一种聚合物多孔微球的制备方法与流程

文档序号:15729927发布日期:2018-10-23 17:04阅读:252来源:国知局

本发明涉及一种高效聚合物多孔微球的制备方法,属于聚合物功能材料领域。



背景技术:

多孔聚合物微球由于其多孔结构,使其拥有一些特殊的性能,比如高比表面积、良好的光散射性、低密度、热绝缘、声绝缘等。可以广泛应有于催化剂加载、制药、酸雾抑制、石油钻井、化妆品、涂料、造纸、皮革等领域。

目前,制备多孔聚合物微球的传统方法主要有:悬浮聚合法、酸碱溶胀法、自组装法、蒸馏沉淀法等,结合萃取、透析、溶剂蒸发、刻蚀、喷雾干燥、真空干燥等方法制得多孔聚合物微球。在以上这些制备多孔聚合物微球的方法中,先制备了核壳结构的聚合物微球,然后对核壳结构的聚合物微球进行后期处理,最终得到具有多孔结构的聚合物微球。

近几年,多孔聚合物微球的制备方法也是处于不断地发展和改进中,比较新的制备方法主要有微流体技术(Wang W C, Pan Y X, Shi K, et al. Hierarchical Porous Polymer Beads Prepared by Polymerization-induced Phase Separation and Emulsion-template in a Microfluidic Device[J]. 高分子科学(英文版), 2014, 32(12):1646-1654.),该方法先制备了W/O型溶液,然后通过微流体装置使该溶液形成W/O/W型体系,在紫外光的引发下,该体系中的油相单体发生聚合反应,生成多孔聚合物微球;电雾化技术(Zhang Q, Liu J, Wang X, et al. Controlling internal nanostructures of porous microspheres prepared via electrospraying[J]. Colloid & Polymer Science, 2010, 288(288):1385-1391.),该方法是先将聚合物溶于一种有机溶剂中,变成均一溶液,再将该溶液用注射泵控制加入到电雾化装置中,同时,在外加电源的作用下,这些溶液会经过电雾化装置形成微液滴,将这些微液滴用收集装置收集,然后通过热水浴,冷冻干燥等操作制备了多孔聚合物微球;溶剂挥发法( Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach),该方法是先将一定分子量的聚合物用一种有机溶剂溶解,再加入一种对聚合物为非良溶性的溶剂,制成均一溶液,将该溶液加入到溶有分散剂的水相中进行乳化,形成水包油型微液滴,然后将乳化的溶液转移到设计的反应装置中,由于微液滴的密度大于水,因而处于反应装置的底部,通过对反应装置中水层高度的调节控制有机溶剂的挥发速率,待有机溶剂挥发完全后,在水相生成多孔聚合物微球。在以上这些制备方法中,多数是从粒径可控的方向出发,以制备单分散的多孔聚合物微球,其制备过程较复杂,时间成本也较大,此外,这些制备方法只适合于制备少量的多孔聚合物微球。

本发明所述多孔聚合物微球的制备方法,其突出特点就是工艺过程简单和生产效率高,并适合于制备各种不同粒径、力学特性、微孔孔径和表面亲疏水性的多孔聚合物微球,可大幅度降低制备成本。



技术实现要素:

本发明提供了一种工艺过程简单和生产效率高的聚合物多孔微球制备方法,本发明方法采用低沸点聚合物有机良溶剂先将聚合物溶解,再加入高沸点聚合物有机非良溶剂,搅拌后得到均一溶液;然后采用悬浮分散法将该聚合物溶液分散在水相体系中形成微液滴,逐渐升高温度,让低沸点聚合物有机良溶剂挥发并在水相体系产生大量的泡沫,同时使大量的微液滴被包裹在泡沫中,收集上升的泡沫并用热水冲洗至含搅拌装置的热水浴中,在低沸点聚合物有机良溶剂挥发的同时,高沸点聚合物有机非良溶剂也以相分离的方式与聚合物分离,使聚合物形成多孔结构,泡沫收集完毕后经冷却、过滤、洗涤、干燥后得到聚合物多孔微球。选用不同结构和分子量的聚合物,可以制备出具有不同粒径、力学特性和表面亲疏水的聚合物多孔微球。

