用于柔性隔离泡沫的膨胀体系的制作方法

文档序号:15747033发布日期:2018-10-23 23:27阅读:236来源:国知局

本发明涉及用于隔热隔音的柔性材料,所述柔性材料包含基于至少一种弹性体的膨胀聚合物(掺混物),其中膨胀通过至少两种化学发泡剂的混合物的分解来实现,所述混合物包含放热化学发泡剂4,4'-氧基双(苯磺酰肼)(OBSH)和至少一种吸热发泡剂。

发明背景

几十年来,包含用于隔热和隔音聚合物(掺混物)的柔性膨胀材料在市场上已经成熟建立。其用于商业和住宅建筑以及各行业的工业应用。选择该材料的理由是多方面的:它们是防水的,并因此可以防止隔离下腐蚀,具有出色的隔热和隔音特性,并且由于它们的柔性、易切割性以及与单组分粘合剂的粘合性而易于施加。

由于该应用的聚合隔离泡沫主要包括两类材料,聚乙烯泡沫(PEF)和柔性弹性体泡沫(FEF)。

聚乙烯泡沫(PEF)使用物理发泡剂通过物理膨胀(发泡)过程制成。柔性弹性体泡沫(FEF)是具有高填料加载量的柔性隔离材料,其通过化学膨胀(发泡)过程获得。该材料几乎仅基于聚合物(弹性体)基底的狭窄选择。大多数该膨胀材料基于丙烯腈-丁二烯橡胶(NBR)或NBR/聚氯乙烯(PVC)(例如NH/AF/K-ST、KKplus)、乙烯-丙烯-二烯橡胶(EPDM)(如HT/AC)和聚氯丁二烯(CR)(Ultima)。膨胀型EPDM主要用于隔离较高温度,例如,太阳能应用,CR用于要求高阻燃性和低烟雾排放的应用,NBR是标准FEF最普遍的聚合物基底,例如在加热和管道以及通风和冷却应用中。由于用该材料可实现高负载,产品性能可以在宽范围内进行变化,例如,关于阻燃性、导热性、机械性能、耐水蒸气性等。

自上个世纪70年代后期以来,FEF的膨胀通过使用偶氮二酰胺(ADCA)作为化学发泡剂来实现。ADCA是最有效的发泡剂之一,并因此广泛使用,不仅用于FEF,而且用于一般的泡沫橡胶和热塑性塑料。它具有所有市售发泡剂中的最高气体产量(≈220毫升/克),并且主要分解成氮气和二氧化碳。纯ADCA的分解开始于大于200℃(≈220℃),但该温度可以通过使用含锌物质、尤其是ZBS(苯亚磺酸锌脱水物)和ZnO(氧化锌)在宽范围内显著降低。

在2012年12月,ECHA(欧洲化学品管理局)将ADCA添加到由于具有可能严重影响人体健康的等同关切度而授予高度关注的候选物质清单中。虽然目前对于该影响还没有明确的证据,但仍然存在风险使得ADCA的使用受限或有限制。因此,需要相同或相当性能的替代品。不幸地是,在FEF中ADCA的替代特别困难,因为该泡沫的密度非常低(至少低于70kg/m3,大多数应用低于60kg/m3或甚至低于55kg/m3)。该密度不可避免地实现了所需的性能,例如,低热导率、柔性、弯曲性等。

通常,发泡剂可以划分为两大类:吸热和放热材料。放热发泡剂释放比吸热发泡剂更大量的气体并产生更高的气体压力。该产品的分解温度在许多情况下可以通过添加加强剂(kicker)进行调节(意味着降低)。吸热发泡剂基于无机碳酸盐或碳酸氢盐,并且主要释放CO2(二氧化碳),并且在许多情况下还释放水。其可以通过酸(例如,柠檬酸)活化,以降低其分解温度。

市售放热发泡剂的量是非常有限的。除了ADCA外,仅五种其它物质具有商业利益:

1.OBSH(4,4’-氧代二苯磺酰肼)、

2.TSH(对甲苯磺酰肼)、

3.TSS(对甲苯磺酰氨基脲)、

4.5PT(5-苯基-1H-四唑)和

5.DNPT(N,N’-二亚硝基五亚甲基四胺)。

关于气体产量(190ml/g)和分解温度(≈200℃),DNPT是所有上述化学发泡剂中最与ADCA相当的一种。不幸的是,它释放通过分解释放亚硝气,因此不会成为替代品,特别是在人体健康影响方面上尤为如此。

