固态红‑转‑黄上转换共聚物体系及其制备方法与应用与流程

文档序号:12692275阅读:205来源:国知局
固态红‑转‑黄上转换共聚物体系及其制备方法与应用与流程



背景技术:

基于三线态-三线态湮灭上转换(TTA-UC)材料通常由敏化剂与发光剂溶解于有机溶剂构成双组分体系,其机理为:(1)低能量激发光的照射,敏化剂吸收了激发光的能量由其基态(S0) 跃迁至单线态的激发态(1S*),之后通过系间窜越过程(ISC)跃迁至三线态的激发态(3S*);(2)敏化剂经过三线态-三线态能量转移(TTT)机制,将其三线态激发态的能量(3S*)转移给发光剂(3A*);(3)当三线激发态的受体分子浓度达到一定程度时,两个处于三线态(3A*)的发光剂分子相互碰撞发生三线态-三线态湮灭(triplet-triplet annihilation,TTA),在一定的几率上得到一个处于单线态的发光剂分子(1A*)以及一个基态的发光剂分子(A0);此时,单线态的发光剂分子由于辐射衰减而发出短波长的上转换光。

目前,溶液态的TTA-UC材料在激发光辐照下,可获得较高的上转换量子效率,如绿光-转-蓝光的上转换效率最高可达(36 %)、红光-转-黄光的上转换效率最高可达6-7%;显示出在光伏、光催化和光降解等方面潜在的应用价值。然而,由于空气中的氧气能猝灭敏化剂和发光剂的三重态,要获得TTA-上转换则必须在无氧状态中进行,这使得上转换在实际应用中受到严重的限制。由此促进了固态上转换材料制备技术的研究成为热点课题。2008年Tanya N. Singh-Rachford和Felix N. Castellano报道了将敏化剂PdPc(OBu)8与受体rubrene负载在薄片上,制备的红光-转-黄光固态上转换材料,虽可有效屏蔽空气中的氧气对三线态的猝灭,然而获得的固态聚合物上转换效率很低。(参见:(1) G. Chen,J. Seo,C. Yang, P. N. Prasad,Chem. Soc. Rev.,2013,42:8304-8338;(2) Bao Wang, Bin Sun, Xiaomei Wang et al,J. Phys. Chem. C,2014, 118, 1417-1425; (3)Tanya N. Singh-Rachford, Felix N. Castellano, Coordination Chemistry Reviews., 2010, 254, 2560-2573;(4) Yuen Yap Cheng, Burkhard Fuckel, Tony Khoury, Raphael G. C. R. Clady, Murad J. Y. Tayebjee, N. J. Ekins-Daukes, Maxwell J. Crossley, and Timothy W. Schmidt,J. Phys. Chem. L,2010, 1, 1795-1799;(5)Tanya N. Singh-Rachford, Felix N. Castellano, J. Phys. Chem. C, 2008, 112, 3550-3556)。

可见,现有制备的固态上转换材料虽可解决溶液态隔绝氧气问题,但固态材料的上转换效率与溶液态的相比,大大地降低,这使得固态上转换材料的应用中受到限制。



技术实现要素:

本发明公开了一种固态红-转-黄上转换共聚物体系,解决了溶液态需要除氧的问题,同时解决了目前固态聚合物上转换效率低的瓶颈问题;暴露在空气中其上转换效率(12.75%)可保持在4天以上效率近乎不衰减,在太阳能利用领域具有应用价值。

本发明采用如下技术方案,一种固态红-转-黄上转换共聚物体系,为共聚物包覆敏化剂和发光剂体系;所述共聚物含有羟基以及硅。

上述技术方案中,所述共聚物的化学结构式为:

其中,n为2500~3000;

所述敏化剂(PdPc2)的化学结构式为:

所述发光剂的化学结构式为以下化学结构式中(RhB,RhBS,Rh6G)的一种:

本发明还公开了上述固态红-转-黄上转换共聚物体系的制备方法,包括以下步骤,氮气气氛下,将含硅丙烯酸酯单体和含羟基丙烯酸酯单体、偶氮化合物与敏化剂/发光剂双组分溶液混合,然后抽真空,然后进行原位聚合反应,得到固态红-转-黄上转换共聚物体系。具体为氮气气氛下,将含硅丙烯酸酯单体和含羟基丙烯酸酯单体、偶氮化合物与敏化剂/发光剂双组分溶液混合,然后抽真空,然后于60℃~90℃下进行原位聚合反应4 h~8 h ,优选78℃反应5 h,得到固态红-转-黄上转换共聚物体系。

