一种高强度中空复合材料建筑模板及其加工方法和回收方法与流程

文档序号:17488641发布日期:2019-04-23 20:12阅读:149来源:国知局
一种高强度中空复合材料建筑模板及其加工方法和回收方法与流程

本发明涉及一种高强度中空复合材料建筑模板及其加工方法和回收方法,属于建筑材料技术领域。



背景技术:

作为混凝土的成型模具,建筑模板是现浇钢筋混凝土结构中的重要组成部分,其选择和使用对于现代建筑工程具有重要意义。当前的建筑工程中,木竹模板、金属模板、塑料模板等被陆续开发并应用起来,这些模板各有优势,但也均有不足,比如金属模板尽管阻燃、力学性能高但生产率低、遇水易生锈、成本高;木竹模板早期使用、成本低、易加工、弯曲强度高但需要大量木竹作为原料且可循环使用次数少;而塑料模板绿色环保、能够方便快捷满足各种施工需要,因此具有广阔的应用前景。

概括来说,塑料模板在建筑施工过程中具有如下优势:1)模板板面平整、光滑且缝隙小,能满足清水混凝土施工的要求,建筑物不需要再二次抹灰;2)模板质量轻,在施工过程中可极大减小劳动强度;3)模板的规格比较灵活,在各种建筑中均可使用;4)模板可锯、可刨、可钉;5)部分模板强度比较高,并且可以以模块形式进行拼装。但也具有一些不可回避的缺点:(1)塑料模板弯曲强度与弹性模量普遍较低;(2)塑料模板的承载力相对较低;(3)塑料模板具有较高的热膨胀系数,且力学性能容易受到温度的影响;(4)掉落的高温焊渣会对模板表面的平整度产生影响,造成混凝土表观质量缺陷。

为了满足轻量、高质、低成本的市场需求,如何有效解决上述问题是塑料模板更为广泛接受及应用的首要任务。



技术实现要素:

发明目的:本发明所要解决的技术问题是提供一种高强度中空复合材料建筑模板,该建筑模板采用蜂窝状发泡芯层,不仅使得到的建筑模板密度低、热膨胀率低、弯曲模量和冲击强度高,而且还降低了制备模板的材料成本。



技术实现要素:
为解决上述技术问题,本发明所采用的技术方案为:

一种高强度中空复合材料建筑模板,由表层以及包裹在表层内的蜂窝状芯层组成;其中,所述蜂窝状芯层由如下质量份数的组分熔融挤出而成:聚丙烯70~80份;滑石粉15~20份;硅烷偶联剂1~2份;三元乙丙橡胶3~5份以及改性母粒1~5份;所述表层由如下质量份数的组分熔融挤出而成:聚氯乙烯100份、增塑剂8~10份、热稳定剂5~6份、润滑剂2~3份、增韧剂8~10份、填充剂10~15份、抗氧化剂1~2份、紫外光吸收剂1~2份、着色剂0.1~0.2份以及界面相容剂5~10份。

其中,所述蜂窝状芯层包括芯层骨架和位于骨架中的空心腔体;芯层骨架为发泡芯层,芯层内含有多个封闭微孔。

本发明中空复合材料建筑模板表层部分与芯层部分的材料质量占比为1∶8~9,即模板表层占模板制件总质量的10~12%。

其中,所述改性母粒包括如下质量份数的组分:发泡剂10~30份、成核剂4~8份、分散剂5~10份以及载体树脂50~80份,还包括发泡助剂,发泡助剂的加入量为发泡剂质量的10.5~11.3%;所述改性母料产生气体的温度为150~160摄氏度。

其中,所述发泡剂为4,4-氧代双苯磺酰肼(obsh);发泡助剂为氧化锌和/或氧化钡;分散剂为高熔点pe蜡;成核剂为纳米二氧化钛或纳米二氧化硅;载体树脂为低密度聚乙烯(ldpe)或其与线性低密度聚乙烯(lldpe)的混合物。

其中,所述增塑剂为环氧大豆油;热稳定剂为三盐基性硫酸铅;润滑剂为高熔点聚乙烯蜡;增韧剂为乙烯-乙酸乙烯共聚物(eva);填充剂为滑石粉和/或碳酸钙;抗氧化剂为1010;紫外光吸收剂uv-9;着色剂为有机颜料;界面相容剂为氯化聚乙烯。

上述高强度中空复合材料建筑模板的制备方法,表层物料和芯层物料是通过两台不同的挤出机熔融然后向一个复合机头共挤出,最后通过口模连续一次性成型而成;芯层物料塑化所用的挤出机为排气式挤出机,这使得芯层物料在挤出过程中经过料筒中部时有排气槽的作用可排除物料中多余的气体。