在本方法中,通过温度控制,使微液滴中低沸点有机溶剂逐步挥发,同时,低沸点聚合物有机良溶剂的挥发将使微液滴逐步转化为多孔聚合物微球,此时,一方面由于体系中的高沸点聚合物有机非良溶剂不能及时挥发,对聚合物溶解性较差的高沸点聚合物有机非良溶剂将与聚合物产生相分离,并以微孔的形式留存于聚合物微球中;另一方面,由于低沸点聚合物有机良溶剂与高沸点聚合物有机非良溶剂相容性极好,所以低沸点聚合物有机良溶剂的挥发和高沸点聚合物有机非良溶剂的相分离过程是同时发生的,所生成的微孔和微孔道将不会因低沸点聚合物有机良溶剂的挥发而堵塞。当低沸点聚合物有机良溶剂全部挥发后,通过升温干燥可以使高沸点聚合物有机非良溶剂通过微孔道顺利溢出,得到聚合物多孔微球。

在本方法中,通过选用具有不同结构组成和分子量的线性聚合物,可以制备出具有不同软硬度和表面亲疏水性的多孔聚合物微球。通过调整低沸点有机溶剂和高沸点有机溶剂的用量、搅拌速率、升温速率、油水相比等,可以制备出具有不同粒径、微孔径和微孔数量的多孔聚合物微球。

本发明的具体制备方法如下:

(1)取一定量聚合物于烧杯中,加入低沸点聚合物有机良溶剂配成质量百分比浓度为5~30%的聚合物溶液,待聚合物全部溶解后,加入聚合物质量50~150%的高沸点聚合物有机非良溶剂,搅拌后得到混合均匀的聚合物溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入一定量的蒸馏水,再加入蒸馏水质量0.5~5.0%的胶体保护剂,加热搅拌至胶体保护剂完全溶解后,将温度降至低于低沸点聚合物有机良溶剂沸点20℃以下,按聚合物溶液与蒸馏水的质量比为1:1~1:10的比例加入步骤(1)混合均匀的聚合物溶液;

(3)根据蒸馏水与聚合物溶液的质量比、聚合物溶液的粘度、胶体保护剂的用量和所制备微球的粒径要求,在200~1000 rpm/min之间选择适宜的搅拌速度,保持搅拌速度不变,以0.5~5℃/min的速率升温,边升温边收集泡沫,当温度达到低沸点聚合物有机良溶剂的沸点时,停止升温并保持温度不变,30min后再次以1~5℃/min的速率升温至低于高沸点聚合物有机非良溶剂沸点10℃时,停止升温并保持30min;

(4)在步骤(3)升温过程中,边升温边收集泡沫,泡沫溢出时,用温度低于高沸点聚合物有机非良溶剂沸点20℃的热水将泡沫冲淋至收集器中,并对收集的泡沫磁力搅拌,保持温度不变,等无泡沫溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到聚合物多孔微球。

本发明中使用的低沸点聚合物有机良溶剂为二氯甲烷、三氯甲烷、乙醚、四氯化碳中的一种。

本发明中使用的高沸点聚合物有机非良溶剂为正庚烷、正己烷、乙腈、碳酸二甲酯、碳酸二乙酯中的一种。

本发明中使用的聚合物为易溶解于低沸点聚合物有机良溶剂中,但较难溶解于高沸点聚合物有机非良溶剂中的线性聚合物,可以是均聚物也可以是共聚物。其结构单元可以为苯乙烯、甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸羟乙酯、马来酸酐、对乙烯苯磺酸钠、烯丙基磺酸钠、醋酸乙烯、丙烯酸异辛酯、乙酸乙烯酯中的一种或几种。

