甘草叶的活性成分及其结构和用途的制作方法

文档序号:12091107阅读:857来源:国知局
甘草叶的活性成分及其结构和用途的制作方法与工艺

本发明属于化学技术领域,涉及甘草叶中酚性成分的结构、制备及生物活性,特别是新化合物α, α′-二氢-3,5,3′,4′-四羟基-2,5′-二异戊烯基茋(α, α′-dihydro-3,5,3′,4′-tetrahydroxy-2,5′-diisopentenylstilben)的制备、结构及生物活性。



背景技术:

甘草(中国药典,2010版,第一卷,80-81页)被称为“中药国老”,是中药方剂中最常用的药材,有“十方九草”之称。甘草还是食品工业中广泛应用的天然甜味剂,此外,在烟草及化妆品工业中也有应用(张继, 姚健, 丁兰. 甘草的利用研究进展. 草原与草坪2000, 89(2): 12-17)。目前,医药和工业上主要使用甘草的根和根茎,而其地上部分大多被废弃或作为牲畜饲料。为了充分开发利用甘草地上部分,提高甘草资源的利用率,发明人对甘草叶的有效成分进行了研究,从中分离纯化到7种联有异戊烯基的酚类成分,包括1个新化合物(1, 见说明书1)。碳水化合物在人体内经过小肠α-葡萄糖苷酶等作用水解为葡萄糖吸收入血,α-葡萄糖苷酶抑制剂可以降低II型糖尿病患者餐后血糖水平,使未完全消化的二糖从肠道排出,因此,α-葡萄糖苷酶抑制剂对II型糖尿病和肥胖症患者有益。另外,α-葡萄糖苷酶参与许多病毒外壳关键糖蛋白的加工成熟,其抑制剂可能成为抗病毒药物(Manns MP, Foster GR, Rockstroh JK, Zeuzem S, Zoulim F,Houghton M. The way forward in HCV treatment−finding the right path. Nat Rev Drug Discov, 2007, 6: 991−1000)。本发明公开甘草抗氧化、抗α-葡萄糖苷酶及抗小肠二糖酶活性组分的制备方法,其主要成分特别是新的二氢茋衍生物(α, α′-二氢-3,5,3′,4′-四羟基-2,5′-二异戊烯基茋, α, α′-dihydro-3,5,3′,4′-tetrahydroxy-2,5′-diisopentenylstilben, 1)的结构、制备方法及抗氧化、抑制α-葡萄糖苷酶和小肠二糖酶活性。



技术实现要素:

本发明的目的在于开发利用甘草地上部分,提高甘草资源的利用率,并提供对肥胖症和II型糖尿病有益的新型α-葡萄糖苷酶和小肠二糖酶抑制剂,内容包括:将甘草叶用乙醇提取, 提取液过滤浓缩后上DIAION HP20大孔树脂用水-乙醇梯度洗脱,得到甘草叶活性组分;将该活性组分经多种色谱分离纯化的甘草叶成分1-7(1);

本发明还提供化学结构如图1所示的甘草叶成分1-7:

本发明的另一个方面,提供化合物1的组合物;

本发明还提供含有化合物1的药物制剂;

本发明的又一个方面,提供化合物1用作为抗氧化剂;

本发明的再一个方面,提供化合物1在制备抗氧化剂方面的应用;

另一个方面,本发明提供化合物1及其组合物用作药物;

本发明还提供化合物1或其组合物在抗氧化应激和/或自由基的药物方面的应用;

本发明还提供化合物1或其组合物在预防和/或治疗氧化应激和/或自由基介导的疾病的药物方面的应用;

本发明的再一方面,提供甘草叶活性组分及化合物1或其组合物的制备方法,包括步骤如下:将甘草叶用溶剂(优选95%乙醇)提取,提取液浓缩后上DIAION HP20大孔树脂用水-乙醇梯度洗脱,得到对小肠二糖酶抑制活性的活性组分(优选60%乙醇洗脱部位),该活性组分经分离纯化得甘草叶活性成分;

该甘草叶活性组分及从中分离到的成分有很强的抗氧化活性和较强的抑制α-葡萄糖苷酶和小肠二糖酶活性。该甘草叶活性组分可直接使用,也可将其中分离纯化的活性成分用于抗氧化和/或清除自由基及治疗和/或预防II型糖尿病。

因此,本发明还涉及含有上述甘草叶活性组分或化合物1的组合物,还包含药物、食品或化妆品可接受的载体。所述本发明组合物,可按常规方法,通过将所述甘草叶活性组分或纯成分与药物、食品或化妆品可接受的载体混合来制备。