其中,在芯层成型过程中,口模中所用的芯棒具有沟壑结构,使挤出的芯层物料在通过口模时受到了至少一次拉伸及压缩的力。从而提升了泡孔密度,减少了泡孔尺寸,为配合芯层材料的发泡过程,提高泡孔密度,细化泡孔尺寸,本发明在共挤出模具的口模内设有具有特殊结构的芯棒,该芯棒不是正常平直的(如图4所示的芯棒,即为平直的),而是在其中部具有向内凹的沟壑结构,使芯层物料在通过口模时受到了至少一次拉伸及压缩作用,即芯层物料在从左至右通过芯棒时,先受到挤压,到中部然后膨胀,然后往前推再受到挤压的过程,使得到的芯层内部的泡孔更细微和均匀。即口模内两相邻芯棒处具有特征尺寸h、m、l1、l2和l3,如图5所示;其中,h/m定义为扩展比或压缩比,图4中,两相邻芯棒的h/m=1,而图5中,两相邻芯棒的扩展比的值小于1,该值在0.4~0.6之间。

上述高强度中空复合材料建筑模板的回收方法,将回收的中空复合建筑模板沿表层和芯层的界面位置锯切后分别粉碎处理,得到表层破碎料和芯层破碎料;往得到的表层破碎料中加入质量比为10%的氯化聚乙烯后掺入芯层破碎料中,得到混合物料;然后将混合物料替代下次生产中作为芯层物料使用。

其中,混合物料(回收材料)的加入量不超过芯层物料总质量的30%。

本发明制得的建筑模板表层为彩色实心结构,芯层为黑色的蜂窝状中空结构,芯层骨架内部含有无数封闭微孔,表层的主要材料为聚氯乙烯,芯层的主要材料为聚丙烯并经强韧改性造粒,为更大程度减少施工过程中的吸热,本发明建筑模板的表层采用除黑色以外的其它颜色,均称为彩色,优选的,采用白色。

相比于现有技术,本发明技术方案具有的有益效果为:

本发明的建筑模板芯层内部的微孔结构使模板的收缩率大大降低,其热膨胀率降低40%以上,同时,也使表芯层材料的收缩率达到一致,极大的缓解了模板在应用过程中因热胀冷缩而引进的尺寸变化及内应力的发生,因而所得的模板产品尺寸稳定性好、使用寿命长;另外,在不同季节应用时,因表芯层材料的温度适用性可以互补,保证了模板在高温或低温下可正常使用;并且,因芯层内部大量微孔的存在,导致制品密度大大降低,重量减轻,节省了相应原料,本发明的模板在同等条件下节约原料在10%以上;最后,模板芯层的中空微孔结构提高了制品保温、隔音以及防震等效果,避免了邻苯二甲酸酯类可能影响环境类助剂的使用,也避免了阻燃助剂的使用,减少了环境污染的可能性,本发明所使用的原辅材料均为绿色环保型,无毒无污染;

本发明的建筑模板使用聚氯乙烯材料用于表层,使制得的模板具有阻燃和表面光洁度、尺寸稳定性好的特点,无需额外加阻燃助剂,使用聚丙烯材料用于芯层,具有可回收利用、易于制得中空结构、力学性能好的优点;表层配方中利用植物油基增塑剂与有机金属盐稳定剂之间的携同增效作用,也减少了材料的用量,本发明的中空建筑模板产品的综合成本可减少10%以上;

本发明的建筑模板因芯层材料中改性母料的应用使熔融物料在挤离口模后发生膨胀,在随后的定型过程中可以不用抽真空,减小了随后产品定型的难度,节约了能源。

附图说明

图1为本发明实施例1建筑模板的侧视图;

图2为本发明实施例1建筑模板的产品图;

图3为本发明制备方法所采用的共挤出装置的结构示意图;

图4为现有技术中普通的共挤出加工装置中口模芯棒的结构示意图;

图5为本发明制备方法共挤出加工装置中所采用的口模芯棒的结构示意图;

其中,图3-5中,1:挤出机i(表层材料塑化);2:共挤出模座;3:共挤出口模;4:挤出的模板产品;5:口模芯棒;6:挤出机ii(芯层材料塑化);7:沟壑结构。

具体实施方式

下面结合具体实施例来对本发明技术方案做进一步说明。

本发明主要包括原料配比和成型加工条件等两部分关键技术细节。原料方面,所有使用的原料均为市售。塑料模板一般有6种常用的规格尺寸:长1830mm,宽915mm,厚度有12、15、18mm三种;长2440mm,宽1220mm,厚度有12、15、18mm三种。以下实施例制得的模板尺寸为长1830mm,宽915mm,厚度15mm。

实施例1

本实施例为生产本发明建筑模板的具体实现方式,设备方面,需要两台双螺杆挤出机,其中用于芯层物料塑化挤出的挤出机料筒中部开设有排气槽,并具有共挤出模具,该模具的口模内两相邻芯棒处具有如图5所示的特征尺寸,其中,其压缩比h/m为0.4,另外需要混料用的挤出机一台,它可以是单螺杆或双螺杆式的。