5PT的分解温度(≈240℃)甚至高于ADCA的分解温度,并且对于这种发泡剂没有加强剂。因为这个,5PT也不能替代ADCA,因为FEF不能在该高温下进行处理(例如,聚合物链、交联、阻燃剂的降解等)。

TSS的分解温度为≈220℃,但是可以获得增强剂(脲、PTA和Net3)。但是,生物分析中怀疑TSS有致癌作用,而氨基脲一般是WHO所关注的。因为这点,即使TSS也是对于FEF的ADCA的可接受替代品。

TSH具有放热发泡剂的最低分解温度(≈145℃),但在FEF化合物中使用时分解温度进一步降低至100-130℃。.由于该分解温度,不能在膨胀前获得足够的交联,导致显著更高的密度和不稳定以及/或者开孔。此外,与ADCA相比,该发泡剂的气体产量(≈100ml/g)相当低。

唯一剩下的发泡剂是OBSH。尽管与ADCA相比,分解温度(≈160℃)和气体产量(≈125ml/g)显著较低,但使用该发泡剂生产FEF是可行的。然而,固化包装和工艺条件的大幅调整是必要的,以获得足够的密度和产品质量。尽管如此,使用OBSH有几个缺点:所获得的产品更硬(不柔软),弹性和恢复行为更差。它们通常具有更高的密度(US20100065173),因此具有显著更高的热导率;或者它们不是闭孔泡沫(CN104945746和US8353130),因此具有更差的水蒸气屏蔽性能(根据EN 13469/EN 12086的WVT:<1000)。

大量吸热发泡剂是市售可得的,但是,不同原料的量非常有限。如此大量的市售产品的主要原因是单独为目标应用而组成的这些原料的各种混合物、比例、粒度、活化等。虽然该发泡剂在健康和环境风险方面是优选的,但并不能达到所需密度(最低可达密度高于200kg/m3)。



技术实现要素:

令人惊讶地是,本发明人发现用于隔热隔音的通用柔性材料,其包括至少一层基于至少一种弹性体并且不使用ADCA的膨胀型聚合物(掺混物)——没有显示出任何前述缺点,其可以通过分解至少两种化学发泡剂的良好平衡混合物来获得,所述至少两种化学发泡剂包括:4,4'-氧基双(苯磺酰肼)(OBSH)和至少一种吸热发泡剂。

涉及要求保护的材料的所有量均涉及聚合型混合物,所述聚合型混合物定义为在膨胀和交联之前所有原料的混合物,这意味着聚合型混合物包含用于制造膨胀型聚合物(掺混物)的所有原料。相反,随着发泡剂分解而导致膨胀,膨胀型聚合物(掺混物)特别不再包含发泡剂。

该材料可以通过连续挤出、交联并膨胀至≤70kg/m3、优选≤60kg/m3、特别优选≤55kg/m3的根据DIN EN ISO 845的最终密度来获得。优选密度≤60kg/m3、或者甚至≤55kg/m3,因为这样的密度导致具有较低热导率的材料和由于较少材料消耗的较低成本。

本发明的主题是聚合型混合物,其包含:≤40.0wt%、优选≤33.3wt%,但≥10.0wt%、优选≥12.5wt%的至少一种弹性体或热塑体/弹性体掺混物,其中至少25wt%是至少一种硫和/或金属氧化物可交联聚合物;以及5至40wt%、优选10至30wt%的发泡剂混合物,其包含70至95wt%的4,4'-氧基双(苯磺酰肼)和5至30wt%的至少一种吸热发泡剂,其中,4,4'-氧基双(苯磺酰肼)和至少一种吸热发泡剂总计达100%。

在一实施方式中,可交联聚合物是交联的,并且混合物通过上述发泡剂的分解膨胀为柔性材料。

在聚合型混合物中的所有量都相对于总共100phr的聚合物含量。总量还始终包括上述100phr的聚合物。所有成分的全部量总计为至少250phr、优选至少300phr,但少于1000phr、优选少于800phr。该量包括化学发泡剂的量,因为聚合型混合物描述了交联和膨胀前的材料状态。换言之,相对于所有成分的全部量的聚合物含量为≤40.0wt%、优选≤33.3wt%,但是≥10.0wt%、优选≥12.5wt%。给出的百分比近似至小数点后第一位。

