一种FRET-ICT型β-半乳糖苷酶荧光探针及其制备方法与应用与流程

文档序号:18733524发布日期:2019-09-21 00:51阅读:750来源:国知局
一种FRET-ICT型β-半乳糖苷酶荧光探针及其制备方法与应用与流程

本发明涉及一种检测细胞中的β-半乳糖苷酶的荧光探针及其应用,属于有机小分子荧光探针领域。



背景技术:

β-半乳糖苷酶属于糖苷水解酶,是一种能把乳糖水解成葡萄糖和半乳糖的酶,广泛存在于动植物细胞中,在维持正常的生命活动中具有举足轻重的作用。β-半乳糖苷酶活性及含量的异常通常与癌症的发生有着密切的关系,此外,在遗传学领域中对人类β-半乳糖苷酶缺陷病的诊断和基础研究也是重要的指征,研发高效的检测手段来实现对生物体系中β-半乳糖苷酶的活性检测和成像对深入研究重大疾病的发病机制具有不可忽视的作用。传统的酶活性分析检测手段有比色法、电化学法等,但因各自的局限性都无法实现对生物体系内β-半乳糖苷酶的含量进行实时原位无损的检测。近年来,荧光探针法因其具有选择性好、灵敏度高、操作简便,可实现实时快速、原位无损检测、高时空分辨率成像等优势,已广泛用于活细胞水平离子及小分子的识别及细胞成像,同时也成为生物体系中β-半乳糖苷酶活性检测与可视化成像的一种重要手段而备受关注,基于酶的催化专一性特点,β-半乳糖苷酶可以特异性识别β-半乳糖苷键。因此,我们设计了一种基于FRET机制的比率型β-半乳糖苷酶荧光探针,从而实现对β-半乳糖苷酶的特异性检测。



技术实现要素:

针对现有技术的不足,本发明要解决的问题是提供一种β-半乳糖苷酶荧光探针(CG)及其应用。利用本发明的探针通过荧光成像技术检测细胞中的β-半乳糖苷酶,可用于评价和研究细胞内的β-半乳糖苷酶的生理功能。

一种检测β-半乳糖苷酶的比率型荧光探针,探针分子的分子式为:C39H42N4O12,结构如下:

所述的制备方法,按照以下步骤进行:

(1)将化合物1(1 eq)、化合物2 (7-(二乙胺基)-2-氧代-2-苯并吡喃-3-酰胺哌嗪,1 eq)、EDC(1-(3-二甲胺基丙基)-3-乙基碳二亚胺, CAS:1892-57-5; 2 eq)、和HOBT(1-羟基苯并三唑, CAS:2592-95-20.5 eq)溶于DMF溶液中,室温搅拌反应10 min后加入DIEA(100 μL),氮气保护反应4 h,硅胶色谱柱纯化得到淡黄色固体3,反应方程式为:

(2)将化合物3(1 eq)、Na2SO4(2.5 eq)和Cs2CO3(5 eq)溶于无水乙腈溶液中,然后将化合物4 (2,3,4,6-四乙酰氧基-alpha-D-吡喃糖溴化物,CAS: 3068-32-4)滴加进反应液中在氮气保护环境中室温搅拌反应24 h,经过硅胶色谱柱纯化得到淡黄色固体粉末A,反应方程式为:;

(3)在100 mL圆底烧瓶中,将物质A(200mg)溶于甲醇溶液中,37 ℃保温5 min后加入2 mL的甲醇钠搅拌反应2 h,然后冰水中放置析出固体,过滤干燥得到黄色固体CG,反应方程式为:。

更多的,上述的检测细胞和组织中β-半乳糖苷酶的荧光探针的应用,其特征在于,该荧光探针可以应用于生物中的β-半乳糖苷酶的传感检测;所述的传感检测包含荧光检测,细胞成像检测。

上述应用中:所述荧光探针能专一识别β-半乳糖苷酶,并且以比率型荧光增强的方式实现对β-半乳糖苷酶的识别,尤其是它还可以识别活组织中的β-半乳糖苷酶。

本发明所述检测荧光探针(CG)本身具有强的蓝色荧光,当探针与β-半乳糖苷酶分子作用后,探针发生荧光共振能量转移,蓝色荧光逐渐淬灭,绿色荧光增强。

识别机理如下:

本发明提供的β-半乳糖苷酶荧光探针属小分子类荧光探针,目前针对β-半乳糖苷酶识别的小分子荧光探针报道的并不多,尤其是识别活组织中的中β-半乳糖苷酶的荧光探针更是少之又少。

实验证实,本发明提供的检测β-半乳糖苷酶的荧光探针溶液,当向其加入β-半乳糖苷酶后绿色荧光显著增强,该结果及其现象为生物学成像应用奠定了理论基础,预示其在激光激发荧光生物标记领域具有潜在的应用价值。相应的,利用本发明的探针通过荧光成像技术检测β-半乳糖苷酶可于评价和研究细胞内β-半乳糖苷酶的含量和生理功能,对研究获得生物样品中β-半乳糖苷酶的生理功能有潜在的应用价值。

附图说明

图1:探针CG的核磁谱图(氢谱);

图2:探针CG在水相中的选择性测试。 a. 探针与β-半乳糖苷酶及其他分子的反应后的光谱曲线图;b探针与β-半乳糖苷酶及其他分子的反应后的I570/I500值。1. Lipopolysaccharide (100 μM);2. Phorbol ester(100 μM); 3. IgG(100 μM); 4. Alkaline phosphatase(5 u); 5.γ-Glutamyl Transferase (5 u); 6. RNAase (5 u); 7. H2O2(100 μM); 8. Cys(1 mM); 9. GSH(1 mM); 10. NaHSO3 (100 μM); 11. Glucose (100 μM); 12. Free CG(100 μM); 13. β-半乳糖苷酶(5 u). 激发波长为420 nm,测试时间:15 min。