在本发明甘草叶的活性成分及其结构和用途的一个优选方案中,甘草叶的活性组分及成分的制备方法和结构确定,包括以下步骤:

1)将甘草叶用95%乙醇浸泡后超声提取,提取液浓缩悬浮于水中用DIAION HP20大孔树脂分离,60%乙醇洗脱部分为活性组分;

2)上述活性组分经反相硅胶C18、硅胶、Sephadex-LH20、MCI及制备液相分离纯化得到甘草叶纯成分1-71);

3)化合物2-7通过解析光谱数据及与文献值(Hayashi H, Zhang S-L, Nakaizumi T, Shimura K, Yamagauchi M, Inoue K, Sarsenbaev K, Ito M, Honda G. Field survey of Glycyrrhiza plants in central Asia (2).1) Characterization of phenolics and their variation in the leaves of Glycyrrhizaplants collected in Kazakhstan. Chem Pharm Bull, 2003, 51: 1147−1152)对照确定其结构分别为6-异戊烯基槲皮素-3-甲醚(6-prenylquercetin-3-methyl ether, 2),5′-异戊烯基槲皮素(5′-prenylquercetin, 3),槲皮素-3-甲醚(quercetin-3-methyl ether, 4),6-异戊烯基圣草酚(6-prenyleriodictyol, 5),5′-异戊烯基圣草酚(5′-prenyleriodictyol, 6),8-[(顺)-3-羟甲基-2-丁烯基]-圣草酚{8-[(Z)-3-hydroxymethyl-2-butenyl]-eriodictyol, 7};化合物1的结构经过仔细解析其包括二维核磁共振光谱在内的多种光谱,确定为α, α′-二氢-3,5,3′,4′-四羟基-2,5′-二异戊烯基茋(α, α′-dihydro-3,5,3′,4′-tetrahydroxy-2,5′-diisopentenylstilben)。

本发明的创造性和新发现为:发现了新结构的二氢茋衍生物 α, α′-二氢-3,5,3′,4′-四羟基-2,5′-二异戊烯基茋。得到有望对肥胖及糖尿病患者有益的甘草叶的活性组分,发现其所含的异戊烯基黄酮和异戊烯基茋均有很好的清除DPPH自由基活性,大多数成分还有较好的抑制α-葡萄糖苷酶和小肠二糖酶活性。由于结构中的异戊烯基存在,这些活性成分的极性比相应的非异戊烯基取代黄酮大为减低,可作为低极性食品、化妆品等的抗氧化剂,或作为保健食品或药品用于肥胖或糖尿病。目前,甘草主要使用的是其根和根茎,本发明所述甘草叶的有效成分和部位为充分开发利用甘草资源提供了依据和方法。

具体实施方式

具体实施方式对本发明所涉及甘草叶成分的制备和活性测定法作进一步详细说明。这些实施例仅用来例证本发明,不应将其视为对本发明保护范围的限制。

实施例1甘草叶的提取及活性组分的制备

将2公斤甘草叶(2013年9月采于内蒙古鄂尔多斯)用95%乙醇(10升)浸泡24小时后超声提取30分钟,过滤,残渣再用95%乙醇6升浸泡12小时后超声提取30分钟。两次提取液合并浓缩得434 g提取物。提取物悬浮于水中上样至DIAION HP20大孔树脂柱(6 ´ 23 cm色谱柱8个),用不同比例的乙醇-水梯度洗脱,60%乙醇洗脱物(118 g)显示最强的抑制小肠二糖酶活性,1 mg/ml时的抑制率为64.2%。

