提纯山梨酸的方法与流程

文档序号:12054196阅读:633来源:国知局

本发明涉及山梨酸的提纯方法,尤其是熔融结晶器提纯山梨酸的方法。



背景技术:

山梨酸及其钾盐能抑制霉菌生长,长期来用作食品防腐剂,特别在低pH值时,可作为未离解的酸起防腐作用。山梨酸具有其他防腐剂所没有的特点,即有很强的防腐选择性,它能抑制对人类有害细菌的生长,而对有益于人的细菌则无害,例如它可抑制乳酪霉菌生长但并不影响帮助乳酪熟化的细菌的生长。因此在食品工业中山梨酸大量用作乳酪、蛋糕和其他糕点的防腐剂。主要用于干酪、腌渍蔬菜、干燥水果、果汁、水果糖浆、饮料、蜜饯、面包、糖果等的防霉。也用于鱼肉品的保鲜。还应用于化妆品、医药、饲料等方面。目前国内外规模化生产山梨酸的设备为一般的搪瓷反应釜,其成熟工艺的工序大致如下:即取乙烯酮与巴豆醛在催化剂的作用下,发生缩合反应,再水解、干燥、包装等工序获得成品,然而由于该工艺生产出的山梨酸外观很次,杂质多,有刺激性气味。故现有的这种山梨酸的工艺及设备有待改进。



技术实现要素:

本发明要解决的技术问题是提供熔融结晶器提纯山梨酸的方法,其具有良好的平行反应选择性和安全性,降低了成本和设备投资;对环境友好,能耗少,且山梨酸产品纯度高、品质稳定。

为解决上述技术问题,本发明采用的技术方案为:提纯山梨酸的方法,其创新点在于:采用熔融结晶器提纯山梨酸,具体步骤为:

(1)结晶:在熔融结晶器外夹套底部通入冷冻盐水,冷冻盐水均匀的在熔融结晶器外壁呈降膜流动,将粗山梨酸溶液投入到熔融结晶器内,粗山梨酸溶液在熔融结晶器内壁降膜流下,逐步冷却而结晶,在换热面上逐步生长出均匀的晶体层,晶体层的浓度高于熔融结晶器内溶液的浓度,杂质逐步富集于溶液中;

(2)发汗、熔化:冷冻盐水通入12~30minmin后,停止供料,然后通过换热器调节热水温度对晶体层进行部分熔化,使晶体层中夹杂的低熔点杂质熔化排除,进一步提纯晶体。

本发明采用熔融结晶器利用分离物质之间凝固点的不同而实现物质分离和提纯,通过调节能量的传输控制传质,从而达到提高结晶效率和结晶成品的纯度的效果;提高了平行反应选择性;对于使用溶剂的重结晶会引起爆炸、燃烧等不安全因素的体系,通过熔融结晶器控制输入,维持结晶的最佳浓度,低温操作可提高系统安全性;在结晶器上部导气管通入适量的压缩空气,使溶液在结晶管内形成弹状流气泡上升,造成熔体的湍动,增强传质和传热性能。

进一步地,所述结晶步骤具体为:先在熔融结晶器外夹套底部通入冷冻盐水,温度为-10℃~-2℃,冷冻盐水均匀的在熔融结晶器外壁呈降膜流动,然后将粗山梨酸溶液投入到熔融结晶器内,同时通过熔融结晶器导气管以4~7m3/min的速度向粗山梨酸溶液内通入压缩空气,使之在结晶管内形成弹状流气泡上升,造成熔体的湍动,增强传质和传热性能,山梨酸溶液在熔融结晶器内壁降膜流下,逐步冷却而结晶,在换热面上逐步生长出均匀的晶体层,晶体层的浓度高于熔融结晶器内溶液的浓度,杂质逐步富集于溶液中。

进一步地,所述发汗、熔化步骤具体为:控制冷冻盐水通入时间12-30min后,停止供料,切换温水罐对晶体层进行部分熔化,水温为88~92℃,温水通入时间为15~40min;然后切换热水罐水温为90~94℃使晶体层中夹杂的低熔点杂质熔化排除,进一步提纯晶体,热水通入时间为25~35min。

进一步的,所述冷冻盐水为氯化钙溶液或氯化钠溶液。

进一步地,所述熔融结晶器为立式列管换热器式的降膜熔融结晶器。

与现有技术相比,本发明的优点在于:通过上述熔融结晶器提纯山梨酸的工艺简单,其具有良好的平行反应选择性和安全性,采用降膜形式和低温操作,单位产量产品的能量消耗大幅度降低,有较好的经济性,同时该工艺过程晶体是在传热表面形成晶体层,而不是悬浮在液体中,这样避免了设备和管道的堵塞,减少了生产故障的发生,降低了成本和设备投资;生产过程中几乎没有“三废”,对环境友好,与使用溶剂的重结晶相比,不需要干燥以脱除溶剂,能耗仅为精馏的10%~30%,且利用该熔融结晶器生产出的山梨酸产品纯度高、品质稳定,增加操作级数可使纯度无限提高,可以使产品中杂质含量从百分含量至ppm含量,从而克服了现有技术中的不足。

