 91KJ/kg;其导热系数为0. 36WnT'ir1。上述比较说明金属铁粉的加入可以提高定形相变材料的阻燃性能和导热性能。
实施例2:将开放式炼胶机升温到185。C,使占总体系质量百分比19%的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比58%的石蜡,l(W的聚磷酸铵,5%的季戊四醇, 5%的三聚氰胺和3%的铁粉逐渐加入到高密度聚乙烯中,加完后再熔融共混10分钟后,取 出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的共混物加入到螺杆挤出 机中熔融挤出后造粒,成型,即得到本发明的阻燃定形相变材料。图1为该产物断面的微观结构放大1000倍的扫描电镜照片,由该扫描电镜照片可看 到本发明的阻燃定形相变材料的微观结构中,石蜡、膨胀型阻剂和金属铁粉均匀分散 在高密度聚乙烯形成的空间网络结构中。将本实施例中上述制备得到的阻燃定形相变材料压板,裁切成100mm X 100mm X 3mm 的标准样板,用锥形量热仪对本实施例制备得到的材料进行燃烧性能检测,测得该材料 的总热释放为83. 7MJ/m2,最大热释放为274. 03 KW/m2,平均热释放为150. 39KW/m2,燃 烧时间为583S。差示扫描量热仪测得该对比材料的相变焓为71.15KJ/kg;其导热系数为 0. 42WnfV。对比例2:将开放式炼胶机升温到175。C,使占总体系质量百分比15°/。的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比55%的石蜡,7. 5%的聚磷酸铵,7. 5%的芳基磷 酸酯,5°/ 的季戊四醇,5%的三聚氰胺和5°/。的铁粉逐渐加入到高密度聚乙烯中,加完后再 熔融共混10分钟后,取出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的 共混物加入到螺杆挤出机中熔融挤出后造粒,成型,即得到用于作为对比的阻燃定形相 变材料。将该作为对比的阻燃定形相变材料压板,裁切成100mm X 100mm X 3mm的标准样板, 用锥形量热仪对其进行燃烧性能检测,测得该材料的总热释放为82. 2 MJ/m2,最大热释 放为341.53 KW/m2,平均热释放为173. 64KW/m2,燃烧时间为496S。差示扫描量热仪测 得该对比材料的相变焓为70. 31KJ/kg。对比例3:将开放式炼胶机升溫到185。C,使占总体系质量百分比20%的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比50%的石蜡、10%的聚磷酸铵,3%的季戊四醇, 2%的淀粉,5。/。的三聚氰胺和10°/。的铁粉逐渐加入到高密度聚乙烯中,加完后再熔融共混 IO分钟后,取出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的共混物加 入到螺杆挤出机中熔融挤出后造粒,成型,即得到用于作为对比的阻燃定形相变材料。将该作为对比的阻燃定形相变材料压板,裁切成IOO X 100 X 3mm的标准样板,用 锥形量热仪对该材料进行燃烧性能检测,测得其总热释放为83. 8 MJ/m2,最大热释放为 370. 28 KW/m2,平均热释放为168. 35KW/nf,燃烧时间为527S。差示扫描量热仪测得该对 比材料的相变焓为68. 73KJ/kg。由上述对比试验的结果可知铁粉的加入可以提高膨胀型阻燃剂的阻燃效率,当铁
粉的含量占总质量的3%时,体系的阻燃效率最好,于不加铁粉相比,材料的最大热释放 速率降低56. 32%,材料燃烧时间也由241S延长到583S,超过最佳配比的时候阻燃效果 反而会下降。同时当铁粉的含量占总质量的3%时,材料导热系数增加16. 67%,提高了能 量利用效率。 实施例3:将开放式炼胶机升温到185。C,使占总体系质量百分比19%的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比58%的石蜡,10%的聚磷酸铵,5%的季戊四醇, 5%的三聚氰胺和3%的锌粉逐渐加入到高密度聚乙烯中,加完后再熔融共混10分钟后,取 出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉碎后的共混物加入到螺杆挤出 机中熔融挤出后造粒,成型,即得到本发明的阻燃定形相变材料。将本实施例中上述制备得到的阻燃定形相变材料压板,裁切成100mm X 100mm X 3mm 的标准样板,用锥形量热仪对该材料进行燃烧性能检测,测得其总热释放为70. 