实施例2:甘草叶活性组分中有效成分的分离纯化及结构测定

上述活性部位(大孔树脂60%乙醇洗脱部位)经反相硅胶C18色谱分离,水-甲醇梯度洗脱,50%甲醇洗脱部分经硅胶(石油醚-乙酸乙酯6:4),Sephadex-LH20(55%甲醇)和MCI(75%甲醇)分离纯化得到化合物2(16mg)。反相硅胶C18色谱的40%甲醇洗脱部分上硅胶柱色谱分离,石油醚-乙酸乙酯6:4洗脱部分经Sephadex-LH20及MCI色谱分离得到化合物4(15mg)和7(119mg),石油醚-乙酸乙酯7:3洗脱部分用Sephadex-LH20分离,50-70%甲醇洗脱部分经MCI及制备液相色谱分离纯化得化合物3(34mg)、5(26mg)、6(45mg)及 1(27mg)。通过解析光谱数据及与文献值(Hayashi H,Zhang S-L,Nakaizumi T,Shimura K,Yamagauchi M,Inoue K,Sarsenbaev K,Ito M,Honda G.Field survey of Glycyrrhiza plants in central Asia(2).1)Characterization of phenolics and their variation in the leaves of Glycyrrhiza plants collected in Kazakhstan.Chem Pharm Bull,2003,51:1147-1152)对照确定了化合物2-7的结构分别为6-异戊烯基槲皮素-3-甲醚(2),5′-异戊烯基槲皮素(3),槲皮素-3-甲醚(4),6-异戊烯基圣草酚(5),5′-异戊烯基圣草酚(6),8-[(顺)-3-羟甲基-2-丁烯基]-圣草酚(7)。化合物1为新化合物,通过解析多种光谱数据确定了其结构;

化合物1:类白色粉末,高分辨ESI-MS负离子模式测得准分子离子峰m/z 381.2065,为分子式C24H30O4的[M-H]-1峰(计算值:m/z 381.2066)。1H NMR(2)δ:1.656(3H,s)and1.698(3H,s)and 1.718(3H,s)and 1.724(3H,s)(H-10,10′,11,11′),2.596(2H,m,H-α′),2.651(2H,m,H-α),3.201(2H,d,J=7.0Hz,H-7),3.245(2H,d,J=7.0Hz,H-7′),5.047(1H,t,J=7.0Hz,H-8),5.280(1H,t,J=7.0Hz,H-8′),6.120(1H,d,J=2.5Hz,H-6),6.146(1H,d,J=2.5Hz,H-4),6.351(1H,d,J=2.5Hz,H-6′),6.480(1H,d,J=2.5Hz,H-2′);13C NMR(3)δ:17.90and 18.21(C-10,10′)、25.31(C-7)、25.98and 26.04(C-11,11′)、29.20(C-7′)、36.99(C-α)、38.57(C-α′)、101.33(C-4)、108.63(C-6)、113.85(C-2′)、119.06(C-2)、121.27(C-6′)、124.35(C-8′)、126.08(C-8)、129.47(C-5′)、130.51(C-9)、132.58(C-9′)、134.54(C-1′)、142.02(C-4′)、143.59(C-1)、145.85(C-3′)、156.59(C-5)、157.10(C-3);1H NMR谱中δ1.656到1.724的两对甲基单峰分别与两对双键碳有HMBC相关,另有1对亚甲基的质子信号也与这两对双键碳相关,说明结构中有两个异戊烯基。13C NMR数据提示有2个苯环存在,1H NMR光谱中出现两对间位耦合的芳香质子信号,氢谱和碳谱还显示有另外两个亚甲基(CH2-α,α′)的信号,两者均与同样两个芳香碳原子(C-1,1′)有HMBC(4)相关,另外,还分别与另外两个芳香碳原子有HMBC相关,提示存在1,2-二苯乙烷基本骨架。该骨架与两个异戊烯基和羟基的连接位置通过5所示的HMBC相关的确定,因此该化合物的结构为α,α′-二氢-3,5,3′,4′-四羟基-2,5′-二异戊烯基茋;

附图说明

1.甘草叶活性成分1-7的化学结构

2.化合物1的1HNMR

3.化合物1的13CNMR

4.化合物1的HMBC

5.化合物1的HMBC主要相关。

实施例3甘草叶提取物及大孔树脂所得组分中化合物1-7的含量

用超高效液相-串联四极杆电喷雾质谱(UPLC-QQQESIMS)测定成分的含量。UPLC- QQQESIMS在安捷伦Agilent 1290 infinity UPLC及 Agilent 6430 triple Quad MS上分析。优化的色谱条件为:ZORBAX Eclipse XDB-C18(2.1×50 mm,1.8 μm)色谱柱, 柱温控制在30ºC,流速设为0.4 mL/min,进样量为1 μL;色谱流动相的A 相为含0.1%甲酸的纯净水, B相为甲醇; 流动相程序:0–4 min, 10-39% B; 4-4.1 min, 39-41% B; 4.1-8 min, 41-45% B; 8-8.1 min, 45-67% B; 8.1-12 min, 61-69% B; 12-12.1 min, 69-100% B; 12.1-14 min, 100% B。用质谱多反应监控(MRM)模式定量,优化后的质谱检测条件列于1;

用上述优化的定量条件对甘草叶提取物及大孔树脂各流份分析结果列于2。大孔树脂60%洗脱物中这7种成份的含量最高;