具体实施方式

下面结合具体实施例对本发明的技术方案作详细说明。

实施例1

熔融结晶器提纯山梨酸的工艺,包括如下步骤:

(1)结晶:先在熔融结晶器外夹套底部通入-8℃的氯化钙溶液,氯化钙溶液均匀的在熔融结晶器外壁呈降膜流动,然后将缩合好的山梨酸溶液投入到熔融结晶器内,同时通过熔融结晶器导气管利用压缩机以4m3/min的速度向山梨酸溶液内通入的压缩空气,使之在结晶管内形成弹状流气泡上升,造成熔体的湍动,增强传质和传热性能,山梨酸溶液在结晶器内壁降膜流下,逐步冷却而结晶,在换热面上逐步生长出均匀的晶体层,晶体层的浓度高于熔融结晶器内溶液的浓度,杂质逐步富集于溶液中;

(2)发汗、熔化:控制氯化钙溶液通入时间30min后,停止供料,切换温水罐对晶体层进行部分熔化,温水罐水温为88℃,温水通入时间为15min;然后切换热水罐使晶体层中夹杂的低熔点杂质熔化排除,进一步提纯晶体,热水罐水温为88℃,热水通入时间为28min,得到山梨酸的纯度为99.91%。

实施例2

熔融结晶器提纯山梨酸的工艺,包括如下步骤:

(1)结晶:先在熔融结晶器外夹套底部通入-6℃的氯化钠溶液,氯化钠溶液均匀的在熔融结晶器外壁呈降膜流动,然后将缩合好的山梨酸溶液投入到熔融结晶器内,同时通过熔融结晶器导气管利用压缩机以5m3/min的速度向山梨酸溶液内通入的压缩空气,使之在结晶管内形成弹状流气泡上升,造成熔体的湍动,增强传质和传热性能,山梨酸溶液在结晶器内壁降膜流下,逐步冷却而结晶,在换热面上逐步生长出均匀的晶体层,晶体层的浓度高于熔融结晶器内溶液的浓度,杂质逐步富集于溶液中;

(2)发汗、熔化:控制氯化钠溶液通入时间15min后,停止供料,切换温水罐对晶体层进行部分熔化,温水罐水温为90℃,温水通入时间为30min;然后切换热水罐使晶体层中夹杂的低熔点杂质熔化排除,进一步提纯晶体,热水罐水温为92℃,热水通入时间为30min,得到山梨酸的纯度为99.92%。

实施例3

熔融结晶器提纯山梨酸的工艺,包括如下步骤:

(1)结晶:先在熔融结晶器外夹套底部通入-2℃的氯化钙溶液,氯化钙溶液均匀的在熔融结晶器外壁呈降膜流动,然后将缩合好的山梨酸溶液投入到熔融结晶器内,同时通过熔融结晶器导气管利用压缩机以7m3/min的速度向山梨酸溶液内通入的压缩空气,使之在结晶管内形成弹状流气泡上升,造成熔体的湍动,增强传质和传热性能,山梨酸溶液在结晶器内壁降膜流下,逐步冷却而结晶,在换热面上逐步生长出均匀的晶体层,晶体层的浓度高于熔融结晶器内溶液的浓度,杂质逐步富集于溶液中;

(2)发汗、熔化:控制氯化钙溶液通入时间33min后,停止供料,切换温水罐对晶体层进行部分熔化,温水罐水温为92℃,温水通入时间为40min;然后切换热水罐使晶体层中夹杂的低熔点杂质熔化排除,进一步提纯晶体,热水罐水温为94℃,热水通入时间为32min,得到山梨酸的纯度为99.91%。

通过采用类似于立式列管换热器的降膜熔融结晶器后,山梨酸的结晶过程变得更容易控制,杂质少,成品的纯度较高,一般可达到99.8%以上,外观较白且亮,晶体好。通过该工艺的改进,山梨酸成品中没有或者大大减少了杂质的存在,有效的提高了其防腐性能,降低了食品中防腐剂的用量,有效的提高了食品安全。

对比例1

(1)将缩合好的山梨酸溶液打到结晶釜中,往结晶釜夹套通冷却水(20~25℃)冷却到50~60℃时,则关闭预冷循环阀门,停止降温,加入1kg的山梨酸轻粉晶种;

(2)约40min后开启冷却水,继续降温,到38~42℃停止降温,过20min后开启冷冻水(5~7℃)继续降温,直到18~20℃时停冷冻水,准备放料,离心脱水,得到山梨酸的纯度为99.82%。

需要指出的是,上述较佳实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1