100phr的聚合物含量包含至少一种硫和/或金属氧化物可交联聚合物以及至少一种或热塑体/弹性体掺混物。该聚合物含量的至少25phr(等于25wt%)需要是硫和/或金属氧化物可交联的。根据本发明,聚合增塑剂和聚合阻燃剂不是上述聚合物含量的一部分。

特别优选的是包含如下的掺混物:至少80phr的丙烯腈-丁二烯橡胶(NBR)和/或聚氯丁二烯(CR)和/或乙烯-丙烯-二烯橡胶(EPDM)和/或丁基橡胶(IIR,包括氯化和溴化丁基橡胶)和/或丁二烯橡胶(BR)和/或苯乙烯-丁二烯橡胶(SBR)和/或聚氯乙烯(PVC,包括其共聚物和三元共聚物)和/或聚乙烯(PE,包括其共聚物和三元共聚物)和/或氯化聚乙烯(CPE/CM)。上述聚合物的选择和比率取决于目标应用。

此外,所要求保护的材料的聚合物含量可以包含所有类型的弹性体、热塑体、或热塑性弹性体,如(但不限于),ACM/AEM(丙烯酸弹性体)、AU/EU(聚氨酯)、(G)(E)CO(表氯醇弹性体)、EPM(乙烯-丙烯橡胶)、EVM/EVA(乙烯-乙酸乙烯酯共聚物)、SBR(苯乙烯-丁二烯橡胶)、HNBR(氢化丁腈橡胶)、FKM/F(E)PM(含氟弹性体)、GPO(环氧丙烷橡胶)、IR(异戊二烯橡胶)、(V)MQ(硅酮橡胶)、NR(天然橡胶)、T(聚硫橡胶)、PP(聚丙烯)、PET(聚对苯二甲酸乙二酯)、PBT(聚对苯二甲酸丁二酯)、PC(聚碳酸酯)、PS(聚苯乙烯)、PA(聚酰胺)、PU(聚氨酯)、PTFE(聚四氟乙烯)、PMMA(聚甲基丙烯酸甲酯)。

至少两种化学发泡剂的混合物包括4,4'-氧基双(苯磺酰肼)(OBSH)和至少一种吸热发泡剂。吸热发泡剂优选碳酸盐或碳酸氢盐,特别优选碳酸氢钠。碳酸盐或碳酸氢盐的分解可以通过加入酸性物质进行,优选是磷酸氢钙、磷酸钠铝和柠檬酸。所有发泡剂以粉末形式存在。

OBSH的中值粒度可以是1至20μm,优选1至12μm,特别优选2至8μm。至少一种吸热发泡剂的中值粒度可以是1至20μm,优选1至12μm,特别优选2至8μm。粒度根据ISO 13320:2009通过激光衍射粒度分析确定。该粒度导致在如下两方面之间的最佳平衡:一方面是加工时间和温度,并且另一方面是泡沫的孔尺寸,因为泡沫的孔尺寸对材料的热导率有直接影响(孔越小意味着热导率越低——换句话说——隔热性能越好)。优选的和特别优选的粒度不会进一步改进(意味着降低)材料的孔尺寸,但是由于更快分解会减少加工时间。

为了防止颗粒团聚并改进聚合物中的分散性,颗粒可以进行涂敷,例如,使用脂肪酸(如硬脂酸)或脂肪酸的金属盐(如硬脂酸钙)进行涂敷;或者它们可以进行表面修饰,例如,硅烷化。该改进的分散性导致混合周期减少并且膨胀材料内的缺陷更少。

基于该发泡剂混合物本身总计达100%的假设,其包含70至95wt%的OBSH和5至30wt%的至少一种吸热发泡剂。相对于吸热发泡剂,较低量的OBSH导致较高的产品密度、开孔结构、较差的WVT(水蒸气透过率)性能和较高的收缩率。较大量的OBSH则导致开孔结构、较差的WVT性能和较高的刚度,这意味着较差的柔性和可弯曲性,导致在安装和粘结过程中出现问题。

聚合型混合物还包含至少一种交联体系,例如过氧化物、三聚氰脲酸三烯丙酯、三聚异氰脲酸三烯丙酯、苯基马来酰亚胺、噻二唑、脂肪酸酰胺、氢化硅烷化试剂、辐照活化剂(用于辐照或UV固化)、硫体系、双酚、金属氧化物。优选的是硫和/或金属氧化物交联体系,因为其易加工性以及机械性能与成本之间的最佳平衡。