上述技术方案中,含硅丙烯酸酯单体和含羟基丙烯酸酯单体的质量比为(1~10)∶1;敏化剂与发光剂的摩尔比为1∶(300~3000)。

上述技术方案中,所述含硅丙烯酸酯单体为3-(甲基丙烯酰氧)丙基三甲氧基硅烷;所述含羟基丙烯酸酯单体为α-甲基丙烯酸羟乙酯;

所述敏化剂(PdPc2)的化学结构式为:

所述发光剂的化学结构式为以下化学结构式中(RhB,RhBS,Rh6G)的一种:

上述技术方案中,敏化剂/发光剂双组分溶液中,溶剂为多元醇混合溶剂,优选为体积比为1∶(1~10)的正丙醇/乙二醇混合溶剂。

本发明以α-甲基丙烯酸羟乙酯(HEMA)和3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPMA)为单体,在偶氮异丁腈引发下,通过原位聚合均匀包覆一定配比的敏化剂(三明治型钯酞菁)与发光剂(罗丹明系列化合物),获得一种固态红-转-黄上转换硅共聚物。解决了现有溶液态上转换体系(三线态敏化剂和发光剂)容易被氧气淬灭的问题;更重要的是,本发明的固态上转换材料获得高效上转换效率,在半导体激光器辐照下(激发光波长为655 nm,功率密度为1W/cm2),获得的上转换效率高达12.75%。而在相同的激发条件下,相应的上转换溶液的上转换效率显著降低(8.84%);同时,该固态上转换聚合物暴露下空气氛中上转换效率可保持4天,而在相同条件下,溶液态上转换体系只能保持2~3小时。因此本发明还公开上述固态红-转-黄上转换共聚物体系在制备弱光上转换材料中的应用。

本发明获得的固态上转换聚合物体系既解决了目前固态上转换效率低、又解决了目前溶液态需要隔氧的应用瓶颈问题,在光伏太阳能电池和光合成领域具有潜在应用价值。因此本发明还公开上述固态红-转-黄上转换共聚物体系在光伏太阳能电池或者光合成领域中的应用。

上述共聚物结构的合成路线如下:

所述的发光剂为罗丹明类衍生物,其结构如下:

其中,发光剂罗丹明衍生物RhBS合成可举例如下:

将0.479g (1mmol)的罗丹明B (RhB)和0.206g (1mmol)的二环己基碳二亚胺 (DCC)溶解于20mL的二氯甲烷中。然后加入0.115g (1mmol)的N-羟基丁二酰亚胺,室温下搅拌反应24h。过滤后,柱色谱法分离,得到纯净的紫色产物。X-5显微熔点仪测得罗丹明B衍生物的熔点142.5℃。

本发明固态三线态湮灭上转换双组份体系中,通过敏化剂与发光剂分子之间三线态转移,将长波长的光转换为短波长的光,这一过程称为频率上转换(又称三线态湮灭上转换),这一过程只需通655nm激发便可实现由低频率红光转化为高频率黄光。

由于上述技术方案运用,本发明与现有技术相比具有下列优点:

1.本发明公开的共聚物来自含硅和含羟基的两种丙烯酸酯单体,前者单体的作用赋予聚合物材料优良的光通透性和热稳定性、后者单体由于羟基作用有利于三线态敏化剂和发光剂发生高效上转换效率,因而包覆敏化剂和发光剂后获得高效率的红-转-黄弱光上转换聚合物,在太阳能利用领域具有应用价值。

2. 本发明公开的上转换共聚物体系由于采用原位聚合将上转换双组份体系包覆在聚合物中,具有优良的隔绝空气中氧气的作用,有效解决了溶液态上转换体系需要隔绝氧气的问题,在空气中可实现上转换发光,且可稳定4天以上,将大大地方便其实际应用。