实施例41,1-二苯基苦基苯肼(DPPH)自由基清除实验

DPPH清除实验参考Ma等的方法 (Ma JN. Wang SL. Zhang K. Wu ZG, Hattori M, Chen G L. Chemical components and antioxidant activity of the peels of commercial apple-shaped pear (fruit of pyrus pyrifolia cv. pingguoli). J Food Sci, 2012, 10: 1097−1102)在96孔板上测定。样品孔含10 μl待测样品溶液和190 μl DPPH溶液(0.1 mM),对照孔含10 μl二甲亚砜和190 μl DPPH溶液,颜色对照孔含10 μl样品和190 μl 甲醇。避光室温反应20 min后用酶标仪测定520 nm的吸光度(A),样品对自由基的清除百分率用如下公式计算:

对自由基清除率%=100×[A对照- (A样品–A颜色对照)] /A对照

A对照为对照孔的吸光度, A样品为样品孔的吸光度, A颜色对照为颜色对照孔的吸光度;

结果(3)显示,化合物1-7均有较强的清除DPPH自由基活性,除化合物2的清除DPPH半数有效浓度为13.9 μg/ml外,另外6个化合物清除DPPH自由基的半数有效浓度均小于6 μg/ml。

表3 甘草叶7种成分对DPPH的清除及对α-葡萄糖苷酶和麦芽糖酶的抑制活性

实施例5:甘草叶成分对α-葡萄糖苷酶和小肠二糖酶抑制活性

参考文献方法(Ma CM, Sato N, Li XY, Nakamura N, Hattori M. Flavan-3-ol contents, anti-oxidative and α-glucosidase inhibitory activities of Cynomorium songaricum. Food Chem, 2010, 118: 116−119) 在96孔板上测定对α-葡萄糖苷酶抑制活性。底物溶液为2 mM的对硝基苯酚α-D-葡萄糖苷的磷酸钾缓冲液溶液(100 mM,pH 7.0)。样品孔含10 μl样品和80 μl底物溶液,对照孔用10 μl DMSO代替样品溶液。酶溶液为0.4 U/ml Bacillus Stearothermophilusα-葡萄糖苷酶。每孔加入10 μl酶溶液后在37 ºC下培养20 min。培养前后均用酶标仪测定405 nm的吸光度,通过比较样品孔的吸光度增值(ΔA样品)与对照孔的吸光度增值(ΔA对照)用下述公式计算样品对酶的百分抑制率:

抑制率%=100×[ (ΔA对照-ΔA样品) ⁄ΔA对照]

对小肠二糖酶-麦芽糖酶的抑制活性参考Meng等的方法(Meng HC, Ma CM. Flavan-3-ol-cysteine and acetylcysteine conjugates from edible reagents and the stems of Cynomorium songaricum as potent antioxidants. Food Chem, 2013, 141: 2691−2696.)提取小肠二糖酶,用PH 7的磷酸盐缓冲液将酶提取液稀释10倍后在96孔板上测定活性。每孔加入3 μl样品溶液,20 μl麦芽糖溶液(2 mg/ml)和7 μl二糖酶液。对照孔用3 μl二甲亚砜代替样品溶液,其余同上。混匀37 ºC振摇反应20 min后加入10 μl 二甲亚砜,生成的葡萄糖用南京建成的葡萄糖检测试剂盒测定。对二糖酶的抑制百分率根据520 nm处的吸光度(A)按如下公式计算:

抑制率%=100×[ (A对照- A样品) ⁄ A对照]

每个样品测量4个浓度,每个浓度测定3次,从百分抑制率-浓度曲线中求出抑制50%酶活性时的浓度(IC50);

结果(3)显示,除化合物7以外的6个成分均有较强的抑制α-葡萄糖苷酶活性,以化合物31的活性最高。化合物1, 37显示了较强的抑制麦芽糖酶活性;

由于上述实例1所述甘草叶活性组分的大多数成分均有清除自由基活性和抑制α-葡萄糖苷酶活性。因此,实例1中大孔树脂柱得到的该活性组分及实例2所得纯成分预期对肥胖和糖尿病患者有益;

本实验得到甘草活性组分的方法简单,制备条件温和,只使用无毒的常规试剂反应得到,适用于大批量生产。

上述仅为本发明较佳的具体实施方法,本发明保护范围不应受此限制,熟悉本领域的技术人员在本发明的技术范围内,以简单变化或替换所得的技术方案均落入本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1