本发明中使用的胶体保护剂为常规保护剂,例如聚乙烯醇、壳聚糖等。

本发明的有益效果:本发明提供了一种通用性很好,比现有方法工艺过程更简洁高效的聚合物多孔微球制备方法,可显著降低多孔聚合物微球的制备成本,并特别适合于大批量生产。该法有效地利用了低沸点聚合物有机良溶剂和高沸点聚合物有机非良溶剂挥发性的差异和它们对聚合物溶解性的差异,在制备过程中使有机溶剂的挥发和相分离同时发挥作用,在确保聚合物微球具有良好孔结构同时,极大地简化了制备工艺并大幅度提高了收率。用本发明的方法还可以通过调整反应工艺条件和选用具有不同结构组成的线性聚合物,根据预期设计有针对性地制备具有不同粒径、微孔径、微孔数量、力学性能和表面亲疏水性能的多孔聚合物微球。此外,用本发明方法制备的多孔聚合物微球还具有较好的机械性能、光散射性、热绝缘和声绝缘等共同特性,可以广泛应有于催化剂的加载、医药、化妆品、涂料、造纸、皮革、通讯等领域。

具体实施方式

下面通过实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。

实施例1:本新型高效多孔聚苯乙烯微球的制备方法,具体步骤如下:

(1)取30.0g聚苯乙烯置于烧杯中,270.0g的二氯甲烷配成质量百分比浓度为10%的聚苯乙烯二氯甲烷溶液,待聚苯乙烯全部溶解后,加入正庚烷15.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水300.0g,聚乙烯醇(1788)3.0g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至19.0℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至400 rpm/min并保持不变,以5.0℃/min的速率升温,边升温边收集泡沫,当温度达到40.0℃时,停止升温并保温30min,然后再以3.0℃/min的速率升温至88.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用78.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为80.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔聚苯乙烯微球。所得微球为脆性微球,硬度较高,表面具有强疏水性,其平均粒径为100μm,微孔的平均孔径为5μm,和加入反应体系的聚合物质量相比,多孔微球的收率为55%。

实施例2:新型高效多孔甲基丙烯酸甲酯-马来酸酐-乙酸乙烯酯共聚物微球的制备方法,具体步骤如下:

(1)取30.0g甲基丙烯酸甲酯-马来酸酐-乙酸乙烯酯共聚物置于烧杯中,570.0g的三氯甲烷配成质量百分比浓度为5%的甲基丙烯酸甲酯-马来酸酐-乙酸乙烯酯三氯甲烷溶液,待甲基丙烯酸甲酯-马来酸酐-乙酸乙烯酯共聚物全部溶解后,加入碳酸二甲酯30.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水150.0g,聚乙烯醇(1788)7.5g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至40℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至200 rpm/min并保持不变,以3.0℃/min的速率升温,边升温边收集泡沫,当温度达到61.0℃时,停止升温并保温30min,然后再以2.0℃/min的速率升温至80.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用70.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为70.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔甲基丙烯酸甲酯-马来酸酐-乙酸乙烯酯共聚物微球。所得微球硬度适中,表面具有亲水性,其平均粒径为150μm,微孔的平均孔径为3μm,和加入反应体系的聚合物质量相比,多孔微球的收率为52%。

实施例3:新型高效多孔丙烯酸乙酯-烯丙基磺酸钠共聚物微球的制备方法,具体步骤如下:

(1)取30.0g丙烯酸乙酯-烯丙基磺酸钠共聚物置于烧杯中,120.0g的乙醚配成质量百分比浓度为20%的丙烯酸乙酯-烯丙基磺酸钠共聚物乙醚溶液,待丙烯酸乙酯-烯丙基磺酸钠共聚物全部溶解后,加入正己烷45.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水1500.0g,聚乙烯醇(1788)7.5g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至12.0℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至600 rpm/min并保持不变,以0.5℃/min的速率升温,边升温边收集泡沫,当温度达到34.0℃时,停止升温并保温30min,然后再以1.0℃/min的速率升温至58.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用49.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为50.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔丙烯酸乙酯-烯丙基磺酸钠共聚物微球。所得微球硬度较低,表面具有一定疏水性,其平均粒径为80μm,微孔的平均孔径为10μm,和加入反应体系的聚合物质量相比,多孔微球的收率为57%。