实施例的具体实现步骤:

首先,制造芯层用改性母料:按照下面的质量称取原料:ldpe:40kg,lldpe:40kg,obsh:30kg,zno:3.39kg,高熔点pe蜡:8kg,纳米二氧化钛:10kg。经测试,该改性母料产生气体的温度为150~160摄氏度之间,将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得改性母料,在挤出过程中熔体温度为125℃;

其次,分别准备表芯层用物料:按照下面的质量称取芯层用原料:聚丙烯:70kg,滑石粉:15kg,硅烷偶联剂kh550:1kg;三元乙丙橡胶:3kg;改性母料1kg;按照下面的质量称取表层用原料:聚氯乙烯100kg、环氧大豆油8kg、三盐基性硫酸铅5kg、高熔点聚乙烯蜡2kg、eva8kg、滑石粉10kg、1010抗氧剂1kg、uv-9紫外光吸收剂1kg、颜料白0.1kg、氯化聚乙烯5kg;

之后,将表芯层用物料分别放入两个挤出机中共挤出制品,并经过牵引定型切割等得到模板产品;其中挤出机的料筒温度设置在165~185摄氏度之间,挤出口模处的温度设置为180摄氏度。

最后,对所制得的模板产品进行测试,测试结果见表1。另外,也对所得的模板产品进行外观及内部结构的表征,其结果如图1所示。

为了对本发明的效果进行说明,另外列举了对比例1,其基本的制备流程和实施例1类似,但其芯层用材料未加入改性母料,另外,其模具口模的芯棒平直,即其h/m等于1.0,对所制得的模板产品进行测试,测试结果也见表1。通过表1的数据和图1结果可以看出,本发明的中空模板制品可以很方便的通过双层共挤的方式制得,同时,该类制品芯层内部含有均匀微孔,其制品的弯曲模量和冲击强度均提升20%以上,产品外观质量好,尺寸变化率也低,显示出明显的应用前景。

实施例2

本实施例为生产本发明建筑模板的具体实现方式,设备方面,需要两台双螺杆挤出机,其中用于芯层物料塑化挤出的挤出机料筒中部开设有排气槽,并具有共挤出模具,该模具的口模内两相邻芯棒处具有如图5所示的特征尺寸,其中,其压缩比h/m为0.6,另外需要混料用的挤出机一台,它可以是单螺杆或双螺杆式的。

实施例的具体实现步骤:

首先,制造芯层用改性母料。按照下面的质量称取原料:ldpe:60kg,lldpe:20kg,obsh:10kg,zno:1.05kg,高熔点pe蜡:4kg,纳米二氧化钛:5kg。经测试,该改性母料产生气体的温度为150~160摄氏度之间。将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得改性母料,在挤出过程中熔体温度为120℃;

其次,分别准备表芯层用物料。按照下面的质量称取芯层用原料:聚丙烯:80kg,滑石粉:20kg,硅烷偶联剂kh550:2kg;三元乙丙橡胶:5kg;改性母料5kg。按照下面的质量称取表层用原料:聚氯乙烯100kg、环氧大豆油10kg、三盐基性硫酸铅6kg、高熔点聚乙烯蜡3kg、eva10kg、碳酸钙15kg、1010抗氧剂2kg、uv-9紫外光吸收剂2kg、颜料白0.2kg、氯化聚乙烯10kg;

之后,将表芯层用物料分别放入两个挤出机中共挤出制品,并经过牵引定型切割等得到模板产品;其中挤出机的料筒温度设置在165~185摄氏度之间,挤出口模处的温度设置为180摄氏度。

最后,对所制得的模板产品进行性能测试,测试结果也见表1。

为了对本发明的效果进行说明,另外列举了对比例1,其基本的制备流程和实施例1类似,但其芯层用材料未加入改性母料,另外,其模具口模的芯棒平直,即其h/m等于1.0,对所制得的模板产品进行测试,测试结果也见表1。

为了对本发明的效果进行说明,另外列举了对比例2,其基本的制备流程和实施例1类似,但其芯层用材料未加入改性母料,另外,其模具口模的芯棒平直,即其h/m等于1.0,对所制得的模板产品进行测试,测试结果也见表1。

从表1的数据可知,本发明所得制品的冲击强度和弯曲模量优异,产品外观质量好,尺寸变化率也低。

实施例3

本实施例为生产本发明建筑模板的具体实现方式,设备方面,需要两台双螺杆挤出机,其中用于芯层物料塑化挤出的挤出机料筒中部开设有排气槽,并具有共挤出模具,该模具的口模内两相邻芯棒处具有如图5所示的特征尺寸,其中,其压缩比h/m为0.5,另外需要混料用的挤出机一台,它可以是单螺杆或双螺杆式的。