聚合型混合物还可包含至少60phr、优选至少100phr的至少一种无机填料(包括炭黑)。无机填料可以是铝化合物,例如铝的硅酸盐、氧化物、氢氧化物,例如,ATH(氢氧化铝);和/或基于硅的化合物,例如硅酸盐、石英、沸石;或者相应地是基于矿物的化合物,例如石膏、粘土、碳酸镁钙、水菱镁矿、珍珠岩、蛭石,白垩、板岩、石墨、滑石/云母;和/或任意类型的炭黑或颜料;或它们的任意混合物。优选的是无机填料,其通过在高于180℃的温度下释放水来冷却火,或者通过在高于180℃的温度释放二氧化碳、一氧化碳等来削弱或抑制火焰的供氧。特别优选的是氢氧化铝(ATH)、氢氧化镁、碳酸镁钙、水菱镁矿,因为它们有高水平的水释放。

相对于聚合物含量,聚合型混合物可以包含至少15phr、优选至少20phr、特别优选至少25phr的至少一种增塑剂。增塑剂的类型取决于所选的聚合物,例如,石蜡、氯化增塑剂、磷酸酯增塑剂(例如,磷酸二苯基甲苯酯(DPK))、己二酸酯增塑剂、聚合型增塑剂、邻苯二甲酸酯增塑剂。优选氯化增塑剂、磷酸酯增塑剂和石蜡,其中石蜡主要用于非极性聚合物如EPDM,因为这种聚合物不接受较高极性的增塑剂。

聚合型混合物可以进一步包含至少一种阻燃剂,例如,有机卤素化合物(溴化和/或氯化),例如,2,3,4,5,6-五溴-1-(2,3,4,5,6-五溴苯氧基)苯(Deca-BDE)、2,2′,6,6′-四溴-4,4'-异丙叉基二苯酚(TBBPA)、1,2,3,4,7,8,9,10,13,13,14,14-十二氯-1,4,4a,5,6,6a,7,10,10a,11,12,12a-十二氢-1,4,7,10-二亚甲基二苯并[a,e]环辛烯(得克隆(Dechlorane plus))、溴化环氧聚合物;和/或(有机)磷化合物,例如红磷、二乙基次膦酸铝、季戊四醇螺二(甲基膦酸酯)、磷酸三甲苯酯(TCP);和/或氮化合物,例如,三聚氰胺氰脲酸酯、三聚氰胺盐、三聚氰胺硼酸盐;和/或一种化合物中的上述方式的组合,例如,多磷酸铵(APP)、三聚氰胺多磷酸盐、三(1,3-二氯异丙基)磷酸酯。

聚合型混合物可以包含至少一种用于含卤素增塑剂、聚合物和阻燃剂的增效剂,例如,三氧化二锑、锡酸锌、羟基锡酸锌、2,3-二甲基-2,3-二苯基丁烷、硼酸锌。优选的是:基于锑(Sb)和/或锌(Zn)的材料,特别优选三氧化锑和/或锡酸锌。

聚合型混合物可以包含选自有机发泡剂和/或无机发泡剂类别的至少一种其它化学发泡剂(例如,释放二氧化碳、氮气、或氧气)。

聚合型混合物还可以包含热稳定剂体系和/或返硫稳定剂体系。稳定剂可以选自如下类别:炭黑、金属氧化物(例如,氧化铁)和氢氧化物(例如,氢氧化镁)、金属有机络合物、自由基清除剂(例如生育酚衍生物)、复合硅酸盐(例如珍珠岩、蛭石)、及它们的组合

聚合型混合物还可以包含任何比例任何种类的成分(如,杀生物剂、稳定剂(例如,相对于UV、臭氧、返硫等)、颜料等),包括用于改进其制造、应用和性能的添加剂,例如抑制剂、阻滞剂、促进剂等。本聚合型混合物可以另外包含用于形成炭的添加剂和/或膨胀型添加剂(例如膨胀石墨),用于常规保护目的并且/或者封闭并防止例如壁和隔板渗透。此外,本聚合型混合物可包含在着火时导致自陶瓷化效应的物质,如含硅化合物和/或内部粘合促进剂,以确保共挤出和共层压应用中的自粘性能,如硅酸酯、官能化硅烷、多元醇等

所有上述成分表现出在很宽剂量范围下容易混合且分散良好的性质。聚合型混合物可以通过橡胶工业中广泛使用的标准方法来混合,例如,在密炼机单螺杆或双螺杆挤出机中或在碾磨机上,优选密炼机。成形可以在挤出机、压制机、压延机等机械中进行。优选挤出机,这是因为在使用挤出机的情况下可以使得材料在热空气烘箱、微波炉、盐浴等内连续硫化并膨胀。优选的是热空气和微波炉,因为无需额外的清洁步骤等。