3.本发明公开的固态弱光上转换共聚物体系在激发光强在1W/cm2下,上转换效率可达12.75%,超过了液态上转换效率(8.84%),解决了目前固态上转换效率低于相应溶液态的上转换效率;具有极大实用价值。

4.本发明公开的固态弱光上转换共聚物体系原料廉价易得,无毒和高透明,无污染物排放,解决了现有技术由于液态上转换体系使用非常不便,而且溶剂往往有毒易挥发易燃易爆,危害人身健康和安全的问题;符合当代绿色化学发展的要求和方向,更重要的是,本发明上转换树脂的制备工艺简单,适于工业生产。

5. 本发明使用含硅和含羟基的两种丙烯酸酯单体,通过原位共聚包覆三线态敏化剂和发光剂的多元醇溶液,获得一类高效率的红-转-黄弱光上转换聚合物,解决了溶液态需要除氧的问题,同时解决了目前固态聚合物上转换效率低的瓶颈问题;暴露在空气中其上转换效率(12.75%)可保持在4天以上效率近乎不衰减,在太阳能利用领域具有应用价值。

附图说明

图1 实施例一中固态上转换共聚物不同容器中的红转黄实物图;

图2 实施例一中敏化剂PdPc2在聚合物中和溶液中的吸收和荧光谱图;

图3 实施例一中发光剂RhB在聚合物中和溶液中的吸收和荧光谱图;

图4 实施例一中PdPc2与RhB在溶液中的上转换光谱随激发光功率密度变化图;

图5 实施例一中PdPc2与RhB在溶液中的上转换强度与激发功率的对数图;

图6 实施例一中PdPc2与RhB在固态聚合物中的上转换光谱随激发光功率密度变化图;

图7 实施例一中PdPc2与RhB在固态聚合物中的上转换强度与激发功率的对数图;

图8 实施例一中PdPc2与RhBS在溶液中的上转换光谱随激发光功率密度变化图;

图9 实施例一中PdPc2与RhBS在溶液中的上转换强度与激发功率的对数图;

图10 实施例一中PdPc2与RhBS在固态聚合物中的上转换光谱随激发光功率密度变化图;

图11 实施例一中PdPc2与RhBS在固态聚合物中的上转换强度与激发功率的对数图;

图12 实施例一中固态上转换树脂(PdPc2与RhB)在空气中的稳定曲线(即上转换效率与时间关系)图;

图13 实施例一中固态上转换树脂的太阳能电池示意图;

图14 实施例一中固态上转换树脂上转换太阳能电池I-V曲线图。

具体实施方式

下面结合附图以及实施例对本发明作进一步描述:

实施例一

(1)双组分上转换溶液(PdPc2/发光剂)配置:将敏化剂(PdPc2)母液(浓度为4×10-5mol/L)和发光剂母液(浓度为1×10-2 mol/L)按照一定摩尔量配比混合后并脱气,得到敏化剂/发光剂双组分溶液,上述所有溶液所涉及的溶剂均为光谱纯正丙醇/乙二醇(v/v,1/2)。

发光剂种类可选用下列罗丹明类衍生物中的任一种:

(2)固态上转换共聚物体系制备:在氮气气氛中,将2-羟基乙烯甲基苯烯酸甲酯(HEMA)和3-(甲基丙烯酰氧)丙基三甲氧基硅烷(TMSPMA)按1∶1(质量比)混合,加入0.5%(质量比)的偶氮二异丁腈作为引发剂,再加入双组分溶液(敏化剂和发光剂摩尔配比为1:3000),充分搅拌后抽真空(30 min),然后在78℃保温5 h;取出自然冷却形成固态上转换共聚物体系。

根据步骤(2),将双组分溶液分别更换为敏化剂(PdPc2)母液、发光剂母液,可以获得单组份固体共聚物。

固态上转换共聚物体系,在红色激光(655 nm,功率密度1 W/cm2)的激发下,测试其上转换光谱。附图1是用激光器激发下(1 W/cm2)获得红转黄上转换的实物图,左、右图分别在不同容器中,双组分为PdPc2/RhB。

附图2、附图3分别为单组分的敏化剂与发光剂在溶液态和固态中的吸收和荧光图谱。可见,与溶液态相比,固态基质有利于敏化剂的吸收能力与发光强度的提高、也有利于发光剂的吸收能力与发光强度的提高。