9MJ/m2, 最大热释放为249. 79 KW/m2,平均热释放为81. 98KW/m2,燃烧时间为1650S,差示扫描 量热仪测得该对比材料的相变焓为70. 28KJ/kg。实施例4:将开放式炼胶机升温到185i:,使占总体系质量百分比19%的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比58%的石蜡、7. 5%的聚磷酸铵,2. 5%磷酸铵, 5%的季戊四醇,3%的三聚氰胺,2%的双氰胺和3%的铝粉逐渐加入到高密度聚乙烯中,加 完后再熔融共混IO分钟后,取出混合物,冷却后将其加入到塑料粉碎机中粉碎,再将粉 碎后的共混物加入到螺杆挤出机中熔融挤出后造粒,成型,即得到本发明的阻燃定形相 变材料。将本实施例中上述制备得到的阻燃定形相变材料压板,裁切成100mm X 100mm X 3mm 的标准样板,用锥形量热仪对其进行燃烧性能检测,测得其总热释放为67. 2MJ/m2,最大 热释放为247. 64 KW/m2,平均热释放为84. 78KW/m2,燃烧时间为800S;差示扫描量热仪 测得该对比材料的相变焓为69. 28KJ/kg。实施例5:将开放式炼胶机升温到185。C,使占总体系质量百分比19°/。的高密度聚乙烯充分滚动 熔融后,将混合均匀的占总体系质量百分比58%的石蜡,7. 5%的聚磷酸铵,2. 5°/。磷酸铵, 3%的季戊四醇,2%的淀粉,3%的三聚氰胺,2%的双氰胺和3%的镁粉逐渐加入到高密度聚 乙烯中,加完后再熔融共混10分钟后,取出混合物,冷却后将其加入到塑料粉碎机中粉 碎,再将粉碎后的共混物加入到螺杆挤出机中熔融挤后造粒,成型,即得到本发明的阻 燃定形相变材料。将本实施例中上述制备得到的阻燃定形相变材料压板,裁切成100mm X 100mm X 3mm 的标准样板,用锥形量热仪对其进行燃烧性能检测,测得其总热释放为100. 2MJ/m2,最 大热释放为213. 66 KW/m2,平均热释放为61. 45KW/m2,燃烧时间为878S;差示扫描量热 仪测得该对比材料的相变焓为69. 69KJ/kg。
当膨胀型阻燃剂中酸源是脲磷酸盐或/和三聚氰胺磷酸盐,炭源季戊四醇双聚体、季 戊四醇三聚体、酚醛树脂或/和糊精,气源是醛树脂或/和聚酰胺,加工方法同上,在此 就不——列出。从实施例2-5和对比例1可以看出加入适量的金属粉可以提高膨胀型阻燃剂在定 形相变材料中的阻燃性能。
权利要求
1、一种阻燃定形相变材料,其特征在于各组分按质量百分比为石蜡50-60%,膨胀型阻燃剂15-20%,高密度聚乙烯15-20%和金属粉1-10%;所述膨胀型阻燃剂、石蜡和金属粉均匀分散在高密度聚乙烯形成的空间网状结构中。
2、 权利要求1所述阻燃定形相变材料的制备方法,其特征在于将占总体系质量百 分比50-6(W的石蜡、15-20%的膨胀型阻燃剂和1-l(W的金属粉混合均匀后,加入到占总 体系质量百分比15-20%的熔融的高密度聚乙烯后,再熔融共混均匀;将所得到的混合物 粉碎后,经挤出机熔融挤出后造粒,成型,即得到阻燃定形相变材料。
3、 如权利要求1所述的阻燃定形相变材料或权利要求2所述的制备方法,特征在于 所述膨胀型阻燃剂由酸源与炭源和气源按质量比3-2: 1.5-1: 1组成,其中酸源选自磷 酸铵、聚磷酸铵、脲磷酸盐、三聚氰胺磷酸盐或/和芳基磷酸酯,炭源选自季戊四醇、季 戊四醇双聚体、季戊四醇三聚体、酚醛树脂、糊精或/和淀粉,气源选自三聚氰胺、双氰 胺、脲醛树脂或/和聚酰胺。
4、 如权利要求1所述的阻燃定形相变材料或权利要求2所述的制备方法,特征在于 所述金属粉选自铁、锌、铝或镁。
全文摘要
本发明公开了一种阻燃定形相变材料及其制备方法,特征是将占总体系质量百分比50-60%的石蜡、15-20%的膨胀型阻燃剂和1-10%的金属粉混合均匀后,加入到占总体系质量百分比15-20%的熔融的高密度聚乙烯中,熔融共混后,所得混合物经挤出机熔融挤出后造粒,成型,即得到由膨胀型阻燃剂、石蜡和金属粉均匀分散在高密度聚乙烯形成的空间网状结构中的阻燃定形相变材料。由于本发明采用膨胀型阻燃剂和金属粉协同阻燃,大大降低了膨胀型阻燃剂的添加量,提高了定形相变材料的阻燃性,和导热性能,可大大拓展相变材料在建筑节能材料、太阳能储能材料及蓄热调温纺织品材料等行业的推广应用。
文档编号C08L23/06GK101397489SQ20081019674
公开日2009年4月1日 申请日期2008年9月19日 优先权日2008年9月19日
发明者磊 宋, 平 张, 源 胡 申请人:中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1