实施例4:新型高效多孔聚丙烯酸丁酯微球的制备方法,具体步骤如下:

(1)取40.0g聚丙烯酸丁酯置于烧杯中,90.0g的四氯化碳配成质量百分比浓度为30%的聚丙烯酸丁酯四氯化碳溶液,待聚丙烯酸丁酯全部溶解后,加入碳酸二乙酯20.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水750.0g,聚乙烯醇(1788)22.5g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至55.0℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至800 rpm/min并保持不变,以1.0℃/min的速率升温,边升温边收集泡沫,当温度达到76.0℃时,停止升温并保温30min,然后再以2.0℃/min的速率升温至98.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用90.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为90.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔聚丙烯酸丁酯微球。所得微球很软,表面具有疏水性,其平均粒径为75μm,微孔的平均孔径为15μm,和加入反应体系的聚合物质量相比,多孔微球的收率为56%。

实施例5:新型高效多孔丙烯酸羟乙酯-醋酸乙烯共聚物微球的制备方法,具体步骤如下:

(1)取30.0g丙烯酸羟乙酯-醋酸乙烯共聚物置于烧杯中,170.0g的二氯甲烷配成质量百分比浓度为15%的丙烯酸羟乙酯-醋酸乙烯共聚物二氯甲烷溶液,待丙烯酸羟乙酯-醋酸乙烯共聚物全部溶解后,加入乙腈40.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水1050.0g,聚乙烯醇(1788)10.5g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至18.0℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至1000 rpm/min并保持不变,以4.0℃/min的速率升温,边升温边收集泡沫,当温度达到40.0℃时,停止升温并保温30min,然后再以5.0℃/min的速率升温至70.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用62.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为62.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔丙烯酸羟乙酯-醋酸乙烯共聚物微球。所得微球硬度低,表面具有亲水性,其平均粒径为50μm,微孔的平均孔径为12μm,和加入反应体系的聚合物质量相比,多孔微球的收率为53%。

实施例6:新型高效多孔苯乙烯-对乙烯苯磺酸钠共聚物微球的制备方法,具体步骤如下:

(1)取30.0g苯乙烯-对乙烯苯磺酸钠共聚物置于烧杯中,270.0g的二氯甲烷配成质量百分比浓度为10%的苯乙烯-对乙烯苯磺酸钠共聚物二氯甲烷溶液,待苯乙烯-对乙烯苯磺酸钠共聚物全部溶解后,加入正庚烷15.0g,搅拌后得到混合均匀溶液;

(2)向带有加热装置、搅拌器和泡沫出口的反应器中,加入蒸馏水300.0g,聚乙烯醇(1788)3.0g,加热搅拌至聚乙烯醇完全溶解后,将体系温度降至19.0℃,向体系中加入步骤(1)聚合物溶液150.0g;

(3)将搅拌速度调至400 rpm/min并保持不变,以5.0℃/min的速率升温,边升温边收集泡沫,当温度达到40.0℃时,停止升温并保温30min,然后再以3.0℃/min的速率升温至88.0℃,停止升温并保持30min;

(4)当泡沫溢出口有泡沫溢出时,用78.0℃的热水将泡沫冲淋至收集器中,同时开启磁力搅拌器保持收集器的温度为80.0±1.0℃并搅拌,当泡沫停止溢出时,停止冲淋,继续搅拌30min后,冷却、过滤,用蒸馏水冲洗三次,干燥后得到多孔苯乙烯-对乙烯苯磺酸钠共聚物微球。所得微球硬度较大,表面亲水性很弱,其平均粒径为100μm,微孔的平均孔径为5μm,和加入反应体系的聚合物质量相比,多孔微球的收率为60%。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1