附图4为PdPc2/RhB双组分(溶液态)体系在不同功率密度的红色激光(655nm)器辐照下,测得的上转换光谱图,附图5是根据附图4得到的上转换强度与激发功率的对数关系图。

可见,当激发光源功率密度由0.1mW/cm2增加到1 mW/cm2时,上转换强度最大可增至5X10-3,其上转换峰位在604nm处。根据公式(1)计算出中PdPc2/RhB(溶液态)上转换效率为6.8%。

其中,Ar和As分别是参比物和敏化剂在655nm处的吸光度,Fs和Fr分别是发光剂和参比物在655nm 的激发下的上转换荧光强度的积分面积,和为发光剂体系和参比物体系折射率,为参比物在655nm 的激发下的荧光量子产率。

在上述相同的激发条件下(655nm),得到相应固态PdPc2/RhB聚合物的上转换光谱见附图6所示。附图6与附图7为红色激光在不同功率密度的激发光辐照下,固态上转换共聚物体系的强度变化曲线。可见,当激发光源功率密度由0.1mW/cm2增加到1 mW/cm2时,上转换强度提高至0.01,相应的固态上转换强度与激发功率的对数关系图见附图7所示。根据公式(1)计算出固态PdPc2/RhB双组分的上转换效率为10.2%。

由附图4~附图7可见,在相同的测试条件下(敏化剂/发光剂浓度),固态PdPc2/RhB聚合物的上转换效率为10.2%,高于溶液态PdPc2/RhBS的上转换效率(6.8%)。

由此可以看出,固态的上转换效率高于溶液态时的上转换效率。

附图8为PdPc2/RhBS(溶液态)体系在不同功率密度的红色激光(655nm)器辐照下,测得的上转换光谱图,附图9是相应的上转换强度与激发功率的对数关系图。可见,当激发光源功率密度由0.1mW/cm2增加到1 mW/cm2时,上转换强度最大可增至0.006,其上转换峰位在616nm处。根据公式(1)计算出中PdPc2/RhBS(溶液态)上转换效率为8.7%。

附图10为在红色激光(655nm)不同功率密度的激发光辐照下,固态PdPc2/RhBS聚合物上转换强度变化曲线,附图11是相应的上转换强度与激发功率的对数图。可见,当激发光源功率密度由0.1mW/cm2增加到1 mW/cm2时,上转换强度最大可增至0.015,根据公式(1)计算出中PdPc2/RhBS(溶液态)上转换效率为8.7%。

由附图8~附图11可见,在相同测试条件下,固态PdPc2/RhBS聚合物的上转换效率为12.8%,高于溶液态PdPc2/RhBS的上转换效率(8.7%)。

附图12为敏化剂/发光剂(PdPc2/RhB)相同浓度下,聚合物与溶液在空气中,其上转换效率随时间的变化曲线。可见固态树脂在空气中放置4天后,上转换效率仍可以达到原来的90%,在上述相同的激发条件下,得到相应溶液态的上转换效率稳定性则为2~3小时。显然固态上转换树脂的稳定性远远优于溶液态,具有实际使用价值。

固态上转换树脂在太阳能电池方面的应用:

按照图13所示装置,固体激光器(激发波长:655 nm,功率密度1 W·cm-2)辐照上转换共聚物,透过滤光片,上转换黄光直接照射在太阳能电池上,通过keithley 2400 SourceMeter,测得如图14所示的I-V曲线。使用655 短通滤光片以避免敏化剂的下转换(荧光)被电池吸收。

表1为上述上转换体系在不同介质中的上转换效率,可以明显看出固态聚合物的上转换效率高于溶液态上转换效率,高出40%至50%以上。

表1 上述上转换体系在不同介质中的上转换效率

实施例二

根据实施例一的制备方法,其中HEMA、TMSPMA按1∶2(质量比)混合,加入0.5%(质量比)的偶氮二异丁腈作为引发剂,再加入双组分溶液(敏化剂和发光剂摩尔配比为1∶3000),制备固态上转换共聚物体系,发光剂为RhB、RhBS、Rh6G时,上转换效率分别为9.6%、12.3%、2.9%。相应地,在其他条件均相同情况下,发光剂RhB、RhBS、Rh6G在溶液态时的上转换效率分别为:6.8%、8.7%和2.2%。对比实施例一与实施例二可以看出,两种聚合物单体的比例对固态上转换体系的上转换效率的影响较小;同时,在相同条件下,固态上转换体系的上转换效率大于溶液态时的上转换效率。固态树脂在空气中放置4天后,上转换效率仍可以达到原来的90%,在上述相同的激发条件下,得到相应溶液态的上转换效率稳定性则为2~3小时。