实施例的具体实现步骤:

首先,制造芯层用改性母料。按照下面的质量称取原料:ldpe:50kg,lldpe:10kg,obsh:20kg,zno:2.2kg,高熔点pe蜡:6kg,纳米二氧化硅:8kg。经测试,该改性母料产生气体的温度为150~160摄氏度之间。将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得改性母料,在挤出过程中熔体温度为125℃;

其次,分别准备表芯层用物料。按照下面的质量称取芯层用原料:聚丙烯:75kg,滑石粉:18kg,硅烷偶联剂kh550:1.5kg;三元乙丙橡胶:4kg;改性母料3kg。按照下面的质量称取表层用原料:聚氯乙烯100kg、环氧大豆油9kg、三盐基性硫酸铅5.5kg、高熔点聚乙烯蜡2.5kg、eva9kg、滑石粉12kg、1010抗氧剂1.5kg、uv-9紫外光吸收剂1.5kg、颜料白0.15kg、氯化聚乙烯8kg;

之后,将表芯层用物料分别放入两个挤出机中共挤出制品,并经过牵引定型切割等得到模板产品;其中挤出机的料筒温度设置在165~185摄氏度之间,挤出口模处的温度设置为180摄氏度。

最后,对所制得的模板产品进行性能测试,测试结果也见表1。

为了对本发明的效果进行说明,另外列举了对比例3,其基本的制备流程和实施例3类似,但其芯层用材料未加入改性母料,另外,其模具口模的芯棒平直,即其h/m等于1.0,对所制得的模板产品进行测试,测试结果也见表1。

从表1的数据可知,本发明所得制品的冲击强度和弯曲模量优异,产品外观质量好,尺寸变化率也低。

实施例4

本实施例为生产本发明建筑模板的具体实现方式,设备方面,需要两台双螺杆挤出机,其中用于芯层物料塑化挤出的挤出机料筒中部开设有排气槽,并具有共挤出模具,该模具的口模内两相邻芯棒处具有如图5所示的特征尺寸,其中,其压缩比h/m为0.5,另外需要混料用的挤出机一台,它可以是单螺杆或双螺杆式的。

实施例的具体实现步骤:

首先,准备模板粉碎料。将同等质量的实施例1、2、与3所制得的模板进行回收,沿它们的表层和芯层的界面位置锯切后分别处理清洗粉碎,得到表层破碎料和芯层破碎料;往表层破碎料中加入占所得表层破碎料总质量10%的氯化聚乙烯,然后掺入芯层破碎料中,混合均匀后备用;得到的模板粉碎料可加入制备芯层的物料中,模板粉碎料的加入量不超过制备芯层物料总质量的30%。

其次,制造芯层用改性母料。按照下面的质量称取原料:ldpe:50kg,lldpe:10kg,obsh:20kg,zno:2.2kg,高熔点pe蜡:6kg,纳米二氧化硅:8kg。经测试,该改性母料产生气体的温度为150~160摄氏度之间。将原料分别干燥后,在混炼机中混合均匀并通过双螺杆挤出机制得改性母料,在挤出过程中熔体温度为125℃;

再次,分别准备表芯层用物料。按照下面的质量称取芯层用原料:聚丙烯:75kg,滑石粉:18kg,硅烷偶联剂kh550:1.5kg;三元乙丙橡胶:4kg;改性母料3kg;回收模板粉碎料:30kg。按照下面的质量称取表层用原料:聚氯乙烯100kg、环氧大豆油9kg、三盐基性硫酸铅5.5kg、高熔点聚乙烯蜡2.5kg、eva9kg、滑石粉12kg、1010抗氧剂1.5kg、uv-9紫外光吸收剂1.5kg、颜料白0.15kg、氯化聚乙烯8kg;

之后,将表芯层用物料分别放入两个挤出机中共挤出制品,并经过牵引定型切割等得到模板产品;其中挤出机的料筒温度设置在165~185摄氏度之间,挤出口模处的温度设置为180摄氏度。

最后,对所制得的模板产品进行性能测试,测试结果也见表1。

从表1的数据可知,实施例4所得制品和实施例3相比,基本性能降低不多,仍比对比例3有较大的优势。

表1几种产品的比较

从表1的数据可知,本发明建筑模板的芯层内部具有特定形态的微孔结构,从而使模板表现出密度低、力学性能优异、尺寸稳定性好等特点,具有优异的应用前景。相比于仅用聚丙烯制得的芯层模板相比,本发明具有发泡芯层的模板密度降低了10~20%,比强度提高了20%(即弯曲模量及冲击强度提高了20%),热膨胀率降低了40%以上,制品的综合制备成本降低了10%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1