图3:探针CG与β-半乳糖苷酶作用的滴定实验。其中激发波长为420 nm;探针的浓度:10 µM;探针浓度为10 μM,β-半乳糖苷酶为0-3 u。如图可见,当β-半乳糖苷酶浓度达到3 u的时候,荧光达到饱和状态。

图4:探针CG与β-半乳糖苷酶作用的动力学实验。其中激发波长为420 nm;探针的浓度:10 µM。β-半乳糖苷酶的浓度为5 U/mL,测试时间:15 min;

图5:探针CG在OVCA-3细胞中的成像结果。a. 明场细胞;b. 加入10 μM探针孵育10 min后的荧光场(λex=404 nm , λem=434-514 nm );c. 加入10 μM探针孵育10 min后的荧光场(λex=404 nm , λem=544-644 nm )d. a、b、c的叠加场。e. 明场细胞;f. 加入10 μM探针孵育50 min后的荧光场(λex=404 nm , λem=434-514 nm);g. 加入10 μM探针孵育50 min后的荧光场(λex=404 nm , λem=544-644 nm )h. e、f、g的叠加场。

具体实施方式

下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制,实施例中化合物的号码对应上述方案中化合物的号码。

实施例1: (1)化合物CG的合成:

在100 mL圆底烧瓶中,将物质A(200mg)溶于甲醇溶液中,37 ℃保温5 min后加入2 mL的甲醇钠搅拌反应2 h,然后冰水中放置析出固体,过滤干燥得到黄色固体。

(2)化合物A的合成:

将化合物1(1 eq)、化合物2 (7-(二乙胺基)-2-氧代-2-苯并吡喃-3-酰胺哌嗪,1 eq)、EDC(1-(3-二甲胺基丙基)-3-乙基碳二亚胺, CAS:1892-57-5; 2 eq)、和HOBT(1-羟基苯并三唑, CAS:2592-95-20.5 eq)溶于DMF溶液中,室温搅拌反应10 min后加入DIEA(100 μL),氮气保护反应4 h。硅胶色谱柱纯化得到淡黄色固体3。将化合物3(1 eq)、Na2SO4(2.5 eq)和Cs2CO3(5 eq)溶于无水乙腈溶液中,然后将化合物4 (2,3,4,6-四乙酰氧基-alpha-D-吡喃糖溴化物,CAS: 3068-32-4)滴加进反应液中在氮气保护环境中室温搅拌反应24 h。经过硅胶色谱柱纯化得到淡黄色固体粉末A。

实施例2:探针CG选择性测试

分别配置不同的干扰物质,如下:1. Lipopolysaccharide (100 μM);2. Phorbol ester(100 μM); 3. IgG(100 μM); 4. Alkaline phosphatase(5 u); 5.γ-Glutamyl Transferase (5 u); 6. RNAase (5 u); 7. H2O2(100 μM); 8. Cys(1 mM); 9. GSH(1 mM); 10. NaHSO3 (100 μM); 11. Glucose (100 μM); 12. Free CG(100 μM); 13. β-半乳糖苷酶(5 u). 激发波长为420 nm,测试时间:15 min。

配制探针CG其浓度分别为:探针10 μM。反应15min后进行荧光检测(λex = 420 nm)。检测各体系中荧光曲线变化,以及计算相对应的I570/I500的值,如图2。其他分子 对化合物CG的荧光几乎没有影响,而β-半乳糖苷酶的加入使化合物CG的荧光发生FRET效应,香豆素的荧光变弱,萘酰亚胺的荧光变得很强。

实施例3:不同浓度的β-半乳糖苷酶对探针CG的荧光滴定检测

配制2.5 mL浓度为1000 u β-半乳糖苷酶的水溶液及浓度为1 mM的本发明所述检测β-半乳糖苷酶的荧光探针CG母液作为备用。

配制探针浓度为10 μM,分别与不同浓度的β-半乳糖苷酶(0-5 u)相互作用,并进行荧光检测(λex = 420 nm),计算各体系中荧光强度,建立荧光强度与β-半乳糖苷酶浓度标准曲线。如图3所示,随着β-半乳糖苷酶浓度的增加,反应体系荧光强度呈比率型变化,当β-半乳糖苷酶浓度达到5 U时,反应体系荧光强度达到饱和状态。

实施例4:探针CG与β-半乳糖苷酶相互作用的动力学测试

配制2.5 mL浓度为1000 u β-半乳糖苷酶的水溶液及浓度为1 mM的本发明所述检测β-半乳糖苷酶的荧光探针CG母液作为备用。

配制探针CG和β-半乳糖苷酶的溶液,其浓度分别为:探针10 μM;β-半乳糖苷酶浓度:5 u。进行荧光检测(λex = 420 nm),每隔0.5 s测试一次,测试15 min,计算各体系中随时间变化的荧光强度,建立荧光强度与作用时间标准曲线。如图4所示,大约反应10 min,反应体系荧光强度达到饱和状态。

实施例5:探针CG在细胞中对β-半乳糖苷酶的成像测试

配置1mL浓度为10 μM的探针PBS溶液,然后加入到OVCA-3细胞中孵育10min成像;另一组是将1mL浓度为10 μM的探针PBS溶液加入到OVCA-3细胞中孵育50 min。如图5所示,加入探针10 min后,细胞出现较强的蓝色荧光,微弱的绿光,随着时间增长,细胞中蓝色荧光逐渐变弱,出现很强的绿色荧光,说明探针能够在细胞中检测β-半乳糖苷酶。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1