所要求保护的材料的主要优点是可实现获得具有出色技术性能的低密度FEF而不使用ADCA,但仅使用OBSH或吸热化学发泡剂或甚至该发泡剂的错误比例则具有多个上述缺点。此外,该密度不能用提高ADCA量来获得,至少不具有相当的技术性能。

另一个优点是,由于OBSH和吸热发泡剂的分解温度较低,所以该材料在较低的加工温度下制造(膨胀和硫化),因此返硫的风险显著下降。ADCA所需的高加工温度可能导致泡沫内过热,由此可能容易发生变色和降解。

所要求保护的材料的一个突出优点是所用化合物具有低粘度并且因此可以容易地进行加工(更少的剪切、烧焦等),但导致与ADCA发泡材料相当或更好的低密度和机械稳定泡沫。如果使用ADCA制造低密度材料,则机械性能变差且密度更高。较低的密度是优选的,因为在挤出过程中热量累积减少,因此挤出速度可以提高,从而可以减少加工时间。

所要求保护的材料的令人惊讶的优点是与使用ADCA相比,使得材料交联所需的促进剂的量更低,此外,处理温度更低且处理时间相等或甚至更短。

所包含材料的另一优点是出色的刚度以及同时的灵活性(flexibility)、可切割性和可结合性,导致在安装过程中快速且容易的适用性。

所包含材料的另一优点是根据ASTM D 1056通过真空吸水率所确定的<5.0%、优选<2.5%的高闭孔度。

另一优点是,所要求保护的材料提供了≥3.000、优选≥5.000的根据EN13469/EN 12086的高水蒸气透过率(WVT)值(还取决于混合物中的其它原料)。与所用ADCA相比,使用发泡剂混合物对WVT值没有负面影响。因此,该材料可用于低温绝热(<0℃),对待绝热的物体进行保护,使其不受湿气凝结造成的隔离下腐蚀(UIC)的影响。

所包含材料的另一个优点是其关于生产设备的通用性。它可以连续工艺(例如,通过挤出或共挤出)经济地进行生产。该材料还可以直接层压、模塑、共模塑、二次成型(overmould)、焊接(等)为单层或多层体系,因此可以无限制地成形于至汽车、运输、航空航天、建筑和建造、海洋和船舶、家具、机械工程和许多其他行业的各种表面上,即使通过热成型或其他成型方法亦可。所要求保护的材料可以具体以管材和片材的形式以连续工艺以各种壁厚和内径进行制造;最合适的壁厚为3mm至50mm。

实施例

在以下实施例和比较例中,使用四步制造工艺:首先,混合聚合型混合物的成分(不包括发泡剂和交联体系),随后在第二混合步骤中加入交联体系和发泡剂混合物,然后,挤出(成型)并最终膨胀和交联。作为两个混合步骤的替代,材料可以在混合器中或研磨机上进行冷却,并且交联体系和发泡剂混合物可以在第一混合步骤中加入。

挤出是在提供未膨胀的片材和管材的条带进料单螺杆真空挤出机上进行的。在5个烘箱的串联热风烘箱炉中将这些同时交联并膨胀成壁厚为25mm的板材和壁厚为25mm且内径为22mm的管材。表1列出了用于聚合型混合物的原料。表2给出了关于一些示例性聚合型混合物的构成概述,并且表3包括发泡并交联材料的一些技术性质。

表1:原料

表2:示例性聚合型混合物的构成

*比较例

表3呈现了比较例1至4和创新实施例5至7的密度(根据DIN EN ISO 845)、在0℃下的热导率(根据DIN EN ISO 8497/DIN EN 12667)、水蒸气吸收率(根据ASTM D 1056)以及水蒸气透过率(根据EN 13469/EN 12086的WVT)。

其清楚地显示出,OBSH和吸热发泡剂(例如碳酸氢钠)之间的正确平衡可以显著改进所获得泡沫的技术性能,而仅使用OBSH或更高份额的吸热发泡剂具有相反的效果,特别是关于WVT。

除了所列技术性能之外,尽管创新实施例5至7的样品具有最低的密度,但也可观察到创新实施例5至7的压缩变形(根据ASTM D 1056)增加。

表3:技术性能

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1