实施例三

根据实施例一的制备方法,其中敏化剂、发光剂溶液所涉及的溶剂均为光谱纯正丙醇/乙二醇(v/v,1/6);HEMA、TMSPMA按1∶4(质量比)混合,加入0.5%(质量比)的偶氮二异丁腈作为引发剂,再加入双组分溶液(敏化剂和发光剂摩尔配比为1∶3000),制备固态上转换共聚物体系,发光剂为RhB、RhBS、Rh6G时,上转换效率分别为9.4%、11.8%、2.6%。相应地,在其他条件均相同情况下,发光剂RhB、RhBS、Rh6G在溶液态时的上转换效率分别为:6.4%、8.3%和1.9%。对比实施例一与实施例三可以看出,随着溶剂正丙醇/乙二醇的比例变化,溶液态的上转换效率也随着减小;同时,在相同条件下,固态上转换体系的上转换效率大于溶液态时的上转换效率。固态树脂在空气中放置4天后,上转换效率仍可以达到原来的90%,在上述相同的激发条件下,得到相应溶液态的上转换效率稳定性则为2~3小时。

实施例四

根据实施例一的制备方法,其中HEMA、TMSPMA按1∶4(质量比)混合,加入0.5%(质量比)的偶氮二异丁腈作为引发剂,再加入双组分溶液(敏化剂和发光剂摩尔配比为1∶2000),制备固态上转换共聚物体系,发光剂为RhB、RhBS、Rh6G时,上转换效率分别为4.5%、7.2%、1.7%。相应地,在其他条件均相同情况下,发光剂RhB、RhBS、Rh6G在溶液态时的上转换效率分别为:3.8%、5.3%和1.3%。对比实施例一与实施例四可以看出,随着敏化剂/发光剂摩尔配比变小,无论是溶液态与固态的的上转换效率也随着减小,但是。固态上转换体系的上转换效率均大于溶液态时的上转换效率。固态树脂在空气中放置4天后,上转换效率仍可以达到原来的90%,在上述相同的激发条件下,得到相应溶液态的上转换效率稳定性则为2~3小时。

实施例五

根据实施例一的制备方法,其中敏化剂、发光剂溶液所涉及的溶剂均为光谱纯正丙醇/乙二醇(v/v,1/10);HEMA、TMSPMA按1∶6(质量比)混合,加入0.5%(质量比)的偶氮二异丁腈作为引发剂,再加入双组分溶液(敏化剂和发光剂摩尔配比为1∶2000),制备固态上转换共聚物体系,发光剂为RhB、RhBS、Rh6G时,上转换效率分别为4.3%、6.9%、1.5%。相应地,在其他条件均相同情况下,发光剂RhB、RhBS、Rh6G在溶液态时的上转换效率分别为:3.5%、5.1%和1.1%。对比实施例一与实施例五可以看出,随着敏化剂/发光剂摩尔配比变小,无论是溶液态与固态的的上转换效率也随着减小,但是固态上转换体系的上转换效率均大于溶液态时的上转换效率。固态树脂在空气中放置4天后,上转换效率仍可以达到原来的90%,在上述相同的激发条件下,得到相应溶液态的上转换效率稳定性则为2~3小时。

本发明首次以含硅和含羟基的两种丙烯酸酯单体,通过原位共聚包覆三线态敏化剂和发光剂多元醇溶液,获得一类高效率的红-转-黄弱光上转换聚合物,在功率655nm激发器(功率密度为1W/cm2)辐照下,测得上转换效率最高可达12.75%;且无须除氧在空气中可保持4天以上近乎不衰减,显示出在光伏太阳能电池和光合成方面潜在的应用价值。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1